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Chapter 5

Topology of 2-orbifolds: 2-orbifold
topological constructions

We now wish to concentrate on 2-orbifolds to illustrate more concretely. In many

cases, the theory is much easier to understand. Also, we study the topological

constructions of 2-orbifolds. We will follow the papers [Choi and Goldman (2005);

Scott (1983)].

We first classify smooth 2-orbifolds with possibly empty boundary up to diffeo-

morphisms. Next 1-dimensional suborbifolds are classified. We discuss the Euler

characteristic and the Riemann-Hurwitz formula. We classify the bad orbifolds by

discussing about the good, very good, and bad 2-orbifolds. (At present, we can

do this for 2-orbifolds only. For higher dimensions, these may not be appropriate

terminologies even.)

In the rest of the chapter, we discuss topological cut-and-paste methods appli-

cable to 2-orbifolds.

5.1 The properties of 2-orbifolds

Recall that the singular points of a two-dimensional orbifold fall into three types

(See Figure 4.7):

(i) The mirror point: R2/Z2 where Z2 acts by reflections on the y-axis.

(ii) The cone-points of order n: R2/Zn where Zn acting by rotations by angles

2πm/n for integers m.

(iii) The corner-reflector of order n: R2/Dn where Dn is the dihedral group

generated by reflections about two lines meeting at an angle π/n.

From this, we obtain that the underlying space of a 2-orbifold is a surface with

corner.

The singular strata associated with conjugate local groups are as follows: a

silvered point belongs to a 1-dimensional strata, called a silvered arc. The other

types have isolated points as strata. Recall that boundary of a 2-orbifold is a

suborbifold. The silvered arc may have an end point in the boundary of the 2-

orbifold and it may end in a corner-reflector of order ≥ 2 also but not at a cone-point

97
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by the local group considerations.

• On the boundary of a surface with a corner, one can choose a collection of

mutually disjoint maximal smooth open arcs ending at corners. If two half-

arcs in the distinguished arcs end at a corner-point, then the corner-point

is a distinguished one. If only one of the chosen arc ends at the corner, the

corner-point is ordinary. The diffeomorphism type of the surface with the

collection of chosen arcs will be called the boundary pattern.

• Recall Example 4.2.4: given a surface with corner and a collection of discrete

points in its interior and the boundary pattern, we can put an orbifold

structure on it so that the selected interior points become cone-points and

the distinguished corner-points the corner-reflectors of given order and the

ordinary end points and points of chosen arcs the silvered points.

Theorem 5.1.1. Any 2-orbifold is obtained from a smooth surface with corner

by silvering some arcs and putting cone-points and corner-reflectors. The smooth

orbifold topology of 2-orbifold is classified by the underlying smooth topology of the

surface with corner and the cardinality and orders of cone-points, corner-reflectors,

and the boundary pattern of silvered arcs.

Proof. Given a 2-orbifold, we can forget the orbifold structure and we obtain a

smooth surface with corner. Thus, we can obtain the orbifold back by doing the

construction as above.

Given two 2-orbifolds Σ1 and Σ2 with the same boundary pattern of silvered

arcs and corner reflectors and cone-points, we remove the neighborhoods of small

corner-reflectors and cone-points diffeomorphic to disks or disks intersected with

R2
+ to obtain Σ′1 and Σ′2. Then there is a diffeomorphism f : Σ′1 → Σ′2 considering

Σ′1 and Σ′2 as surfaces with corner. Only silvered arcs remain as the singular sets.

f can be isotoped to an orbifold-diffeomorphism.

We can extend f radially at each neighborhood of corner-reflectors and cone-

points where we have to smooth the maps radially. We obtain a smooth orbifold

diffeomorphism. �

A full 1-orbifold is an orbifold with the underlying space homeomorphic to an

interval and where both endpoints are singular. A boundary full 1-orbifold is a full

1-orbifold in the boundary of 2-orbifold. (Recall Remark 4.2.5.)

Let Σ be a surface with corners. Thurston’s notation of a closed 2-orbifold

with base space Σ is given by Σ(j1, j2, . . . ; k1, k2, . . .) where j1, j2, . . . indicate the

orders of the cone-points and k1, k2, . . . indicate the orders of the corner-reflectors.

This will determine the orbifold diffeomorphism class by additionally specifying on

which boundary components of the underlying space Σ the corner-reflectors and the

boundary full 1-orbifolds are and in what way by combinatorially ordering these on

the boundary components.
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From now on, a special singular point will mean either a cone-point or a corner-

reflector.

