Advanced Studies in Pure Mathematics 69, 2016 Development of Moduli Theory — Kyoto 2013 pp. 407–419

Order 40 automorphisms of K3 surfaces

JongHae Keum

Abstract.

In each characteristic $p \neq 2, 5$, it is shown that order 40 automorphisms of K3 surfaces are purely non-symplectic. Moreover, a K3 surface in characteristic $p \neq 2, 5$, with a cyclic action of order 40 is isomorphic to the Kondō's example.

Let X be a K3 surface over an algebraically closed field k of characteristic $p \ge 0$. An automorphism g of X is called *symplectic* if it preserves a non-zero regular 2-form ω_X , and *purely non-symplectic* if no power of g is symplectic except the identity.

Over $k = \mathbb{C}$ Kondō [7] gave an example of a complex K3 surface with a purely non-symplectic automorphism of order 40 as the minimal resolution X_{40} of $X'_{40} \subset \mathbf{P}(1, 1, 1, 3)$:

(0.1)
$$X'_{40}: w^2 = x(x^4z + y^5 - z^5),$$

(0.2)
$$g_{40}(x, y, z, w) = (x, \zeta_{40}^2 y, \zeta_{40}^{10} z, \zeta_{40}^5 w)$$

where $\zeta_{40} \in k$ is a primitive 40th root of unity. The surface X'_{40} is a double plane branched along the union of a line and a smooth quintic curve. The surface X'_{40} is defined over the integers and both the surface and the automorphism have a good reduction mod p unless p = 2, 5.

The main result of this short note is the following.

Theorem 0.1. Let k be an algebraically closed field of characteristic $p \neq 2, 5$. Let X be a K3 surface defined over k with an automorphism g of order 40. Then

- (1) g is purely non-symplectic;
- (2) the pair $(X, \langle g \rangle)$ is isomorphic to the pair $(X_{40}, \langle g_{40} \rangle)$.

Received December 16, 2013.

Revised February 26, 2014.

²⁰⁰⁰ Mathematics Subject Classification. 14J28, 14J50, 14J27.

Research supported by National Research Foundation of Korea (NRF-2007-0093858).

Over $k = \mathbb{C}$ the second statement of Theorem 0.1 was proved by Machida and Oguiso [8], under the assumption that g is purely nonsymplectic. Our proof is characteristic free, does not use lattice theory and the holomorphic Lefschetz formula.

A similar characterization of K3 surfaces with a tame cyclic action of order 60 was given in [6], where it was proven that for such a pair $(X, \langle g \rangle)$ the K3 surface X admits a g-invariant elliptic fibration, thus can be given by a g-invariant Weierstrass equation. In the case of order 40, we show that the K3 surface admits a g-invariant double plane presentation.

Using the algorithm for determining the Artin invariant of a weighted Delsarte surface whose minimal resolution is a K3 surface ([11], [3]), one can show that in characteristic $p \equiv -1 \pmod{40}$ the surface X_{40} is a supersingular K3 surface with Artin invariant 1.

Remark 0.2. In characteristic 5, cyclic actions of order 40 are wild and have been classified in [5] (Section 9 and Example 9.5). More precisely, a K3 surface in characteristic 5 with a cyclic action of order 40 must be isomorphic to the minimal resolution of the pair $(Y, \langle g \rangle)$:

(0.3)
$$Y: w^2 = z(y^5 - yx^4 + xz^4 + B_5x^5), \ B_5 \in k$$

(0.4)
$$g(x, y, z, w) = (x, 2x + y, \zeta_8^2 z, \zeta_8 w)$$

where $\zeta_8 \in k$ is a primitive 8th root of unity. The surface Y is a double plane branched along the union of a line and a smooth quintic curve.