5.1.1 The triangulation of 2-orbifolds

For 2-orbifolds, the Riemannian metric and triangulation can be approached in

much simpler manner. (See Chapter 4 for the full generality.)

Proposition 5.1.2. One can put a Riemannian metric on a 2-orbifold so that the

boundary of the underlying cornered surface is a union of geodesic arcs and each

corner-reflector has angles π/n for its order n and each cone-point has angles 2π/m

for its order m. One can give a triangulation by smooth triangles so that slivered

arcs and boundary curves are in the union of 1-skeletons and corner-reflectors and

cone-points are in 0-skeletons.

Proof. First construct such a Riemannian metric on the boundary by putting

such metrics on the boundary by using a broken geodesic in the Euclidean plane

and a singular Euclidean metric around the cone points. (See Example 4.2.4.) We

require that the corner-reflector of order n has angle π/n and the cone points of

order m have a Euclidean angle 2π/m. Put a Riemannian metric on the surface

with neighborhoods of singular points removed so that the boundary is geodesic.

We extend the metric to the interior using partition of unity.

By removing open balls around cone-points and corner-reflectors, we obtain a

smooth surface with corners and without singular points.

Now we can find a smooth triangulation so that the interior of each edge of a

triangle is completely inside the boundary with the corner points removed. Finally

we extend the triangulation by cone-construction to the interiors of the removed

balls. �

5.1.2 The classification of 1-dimensional suborbifolds of 2-

orbifolds

A compact 1-orbifold is either a closed arc homeomorphic to a circle, a segment, a

segment with one silvered endpoint, or a segment with two silvered endpoint.

Recall that a neatly embedded suborbifold is an embedded suborbifold so that

its boundary is in the boundary of the ambient orbifold and each point of the

boundary has a neighborhood in the orbifold modeled on a half space Hn with the

suborbifold neighborhood modeled on another half space Hm embedded in it for

0 ≤ m ≤ n. (See Section 4.4.2.) A properly and neatly embedded 1-orbifold in a

2-orbifold with boundary either avoids the singular sets in its topological interior

or is entirely contained in a singular set. In the former case we have:

• No silvered-point case: An embedded closed arc avoiding boundary or sin-

gular points or an arc segment with two endpoints in the boundary avoiding
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singularities.

• One silvered-point case: An arc segment with silvered endpoint at a cone-

point of order two or in the interior of a silvered arc and the other endpoint

in the boundary.

• Two silvered-points case: An arc segment with silvered endpoints at cone-

points of order two or in the interiors of silvered arcs. (This is a full 1-

orbifold, which may or may not be the boundary one.)

By a silvered edge, we mean a maximal arc whose interior is silvered. (The

endpoints must be also singular.)

If the neatly embedded 1-orbifold is in the singular set, we classify them as

below:

• a silvered embedded closed arc,

• a maximal segment in a silvered edge with two end points in the boundary

of the orbifold,

• a segment in a silvered edge with one endpoint in a corner reflector of order

two and the other in the boundary, and

• a segment in a silvered edge with two endpoints in two corner-reflectors of

order two. (This is a full 1-orbifold but not the boundary one.)

(It might be useful to recall Remark 4.2.5.)

These are all possible compact neatly embedded 1-orbifolds and we will assume

that our 1-orbifolds are of these types only.

5.1.3 The orbifold Euler-characteristic for orbifolds due to Satake

Let O be a compact n-dimensional orbifold with boundary. Then O admits a

finite triangulation by Theorem 4.5.4. Thus, the underlying space of O has a cell-

decomposition. We defined the Euler characteristic to be

χ(O) =
∑

ci

(−1)dim(ci)
1

|Γ(ci)|
,

where ci ranges over the open cells and |Γ(ci)| is the order of the group Γ(ci)

associated with a point of ci. (The order is independent of the point in a given

open cell.)

Proposition 5.1.3. Let X be an n-dimensional orbifold for n ≥ 1. If X is finitely

covered by another orbifold X ′, then χ(X ′) = rχ(X) where r is the number of sheets

for regular points.

Proof. Each point of a strata with a local group G′ in X has the inverse image

equal to the set of points pi, i = 1, . . . , n in a respective stratum Si in X ′ with local
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group G′i so that

r =
n∑

i=1

|G′|
|G′i|

.

This is verified by taking a nearby regular point and counting the inverse images

near pis.

Thus, the inverse image of an open cell c with the local group Γ(c) consists of a

union of open cells c1, . . . , cn with local groups Γ(ci) of same dimension where we

have

r

|Γ(c)| =
n∑

i=1

1

|Γ(ci)|
.

�
The Euler-characteristic of a compact 1-orbifold is as follows: a circle 0, a seg-

ment 1, a segment with one silvered-point 1/2, a full 1-orbifold 0.

A separating 1-orbifold Y in a 2-orbifold Σ is a 1-dimensional suborbifold in

Σ with the topological interior |Y |o of the underlying space |Y | of Y is in the

topological interior |Σ|o of the underlying space |Σ| of Σ. so that |Σ| − |Y | has

two components and moreover, for each point x of Y , the local group Hx of x is

included isomorphic to the local group Gx of x in Σ for the model triple embedding

(I,Hx, φ)→ (U,Gx, ψ) where (I,Hx, φ) is a model-triple for x in Y and (U,Gx, ψ)

is a model-triple for x in Σ.

In fact, this is true for the following two cases only:

• Y is a simple closed curve and has no singularity and lies in the interior of

the underlying surface |Σ|, or

• Y has two silvered points in the interior of silvered arcs in the boundary of

|Σ| and the interior of |Y | is in the interior of |Σ|.

In this case, Σ− Y then completes with respect to the path-metric into a union

of two suborbifolds Σ1 and Σ2.

Assuming this, we have the following additivity formula:

χ(Σ) = χ(Σ1) + χ(Σ2)− χ(Y ). (5.1)

The formula is to be verified by counting open cells with weights since the orders

of singular points in the boundary orbifold equal the ambient orders.

5.1.4 The generalized Riemann-Hurwitz formula

Suppose that a 2-orbifold Σ with or without boundary has the compact underlying

space XΣ and m cone-points of order qi and n corner-reflectors of order rj and nΣ

boundary full 1-orbifolds.

Then the following generalized Riemann-Hurwitz formula is very useful:

χ(Σ) = χ(XΣ)−
m∑

i=1

(
1− 1

qi

)
− 1

2

n∑

j=1

(
1− 1

rj

)
− 1

2
nΣ, (5.2)
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where qi, i = 1, . . . ,m, are the orders of cone points and rj , j = 1, . . . , n, are the

orders of corner-reflectors and nΣ is the number of boundary full 1-orbifolds, i.e.,

the full 1-orbifolds in the boundary of the orbifold Σ.

We prove this formula by a doubling argument and cutting and pasting using

equation 5.1. (See [Scott (1983)] for details):

We double the 2-orbifold Σ to Σ′. (See Section 4.6.1.2.) Now we have only

closed curve boundary components and cone-points. Then χ(Σ′) equals

χ(XΣ′)− 2
m∑

i=1

(
1− 1

qi

)
−

n∑

j=1

(
1− 1

rj

)

as can be verified by decomposing Σ′ by cutting out disks around the cone-points.

We have χ(Σ) = χ(Σ′)/2 by Proposition 5.1.3, and χ(XΣ′) equals 2χ(XΣ)− nΣ.

To explain more: while we cannot yet do the full cutting and pasting construc-

tions for 2-orbifolds which we do from Section 5.2.1 to the end of this chapter, we

can do this when the 1-orbifolds are separating;

5.1.5 A geometrization of 2-orbifolds : a partial result

Proposition 5.1.4. Let S be a 2-orbifold whose underlying space is a disk with at

least one special singularity and has nonempty ( orbifold ) boundary or a disk or

2-sphere with at least three special singular points. Then S is very good and so is

regularly covered by a compact surface.

Proof. First, cover S by a double-cover Ŝ if S contains silvered points. (See

Proposition 4.4.3.) Otherwise let Ŝ be S. Then Ŝ has only cone-points. Let n

be the number of the cone-points, and let p1, p2, . . . , pn denote their orders. The

underlying space is a sphere or a planar surface. Now, the boundary of Ŝ is a

disjoint union of simple closed curves if the underlying space is a planar surface.

Let k be the number of boundary components. Then we have either n ≥ 3 or have

n ≥ 1 and k ≥ 1.

If Ŝ has just one singular point that has to be a cone-point, with one boundary

component, then Ŝ is regularly covered by a smooth disk without singularity and

we are done. Assume we have either n ≥ 3, have n = 2 and k ≥ 1, or have n = 1

and k ≥ 2.