Notation

- NS(X): the Néron-Severi group of X.
- $X^g = Fix(g)$: the fixed locus of an automorphism g of X.
- $e(g) := e(\operatorname{Fix}(g))$, the Euler characteristic of $\operatorname{Fix}(g)$ for g tame.
- $\operatorname{Tr}(g^*|H^*(X)) := \sum_{j=0}^{2 \dim X} (-1)^j \operatorname{Tr}(g^*|H^j_{\mathrm{et}}(X, \mathbb{Q}_l)).$

For an automorphism g of a K3 surface X,

- $[g^*] = [\lambda_1, \dots, \lambda_{22}]$: the eigenvalues of $g^* | H^2_{\text{et}}(X, \mathbb{Q}_l)$.
- ζ_a : a primitive *a*-th root of unity in $\overline{\mathbb{Q}_l}$.
- $\zeta_a : \phi(a)$: all primitive *a*-th roots of unity where ϕ is the Euler function and $\phi(a)$ the number of conjugates of ζ_a .
- $[\lambda . r] \subset [g^*] : \lambda$ repeats r times in $[g^*]$.
- $[(\zeta_a : \phi(a)).r] \subset [g^*]$: the list $\zeta_a : \phi(a)$ repeats r times in $[g^*]$.

§1. Preliminaries

We first recall the following basic result used in the paper [5].

Proposition 1.1. (Proposition 2.1 [5]) Let g be an automorphism of a projective variety X over an algebraically closed field k of characteristic p > 0. Let l be a prime $\neq p$. Then the following hold true.

- (1) (3.7.3 [4]) The characteristic polynomial of $g^*|H_{et}^j(X, \mathbb{Q}_l)$ has integer coefficients for each j. The characteristic polynomial does not depend on the choice of cohomology, *l*-adic or crystalline. In particular, if a primitive m-th root of unity appears with multiplicity r as an eigenvalue of $g^*|H_{et}^j(X, \mathbb{Q}_l)$, then so does each of its conjugates.
- (2) If g is of finite order, then g has an invariant ample divisor, and $g^*|H^2_{\text{et}}(X, \mathbb{Q}_l)$ has 1 as an eigenvalue.
- (3) If X is a K3 surface, g is tame and $g^*|H^0(X, \Omega_X^2)$ has $\zeta_n \in k$ as an eigenvalue, then $g^*|H^2_{\text{et}}(X, \mathbb{Q}_l)$ has $\zeta_n \in \overline{\mathbb{Q}_l}$ as an eigenvalue.

For a smooth projective variety Z in characteristic p > 0, the Kummer sequence in étale cohomology [9] induces an exact sequence of \mathbb{Q}_l -vector spaces

(1.1)
$$0 \to \mathrm{NS}(Z) \otimes \mathbb{Q}_l \to H^2_{\mathrm{et}}(Z, \mathbb{Q}_l) \to T^2_l(Z) \to 0$$

where $T_l^2(Z) = T_l(\operatorname{Br}(Z))$ in the standard notation in the theory of étale cohomology (cf. [11]). The Brauer group $\operatorname{Br}(Z)$ is known to be a birational invariant, and it is trivial when Z is a rational variety. In fact, one can show that

$$NS(Z) \otimes \mathbb{Q}_l = Ker(H^2_{et}(Z, \mathbb{Q}_l) \to H^2(k(Z), \mathbb{Q}_l));$$
$$T^2_l(Z) = Im(H^2_{et}(Z, \mathbb{Q}_l) \to H^2(k(Z), \mathbb{Q}_l)).$$

Here $H^2(k(Z), \mathbb{Q}_l) = \varinjlim_U H^2(U, \mathbb{Q}_l)$, where U runs through the set of open subsets of Z. It is known that the dimension of all \mathbb{Q}_l -spaces from above do not depend on l prime to the characteristic p.

Proposition 1.2. (Proposition 2.2 [5]) Let Z be a smooth projective variety in characteristic p > 0 and g be an automorphism of Z of finite order. Assume $l \neq p$. Then the following assertions are true.