We can construct an orbifold structure on a planar subsurface P, diffeomorphic

to |Ŝ|, on a 2-sphere S2 in R3 so that the cone-points are on the xy-plane, each

boundary circle is symmetric with respect to the reflection on the xy-plane, and the

reflection on the xy-plane restricts to an orbifold-involution. Denote the resulting

orbifold by P̂. By constructing P̂ to have the same number of cone-points as Ŝ,

we see that Ŝ is diffeomorphic to P̂ by Theorem 5.1.1. Now, it follows that the

orbifold Ŝ covers an orbifold Σ with n corner-reflectors on a disk D2 with orders

p1, p2, . . . , pn and with k number of boundary full 1-orbifold.
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One can construct a geodesic polygon P with angles π/p1, π/p2, . . . , π/pn and 2k

angles of π/2 on the 2-sphere, a Euclidean plane, or a hyperbolic plane depending

on whether
∑n
i=1 π(1 − 1/pi) + kπ is smaller than 2π, equal to 2π or greater than

2π. (See Proposition 3.2.2.) (Note that P has at least three vertices.) Then Σ

is diffeomorphic to the quotient orbifold of a domain in a 2-sphere, a Euclidean

plane, or a hyperbolic plane by the generated reflection group. Thus, Ŝ admits a

spherical, Euclidean, or hyperbolic structure with geodesic boundary. By Selberg’s

lemma (Corollary 4 in Chapter 7 of the book [Ratcliffe (2006)]), the group π1(Ŝ)

has a finite-index normal subgroup that is torsion-free consisting of orientation-

preserving isometries. The corresponding covering is an orientable surface Ŝ′ since

the group is torsion-free and acts on a sphere, a Euclidean space or a hyperbolic

space. Moreover, we can choose the surface Ŝ′ covering regularly Ŝ by taking the

intersection of conjugates of the finite index subgroup π1(Ŝ′) in the fundamental

group π1(Ŝ). Finally, Ŝ covers S regularly. �

5.1.6 Good, very good, and bad 2-orbifolds

The purpose of this section is to prove Theorem 5.1.5.

It is fairly easy to distinguish between the good and bad 2-orbifolds as Thurston

(1977) shows. We will prove this here.

Since we know the existence of the universal cover of orbifolds from Chapter 4,

we can cover any 2-orbifold S with a simply-connected 2-orbifold S̃.

Let S be a compact 2-orbifold with possibly empty boundary. We divide into

two cases: χ(|S|) ≤ 0 and χ(|S|) > 0 for the underlying space |S|, a cornered

surface, of S.

If χ(|S|) ≤ 0, then the (topological) fundamental group of |S| is infinite, and we

obtain a noncompact (topological) cover of |S| which is also an orbifold-cover of S

as well. Hence the universal covering S̃ of S is noncompact. Suppose that S̃ has

some singular points. Since we can do a doubling-operation otherwise, we see that

S̃ has only cone-points. However, S̃ cannot have a cone-point: Otherwise, we can

remove a disk-neighborhood D of any cone-point of order say k for an integer k > 1.

Since |S̃| is homeomorphic to a disk, and |S̃| −D has an infinite cyclic fundamental

group, we can cover S̃ − D by a k-fold cyclic cover. Hence, by pasting in a disk,

we again obtain a nontrivial covering orbifold of S̃, which is absurd. Thus, S̃ is a

surface and S is a good orbifold.

Now suppose that χ(|S|) > 0. Thus, |S| is homeomorphic to a sphere, a projec-

tive plane, or a disk.

Suppose that S is a disk with at least one cone-point or a corner-reflector with

nonempty (orbifold) boundary or a disk or a 2-sphere with at least three cone-points

and/or corner-reflectors. By Proposition 5.1.4, S is good.

Suppose that S is a projective plane with at least two cone-points. Then the

double-cover of S is good by Proposition 5.1.4 again. Now, suppose that S is a
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projective plane with one cone-point. Then the double-cover of S is a sphere with

two cone-points of identical orders, and is covered by a 2-sphere.

Suppose that S is a disk with empty boundary and has at most two special

singular points. Then the double-cover is a sphere with two to four cone-points. If

the number of cone points is greater than or equal to three, then S is good. Suppose

that we have at most two cone-points. Then S is a disk with one-cone point or a

disk with one or two corner-reflectors. In the first case, S is covered by a sphere

with two cone-points of identical orders, and S is covered by a 2-sphere. Suppose

that S is a disk with two corner-reflectors of identical orders. Then S is covered by

a sphere with two cone-points of identical orders. We are left with a disk with one

corner-reflector or two corner-reflectors of different orders.