- (1) $\operatorname{Tr}(g^*|H^2_{\text{et}}(X,\mathbb{Q}_l)) = \operatorname{Tr}(g^*|\operatorname{NS}(Z)) + \operatorname{Tr}(g^*|T^2_l(Z))$ and the three traces are integers.
- (2) rank $NS(Z)^g = rank NS(Z/\langle g \rangle)$.
- (3) $\dim H^2_{\text{et}}(Z, \mathbb{Q}_l)^g = \operatorname{rank} \operatorname{NS}(Z)^g + \dim T^2_l(Z)^g.$

J. Keum

(4) If dim Z = 2 and the minimal resolution Y of $Z/\langle g \rangle$ has $T_l^2(Y) = 0$ (e.g., if $Z/\langle g \rangle$ is rational or birational to an Enriques surface), then

$$\dim H^2_{\text{et}}(Z, \mathbb{Q}_l)^g = \text{rank } \operatorname{NS}(Z)^g.$$

Proposition 1.3. (Topological Lefschetz formula, cf. [1] Theorem 3.2) Let X be a smooth projective variety over an algebraically closed field k of characteristic p > 0 and let g be a tame automorphism of X. Then $X^g = \text{Fix}(g)$ is smooth and

$$e(g) := e(X^g) = \operatorname{Tr}(g^* | H^*(X)).$$

A tame symplectic automorphism h of a K3 surface has finitely many fixed points, the number of fixed points f(h) depends only on the order of h and the list of possible pairs $(\operatorname{ord}(h), f(h))$ is the same as in the complex case (Theorem 3.3 and Proposition 4.1 [2], see also Nikulin's paper [10] for the complex case) :

$$(\operatorname{ord}(h), f(h)) = (2, 8), (3, 6), (4, 4), (5, 4), (6, 2), (7, 3), (8, 2).$$

Thus by the topological Lefschetz formula, we obtain the following.

Lemma 1.4. (Lemma 2.6 [5]) Let h be a tame symplectic automorphism of a K3 surface X. Then $h^*|H^2_{et}(X, \mathbb{Q}_l)$ has eigenvalues

$$\begin{aligned} \operatorname{ord}(h) &= 2 &: [h^*] = [1, 1.13, -1.8] \\ \operatorname{ord}(h) &= 3 &: [h^*] = [1, 1.9, (\zeta_3 : 2).6] \\ \operatorname{ord}(h) &= 4 &: [h^*] = [1, 1.7, (\zeta_4 : 2).4, -1.6] \\ \operatorname{ord}(h) &= 5 &: [h^*] = [1, 1.5, (\zeta_5 : 4).4] \\ \operatorname{ord}(h) &= 6 &: [h^*] = [1, 1.5, (\zeta_3 : 2).4, (\zeta_6 : 2).2, -1.4] \\ \operatorname{ord}(h) &= 7 &: [h^*] = [1, 1.3, (\zeta_7 : 6).3] \\ \operatorname{ord}(h) &= 8 &: [h^*] = [1, 1.3, (\zeta_8 : 4).2, (\zeta_4 : 2).3, -1.4] \end{aligned}$$

where the first eigenvalue corresponds to an invariant ample divisor.

Lemma 1.5. (Lemma 1.6 [6]) Let X be a K3 surface in characteristic $p \neq 2$, admitting an automorphism h of order 2 with $\dim H^2_{\text{et}}(X, \mathbb{Q}_l)^h = 2$. Then h is non-symplectic and has an h-invariant elliptic fibration $\psi : X \to \mathbf{P}^1$,

$$X/\langle h \rangle \cong \mathbf{F}_e$$

a rational ruled surface, and X^h is either a curve of genus 9 which is a 4-section of ψ or the union of a section and a curve of genus 10 which is a 3-section. In the first case e = 0, 1 or 2, and in the second e = 4. Each

410

singular fibre of ψ is of type I_1 (nodal), I_2 , II (cuspidal) or III, and is intersected by X^h at the node and two smooth points if of type I_1 , at the two singular points if of type I_2 , at the cusp with multiplicity 3 and a smooth point if of type II, at the singular point tangentially to both components if of type III. If X^h contains a section, then each singular fibre is of type I_1 or II.

Remark 1.6. If $e \neq 0$, the *h*-invariant elliptic fibration ψ is the pull-back of the unique ruling of \mathbf{F}_e . If e = 0, either ruling of \mathbf{F}_0 lifts to an *h*-invariant elliptic fibration.

The following easy lemmas also will be used frequently.

Lemma 1.7. (Lemma 2.10 [5]) Let S be a set and Aut(S) be the group of bijections of S. For any $g \in Aut(S)$ and positive integers a and b,

(1) $\operatorname{Fix}(g) \subset \operatorname{Fix}(g^a);$

(2) $\operatorname{Fix}(g^a) \cap \operatorname{Fix}(g^b) = \operatorname{Fix}(g^d)$ where $d = \operatorname{gcd}(a, b)$;

(3) $\operatorname{Fix}(g) = \operatorname{Fix}(g^a)$ if $\operatorname{ord}(g)$ is finite and prime to a.

Lemma 1.8. (Lemma 2.11 [5]) Let R(n) be the sum of all primitive *n*-th root of unity in $\overline{\mathbb{Q}}$ or in $\overline{\mathbb{Q}}_l$, where gcd(l, n) = 1. Then

 $R(n) = \begin{cases} 0 & \text{if } n \text{ has a square factor,} \\ (-1)^t & \text{if } n \text{ is a product of } t \text{ distinct primes.} \end{cases}$

For an automorphism g of finite order of a K3 surface X, tame or wild, we write

 $\operatorname{ord}(g) = m.n$

if g is of order mn and the natural homomorphism $\langle g \rangle \to \operatorname{GL}(H^0(X, \Omega_X^2))$ has kernel of order m and image of order n.

\S **2.** Proof: the Tame Case

Throughout this section, we assume that the characteristic p > 0, $p \neq 2, 5$. Let g be an automorphism of order 40 of a K3 surface X.

Lemma 2.1. $[g^*] \neq [1, \zeta_8 : 4, \pm 1, \zeta_{40} : 16].$ *Proof.* Suppose that $[g^*] = [1, \zeta_8 : 4, \pm 1, \zeta_{40} : 16].$ Then

$$[g^{20*}] = [1, -1.4, 1, -1.16]$$

One can apply Lemma 1.5 to $h = g^{20}$. The quotient surface $X/\langle g^{20} \rangle$ is isomorphic to a rational ruled surface

$$X/\langle g^{20}\rangle \cong \mathbf{F}_e,$$

X has a g^{20} -invariant elliptic fibration

 $\psi: X \to \mathbf{P}^1$

and Fix(g^{20}) is either a curve C_9 of genus 9 which is a 4-section of ψ or the union of a section R and a curve C_{10} of genus 10 which is a 3-section. The automorphism \bar{g} of $X/\langle g^{20}\rangle \cong \mathbf{F}_e$ induced by g preserves the ruling of \mathbf{F}_e if $e \neq 0$, and either preserves or interchanges the two rulings of \mathbf{F}_e if e = 0.

Case 1: \bar{g} preserves the ruling(s) of \mathbf{F}_e .

In this case g preserves the fibration $\psi : X \to \mathbf{P}^1$. The fibre class is g-invariant and linearly independent from any g-invariant ample divisor class. Thus the eigenvalue 1 appears twice in $[g^*]$ and $[g^*] = [1, \zeta_8 : 4, 1, \zeta_{40} : 16]$. Then we compute $e(g) = e(g^2) = e(g^4) = e(g^5) = e(g^{10}) = 4$. Consider the order 20 action of g on C_9 or $C_{10} \subset \operatorname{Fix}(g^{20})$. The action of g on C_9 (resp. C_{10}) has 4 (resp. 2) points of ramification index 20 and no other ramifications. Neither is compatible with the Hurwitz formula.

Case 2: e = 0 and \bar{g} interchanges the rulings of \mathbf{F}_0 . In this case $\operatorname{Fix}(g^{20}) = C_9$ and g interchanges the two elliptic fibrations coming from the rulings. Since g interchanges the two elliptic fibrations, -1 should appear as an eigenvalue and $[g^*] = [1, \zeta_8 : 4, -1, \zeta_{40} : 16]$. We compute $e(g) = e(g^5) = 2, e(g^2) = e(g^4) = e(g^{10}) = 4$. The order 20 action of g on C_9 has 2 points of ramification index 20, 2 points of ramification index 10 and no other ramifications. Unfortunately the Hurwitz formula cannot rule out this case.