Suppose that S is a 2-sphere with one or two cone-points. If the orders are

identical in the second case, then S is regularly covered by a 2-sphere and is good.

We are left with the case when S is a 2-sphere with one or two cone-points of distinct

orders.

A sphere Σ with cone points of orders p and q with p and q relatively prime is not

covered by a manifold since the fundamental group is trivial by the Van Kampen

theorem. (See Section 4.7.1.3.) A sphere with one cone point is also not covered by

a manifold by the same reason.

The universal cover of a sphere with one cone-point, a sphere with two cone-

points of distinct orders, a disk with one cone-point, or a disk with two corner-

reflectors of distinct orders is covered by a sphere with one-cone point or two cone-

points of relatively prime orders p and q. Hence, we conclude that a sphere with

one cone-point, a sphere with two cone-points of distinct orders, a disk with one

corner-reflector and a disk with two corner-reflectors of distinct orders are bad, and

they are the only bad 2-orbifolds.

We will now continue to show that compact 2-orbifolds are very good except for

bad ones.

Theorem 5.1.5. A sphere with one or two cone-points with orders m and n where

m 6= n is a bad orbifold. So is a disk with silvered edges and one or two corner-

reflectors of order m and n where m 6= n are bad. Except for these, every other

compact 2-orbifold is good. Furthermore, compact good orbifolds are very good. In

fact, we can assume that the finite covering is always regular.

Proof. The first parts were proved in above paragraphs.

We need to show the final statement only by the above discussions. By double-

covering, the 2-orbifolds can be assumed to be orientable and have cone-points only

as singular points. Let O denote a 2-orbifold.

If the underlying space is of Euler characteristic ≥ 1, then there is a covering by

an orbifold whose underlying space is a sphere or a disk. This was studied above

and was shown to be bad or is good. The good ones are very good according to

Proposition 5.1.4.
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Now suppose that the Euler characteristic of the underlying space is ≤ 0. There

exists a disk D containing all the cone-points. Let D denote the corresponding

orbifold. By Proposition 5.1.4, there is a finite regular covering surface S.

The boundary component of D is covered by m boundary components of S and

each boundary component of S covers the boundary component of D by n-fold

coverings for identical n. The closure of the complement of D is a surface S′ of

negative Euler characteristic and has infinite homology H1(S′). Suppose that ∂S′

has other component than ∂D, then we can find a homomorphism from the group

π1(S′) of deck transformations of S̃′ to Zn so that a simple closed curve in ∂D maps

to the generator. Then the kernel of the homomorphism gives us a finite regular

covering S′′ of the complement S′. We see that S′′ has a boundary component

mapping to S′ in an n-fold way. Hence by attaching copies of S′′ for each boundary

component of S, we obtain a very good cover of the original orbifold.

Suppose that ∂S′ has no other component than ∂D. We can explicitly find a ho-

momorphism π1(S′)→ S2n where S2n is a permutation group of 2n elements where

a simple closed curve in ∂S′ is mapped to an order n element: Let the homotopy

class of ∂S′ is written as a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g for generators ai, bi, i = 1, . . . , g,

g ≥ 1, of π1(S′). Then we find a homomorphism φ : π1(S′)→ S2n by

• φ(a1) = (1, 2, · · · , n),

• φ(b1) = (1, n+ 1)(2, n+ 2) · · · (n, 2n), and

• φ(ai) = φ(bi) = I for i ≥ 2.

Again, we can find S′′ as above. (We thank the referee for supplying this part.)

By construction, this is a regular covering. (The proof follows the article [Scott

(1983)].) �

Remark 5.1.6. The universal cover S̃ of a noncompact 2-orbifold S cannot have

singularity: We can assume that S̃ is orientable and hence has only cone-points as

singular points. If there is a cone-point, then we can find a cylic branched cover of

S̃ by taking a properly embedded arc from the cone-point leaving every compact

subset. This is absurd. Thus, noncompact 2-orbifolds are always good.

A noncompact 2-orbifold may not be very good since there is an example with

a sequence of cone points of strictly increasing orders. However, noncompact but

precompact 2-orbifolds are always very good by Theorem 5.1.5.

5.2 Topological operations on 2-orbifolds: constructions and de-

compositions

We will now study the question of how to construct and decompose 2-orbifolds:

• Definition of splitting and sewing of 2-orbifolds

• Regular neighborhoods of 1-orbifolds
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• Reinterpretation of splitting and sewing.

• Identification interpretations of splitting and sewing

5.2.1 The definition of splitting and sewing 2-orbifolds

We will assume that the 2-orbifolds are very good from now on. (Actually, it is

sufficient for our purpose that neighborhoods of the involved 1-orbifolds are very

good.)

Let S be a very good 2-orbifold so that its underlying space XS is a pre-compact

open surface with a path-metric admitting a compactification to a surface with

boundary. Such a metric always exists and the topology of the compactification is

unique up to homeomorphism type. Let Ŝ be a very good cover, that is, a finite

regular cover, of S, so that S is orbifold-diffeomorphic to Ŝ/F where F is a finite

group acting on Ŝ.

Since XŜ = Ŝ is also pre-compact and has a path-metric, we complete it to

obtain a compact surface X ′
Ŝ

with respect to the path metric. The action of the

group F extends to Ŝ by the path-metric. Then X ′
Ŝ
/F with the quotient orbifold

structure is said to be the orbifold-completion of S.

• Let S be a 2-orbifold with an embedded circle or a full 1-orbifold l in the

interior of S. Obtaining the orbifold-completion Ŝ of S − l with respect to

the path-metric is called splitting S along l. Since S − l has an embedded

copy in Ŝ, we see that there exists a map Ŝ → S sending the copy to S− l.
Let l̂ denote the union of boundary components of Ŝ corresponding to l

under the map.

• Conversely, S is said to be obtained from sewing Ŝ along l̂.

• If the interior of the underlying space of l lies in the interior of the under-

lying space of S, then the components of Ŝ are said to be the decomposed

components of S along l, and we also say that S decomposes into Ŝ along l.

• Of course, if l is a union of disjoint embedded circles or full 1-orbifolds, the

same definitions hold.

There are two distinguished classes of splitting and sewing operations:

A simple closed curve boundary component can be made into a set of mirror

points and conversely in a unique manner by Proposition 4.4.3.

A boundary full 1-orbifold can be made into a 1-orbifold of mirror points with

two corner-reflectors of order two and conversely in a unique manner: ( an end

point has a neighborhood which is a quotient space of a dihedral group of order

four acting on the open ball generated by two reflections. ) The forward process is

called silvering and the reverse process clarifying.
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5.2.2 Regular neighborhoods of 1-orbifolds

5.2.2.1 The classification of Euler-characteristic zero orbifolds

Let A be a compact annulus with nonempty boundary. The quotient orbifold of an

annulus has a zero Euler characteristic.

Proposition 5.2.1. The compact 2-orbifolds with nonempty boundary and of zero

Euler characteristic is as follows:

(1) an annulus,

(2) a Möbius band,

(3) an annulus with one boundary component silvered (a silvered annulus),

(4) a disk with two cone-points of order two with no mirror points ( a (; 2, 2)-

disk ),

(5) a disk with two boundary 1-orbifolds, two silvered edges (a silvered strip),

(6) a disk with one cone-point of order 2 and one boundary full 1-orbifold (a

bigon with a cone-point of order two), which has only one silvered edge,

(7) a disk with two corner-reflectors of order two and one boundary full 1-

orbifold (a half-square), which has three silvered edges.

Proof. The underlying space should have a nonnegative Euler characteristic by

the Riemann-Hurwitz formula. If the Euler characteristic of the space is zero, there

are none of cone-points, corner-reflectors, and boundary full 1-orbifolds and we

obtain cases in (1), (2), or (3).

Suppose now that the underlying space is homeomorphic to a disk. If there is no

singular point in the boundary, then (4) holds as there has to be exactly two cone-

points of order two by the Riemann-Hurwitz formula. If there are two boundary

full 1-orbifolds, then no singular points in the interior and no corner-reflector can

exist; thus, (5) holds.

Suppose that exactly one boundary full 1-orbifold exists. If a cone-point exists,

then it has to be a unique one and of order two, and (6) holds. If there are no

cone-points, but corner-reflectors, then exactly two corner-reflectors of order two

and no more. (7) holds. �

5.2.2.2 Regular neighborhoods of 1-orbifolds

Let l be a circle or a 1-orbifold in the interior of a 2-orbifold S so that π1(l) injects

into π1(S). The image is clearly infinite and is not homotopic to a single point. In

this case, l is said to be essential.