The automorphism g^2 preserves the elliptic fibration $\psi : X \to \mathbf{P}^1$. It preserves two fibres. By Lemma 1.5 a fibre of ψ is of type I_0 (smooth), I_1 , I_2 , II or III. We claim that g^2 does not preserve a reducible fibre of type I_2 or III. Suppose it does. Then g^4 preserves both components which, with an invariant ample class, give 3 linearly independent g^4 invariant classes, hence $[g^{4*}] \supset [1, 1, 1]$, absurd. If g^2 preserves a fibre F_0 of type I_1 or II, then g^4 fixes all points in the set $F_0 \cap \operatorname{Fix}(g^{20})$, which consists of 3 points if F_0 is of type I_1 and 2 points if F_0 is of type II. If g^2 preserves a smooth fibre F_0 , then the involution $g^{20}|F_0$ of the elliptic curve F_0 has non-empty fixed locus, hence must have 4 fixed points, thus the set $F_0 \cap \operatorname{Fix}(g^{20})$ consists of 4 distinct points and g^4 fixes all of them. Since $e(g^4) = 4$ and $\operatorname{Fix}(g^4) \subset \operatorname{Fix}(g^{20}) = C_9$, we see that $\operatorname{Fix}(g^4)$ consists of 4 points. From these we infer that g^2 preserves two fibres of type II, say F_1 and F_2 . Let

$$F_i' \subset X/\langle g^{20} \rangle \cong \mathbf{F}_0$$

412

be the line, the image of F_i . On \mathbf{F}_0 consider the rectangle with 4 sides $F'_1, F'_2, \bar{g}(F'_1)$ and $\bar{g}(F'_2)$. Let $C'_9 \subset \mathbf{F}_0$ be the image of C_9 . At each vertex of the rectangle, the genus 9 curve C'_9 intersects one side with multiplicity 3 and the other with multiplicity 1. This configuration admits no symmetry except rotations, and \bar{g} must be a rotation by 90 degrees. Then \bar{g}^2 interchanges F'_1 and F'_2 , so g^2 interchanges F_1 and F_2 , a contradiction. Q.E.D.

By [5] Lemma 4.5 and 4.7, g cannot be of order 2.20, 4.10 or 8.5. It remains to exclude the possibility 5.8.

Lemma 2.2. $ord(g) \neq 5.8$.

Proof. Suppose that $\operatorname{ord}(g) = 5.8$. Then by Proposition 1.1 the action of g^* on $H^2_{\text{et}}(X, \mathbb{Q}_l)$ has $\zeta_8 \in \overline{\mathbb{Q}_l}$ as an eigenvalue. Hence $[\zeta_8 : 4] \subset [g^*]$. By Lemma 1.4,

$$[g^{8*}] = [1, 1.5, (\zeta_5 : 4).4].$$

From this we infer that

$$[g^*] = [1, \zeta_8 : 4, \pm 1, \eta_1, \dots, \eta_{16}]$$

where $[\eta_1, \ldots, \eta_{16}]$ is a combination of $\zeta_5 : 4$, $\zeta_{10} : 4$, $\zeta_{20} : 8$, $\zeta_{40} : 16$, and the first eigenvalue corresponds to a *g*-invariant ample divisor. By Lemma 2.1, $\zeta_{40} : 16$ cannot appear. Then

$$[g^{4*}] = [1, -1.4, 1, (\zeta_5 : 4).4],$$

hence $e(g^4) = \text{Tr}(g^{4*}|H^*(X)) = -4$. But $\text{Fix}(g^4) \subset \text{Fix}(g^8)$ and the latter consists of finitely many points, hence $e(g^4) \ge 0$. Q.E.D.

We have proved that g is purely non-symplectic, the first statement of Theorem 0.1.