Let l be an essential 1-orbifold. Then l has a deck-transformation-group invari-

ant neighborhood of zero Euler characteristic considering its very good cover and

the deck-transformation-group invariant tubular neighborhoods. Since the inverse

image of l consists of closed curves which represent generators, we deduce that l is

contained in the neighborhood as follows.
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(4) (5)

(6) (7)

Fig. 5.1 For each orbifold, the arcs with dashed arc nearby are the boundary components and

the thicker dotted arc is the 1-orbifold that the 2-orbifold is a regular neighborhood of. The black
dot indicates the cone-point of order two or corner-reflectors of order two

• For (1) and (2), l is the closed curve representing the generator of the

fundamental group;

• For (3), l is the mirror set that is a boundary component of the underlying

space;

• For (4), l is the arc connecting the two cone-points unique up to isotopy.

• For (5), l is an arc connecting two interior points of two silvered edges

respectively;

• For (6), l is an arc connecting an interior point of an silvered edge and an

cone-point of order two;

• For (7), the silvered edge in the topological boundary connecting the two

corner-reflectors of order two.

Given a 1-orbifold l and a neighborhood N of it in some ambient 2-orbifold

as in Proposition 5.2.1, we say that N a regular neighborhood if the pair (N, l) is

diffeomorphic to one of the above.

Proposition 5.2.2. A 1-orbifold embeded as a suborbifold in a good 2-orbifold has

a regular neighborhood which is unique up to isotopy.

Proof. The existence is proved above. The uniqueness up to isotopy is proved

as follows: In fact, regular neighborhoods are tubular neighborhoods if we use the

Riemannian metric on the orbifolds. (See the end of Section 4.4.2 for details.) Each

tubular neighborhood fibers over a 1-orbifold with fibers connected 1-orbifolds in

the orbifold sense. We can isotopy any tubular neighborhood into any other tubular

neighborhood by contracting in the fiber directions. To prove the uniqueness up to

isotopy, we can modify the proof of Theorem 5.3 in Chapter 4 of the book [Hirsch

(1976)] to be adopted to an annulus with a finite group acting on it and an embedded

circle. �
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5.2.3 Splitting and sewing on 2-orbifolds reinterpreted

Let l be a 1-orbifold embedded in the interior of a 2-orbifold S. If one removes

l from the interior of a regular neighborhood, we obtain either a union of one or

two open annuli, or a union of one or two open silvered strips. In (2)-(4), an open

annulus results. For (1), a union of two open annuli results. For (6)-(7), an open

silvered strip results. For (5), we obtain a union of two open silvered strips. The

results can be easily path-completed to be unions of one or two compact annuli or

unions of one or two silvered strips respectively.

We complete S − l in this manner: We take a closed regular neighborhood N

of l in S. We remove N − l to obtain the above types and complete it by the path

metric and re-identify with S − l to obtain a compactified 2-orbifold. This process

is the splitting of S along l.

Conversely, we describe sewing: Take an open annular 2-orbifold N which is a

regular neighborhood of a 1-orbifold l:

• Suppose that l is a circle. We obtain U = N − l which is a union of one or

two annuli.

• Take a 2-orbifold S′ with a union l′ of one or two boundary components

which are circles.

• Take an open regular neighborhood of l′ and remove l′ to obtain V .

• Suppose that U and V are the identical suborbifolds. We identify S′ − l′
and N along U and V .

• This gives us a 2-orbifold S, and S is obtained from S′ by sewing along l′.

• Suppose that l is a closed curve and corresponds to a 1-orbifold l′ in S′.
We obtain (1),(2),(3)-type neighborhoods of l′′ in this way. The operation

in case (1) is said to be pasting, in case (2) cross-capping, and in case (3)

silvering along simple closed curves.

• Suppose that l is a full 1-orbifold. U = N − l is either an open annulus or

a union of one (resp. two) silvered strips.

• The former happens if N is of type (4) and the latter if N is of type (5)-(7).

• In case (4), take a 2-orbifold S′ with a boundary component l′ a circle.

Then we identify U with a regular neighborhood of l′ with l′ removed to

obtain an orbifold S. Then l corresponds a full 1-orbifold l′′ in S in a one-

to-one manner. l′′ has a type-(4) regular neighborhood. The operation is

said to be folding along a simple closed curve. (See Section 4.2.2.)