Lemma 2.3. If ord(g) = 1.40, then

- (1) $[g^*] = [1, \zeta_{40} : 16, \zeta_5 : 4, 1]$ where the first eigenvalue corresponds to a g-invariant ample class;
- $(2) \quad \operatorname{Fix}(g^{20}) = R \cup C_6$

where R is a smooth rational curve and C_6 a curve of genus 6; (3) Fix $(g^8) = D_2 \cup \{ \text{ one point on } R \}$

where D_2 is a curve of genus 2 with $D_2C_6 = 5$, $D_2R = 1$.

Proof. Suppose that $\operatorname{ord}(g) = 1.40$. Then by Proposition 1.1 the action of g^* on $H^2_{\text{et}}(X, \mathbb{Q}_l)$ has $\zeta_{40} \in \overline{\mathbb{Q}_l}$ as an eigenvalue. Thus

$$[g^*] = [1, \zeta_{40} : 16, \eta_1, \dots, \eta_5]$$

where the first eigenvalue corresponds to a *g*-invariant ample divisor and $[\eta_1, \ldots, \eta_5]$ is a combination of $\zeta_8 : 4$, $\zeta_{10} : 4$, $\zeta_5 : 4$, $\zeta_4 : 2$, ± 1 . By Lemma 2.1, $[\eta_1, \ldots, \eta_5] \neq [\zeta_8 : 4, \pm 1]$.

Claim: $[\eta_1, \ldots, \eta_5]$ is not a combination of $\zeta_4 : 2, \pm 1$. Suppose that it is. Then

$$[g^{20*}] = [1, -1.16, 1.5], \quad e(g^{20}) = -8$$
$$[g^{8*}] = [1, (\zeta_5 : 4).4, 1.5], \quad e(g^8) = 4$$
$$[g^{4*}] = [1, (\zeta_{10} : 4).4, 1.5], \quad e(g^4) = 12.$$

Thus

$$\operatorname{Fix}(g^{20}) = R_1 \cup \ldots \cup R_d \cup C_{d+5}, \quad d \le 5$$

where R_j 's are smooth rational curves and C_{d+5} a curve of genus d+5. Note that a non-symplectic automorphism of order 2 like g^{20} cannot have an isolated fixed point. The locus $\operatorname{Fix}(g^4)$, being a subset of $\operatorname{Fix}(g^{20})$, consists of isolated points and possibly some $R'_j s$. The action of g^4 on $\operatorname{Fix}(g^{20})$ has order 5. If d = 5 and g^4 permutes R_j 's, then $g^4|C_{d+5}$ would have 12 fixed points, too many for an order 5 automorphism of a genus 10 curve. Thus

(*) $g^4(R_j) = R_j$ for each j and $g^4|C_{d+5}$ has 12 - 2d fixed points.

If $d \leq 2$, then the order 5 automorphism $g^4 | C_{d+5}$ would have too many fixed points. Thus $d \geq 3$.

Now we consider $\operatorname{Fix}(g^8)$. Suppose that $\operatorname{Fix}(g^8)$ does not contain a curve of genus > 1. Then it consists of 2k points, d' smooth rational curves and possibly some elliptic curves. Since $e(g^8) = 4$, 2k + 2d' = 4. The action of g^4 on $\operatorname{Fix}(g^8)$ has order 2. We infer that there are 2 elliptic curves $E_1, E_2 \subset \operatorname{Fix}(g^8)$ on each of which g^4 has 4 fixed points. Then g^4 fixes more than two fibres of the elliptic fibration $|E_1| = |E_2|$, hence fixes all fibres. Note that $\operatorname{Fix}(g^8) \cap \operatorname{Fix}(g^{20}) = \operatorname{Fix}(g^4)$. By $(*), g^4|C_{d+5}$ has at most 6 fixed points, so we see that there is an R_j , say R_1 , that meets E_1 . If $R_1E_1 = R_1E_2 > 1$, then $g^4|R_1$ has more than two fixed points, hence is the identity, then $R_1 \subset \operatorname{Fix}(g^4) \subset \operatorname{Fix}(g^8)$, contradicting the smoothness of a fixed locus. If $R_1E_1 = R_1E_2 = 1$, then R_1 is a section of $|E_1|$, hence $R_1 \subset \operatorname{Fix}(g^4)$, again contradicting the smoothness of Fix(g^8).