• In the remaining cases, take a 2-orbifold S′ with a union l′ of one (resp.

two) boundary full 1-orbifolds. Take a regular neighborhood N of l′ and

remove l′ to obtain V . Identify U with V for S′ − l′ and N − l to obtain

S. Then S is obtained from S′ by sewing along l′. Again l corresponds to

a full 1-orbifold l′′ in S in a one-to-one manner.

• We obtain (5),(6), and (7)-type neighborhoods of l′′ in this way, where the

operations are said to be pasting, folding, and silvering along full 1-orbifolds
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respectively.

• In other words, silvering is the operation of removing a regular neighbor-

hood and replacing by a silvered annulus or a half square. Clarifying is an

operation of removing the regular neighborhood and replacing an annulus

or a silvered strip.

Proposition 5.2.3. The Euler characteristic of a 2-orbifold before and after split-

ting or sewing remains unchanged.

Proof. Form regular neighborhoods of the involved boundary components of the

split 2-orbifold and those of the original 2-orbifold. They have zero Euler character-

istics. Since their boundary 1-orbifolds have zero Euler characteristics, the lemma

follows by the additivity formula (5.1). �

5.2.4 Identification interpretations of splitting and sewing

The sewing can be understood as follows: The pasting map f is defined on open

neighborhood U of the union of the associated boundary components in an ambient

open 2-orbifold S′ where f satisfies the equation f̃ ◦ϑ = ϑ′ ◦ f̃ where f̃ is a lift of f

defined on Ũ the inverse image and ϑ and ϑ′ are corresponding deck transformations

acting on components of the inverse images in S̃′ of boundary components of f to

be pasted by f .

In the following, we describe the topological identification process of the under-

lying space involved in these six types of sewings. The orbifold structure on the

sewed orbifold should be clear.

Let a 2-orbifold Σ have a boundary component b. (Σ is not necessarily con-

nected.) b is either a simple closed curve or a full 1-orbifold. We find a 2-orbifold

Σ′′ constructed from Σ by sewing along b or another component of Σ. (We also

need the notation here for the later purposes.)

(A) Suppose that b is diffeomorphic to a circle; that is, b is a closed curve.

Let Σ′ be a component of the 2-orbifold Σ with boundary component b′.
Suppose that there is a diffeomorphism f : b→ b′. Then we obtain a bigger

2-orbifold Σ′′ glued along b and b′ topologically.

(I) The construction so that Σ′′ does not create any more singular point

results in a 2-orbifold Σ′′ so that

Σ′′ − (Σ− b ∪ b′)
is a circle with a neighborhood either diffeomorphic to an annulus or

a Möbius band.

(1) In the first case, we have b 6= b′ (pasting).

(2) In the second case, we have b = b′, and 〈f〉 is of order two without

fixed points (cross-capping).
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(II) When b = b′, the construction so that Σ′′ does introduce more singular

points to occur in a 2-orbifold Σ′′ so that

Σ′′ − (Σ− b)
is a circle of mirror points or is a full 1-orbifold with endpoints in

cone-points of order two depending on whether f : b→ b

(1) is the identity map (silvering), or

(2) is of order two and has exactly two fixed points (folding).

(B) Consider when b is a full 1-orbifold with endpoints mirror points.

(I) Let Σ′ be a component (possibly the same as one containing b) with

boundary full 1-orbifold b′ with endpoints mirror points where b 6= b′.
We obtain a bigger 2-orbifold Σ′′ by gluing b and b′ by a diffeomor-

phism f : b→ b′. This does not create new singular points (pasting).

(II) Suppose that b = b′. Let f : b→ b be the attaching map. Then

(1) if f is the identity, then b is silvered and the end points are changed

into corner-reflectors of order two (silvering).

(2) If f is of order two, then Σ′′ has a new cone-point of order two

and has one-boundary component orbifold removed away. b corre-

sponds to a 1-orbifold in Σ′ (folding). This creates just one more

singularity of cone-type of order 2.

We can easily put the obvious orbifold structure on Σ′′ using the previous de-

scriptions by regular neighborhoods above.

5.3 Notes

Low-dimensional orbifolds were first studied by Thurston (1977) who was to put

much emphasis on cut and paste operations, a point of view not attempted be-

fore then. There was a nice exposition of the 2-orbifold theory in the article

[Scott (1983)], which we followed here. Topological operations with orbifolds are

widely used in many papers. They include the papers [Matsumoto and Montesinos-

Amilibia (1991); Dunbar (1988); Takeuchi (1989, 1996); Choi and Goldman (2005)].

This topic is not so well treated in groupoid theoretical approach to orbifolds.
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