We have proved that $\operatorname{Fix}(g^8)$ contains a curve D_a of genus a > 1. Note that $D_a \cap C_{d+5} \subset \operatorname{Fix}(g^4)$, hence the intersection number

$$D_a C_{d+5} \le 12 - 2d$$

By the Hodge Index Theorem

$$(D_a^2)(C_{d+5}^2) \le (12 - 2d)^2.$$

This is possible only if

$$d = 3, a = 2 \text{ and } D_2 C_8 = 6.$$

Therefore

$$\operatorname{Fix}(g^{20}) = R_1 \cup R_2 \cup R_3 \cup C_8,$$

$$\operatorname{Fix}(g^8) = D_2 \cup \{2k \text{ points }\} \cup R'_1 \cup \ldots \cup R'_c$$

00

where R'_1, \ldots, R'_c are smooth rational curves. We know that $e(g^4) = 12$. By (*) g^4 acts on R_j for j = 1, 2, 3, hence $g^4 | R_j$ fixes 2 points or the whole R_j . Thus the action of $g^4 | C_8$ fixes 6 points. Since $\operatorname{Fix}(g^4) = \operatorname{Fix}(g^{20}) \cap \operatorname{Fix}(g^8)$, we see that $C_8 \cap \operatorname{Fix}(g^8)$ consists of 6 points. Since $C_8 D_2 = 6$, we infer that

(**)
$$C_8 \cap \operatorname{Fix}(g^8) = C_8 \cap D_2 = \{6 \text{ points} \}$$

The order 5 automorphism g^8 is non-symplectic and tame. The quotient

$$Y := X/\langle g^8 \rangle$$

is a normal surface. The image $\overline{C}_8 \subset Y$ of C_8 has self intersection number

$$\bar{C}_8^2 = \frac{1}{5}C_8^2 = \frac{14}{5}$$

which is not an integer, so \overline{C}_8 must pass through some singular points of Y, then C_8 must pass through some isolated fixed points of g^8 , contradicting (**). The claim is proved.

Now we may assume that $[\eta_1, \ldots, \eta_5] = [\zeta_{10} : 4, \pm 1]$ or $[\zeta_5 : 4, \pm 1]$. In these cases we have

$$[g^{20*}] = [1, -1.16, 1.5], \quad e(g^{20}) = -8$$
$$[g^{10*}] = [1, (\zeta_4 : 2).8, 1.5], \quad e(g^{10}) = 8$$
$$[g^{8*}] = [1, (\zeta_5 : 4).4, \zeta_5 : 4, 1], \quad e(g^8) = -1$$
$$[g^{4*}] = [1, (\zeta_{10} : 4).4, \zeta_5 : 4, 1], \quad e(g^4) = 7$$

J. Keum

$$[g^{2*}] = [1, (\zeta_{20} : 4).4, \zeta_5 : 4, 1], \quad e(g^2) = 3$$

Thus

$$\operatorname{Fix}(g^{20}) = R_1 \cup \ldots \cup R_d \cup C_{d+5}, \quad d \le 5$$

where R_j 's are smooth rational curves and C_{d+5} a curve of genus d+5. For a divisor r of 20 with r < 20, the locus $\operatorname{Fix}(g^r)$, being a subset of $\operatorname{Fix}(g^{20})$, consists of isolated points and possibly some $R'_j s$. Consider the action of g on the set $\{R_1, \ldots, R_d\}$ of d elements. In its cycle decomposition each cycle has length 1, 2, 4 or 5. If d = 5, then g^4 or g^{10} preserves each R_j , so has a negative number of fixed points on C_{10} , absurd. If d = 4, then g^4 preserves each R_j , so has a negative number of fixed points on C_9 . If d = 2 or 3, then g^2 preserves each R_j , so has a negative number of fixed points on C_8 . If d = 0, then g^4 has 7 fixed points on C_5 , too many for an order 5 automorphism. We have shown that d = 1, $\operatorname{Fix}(g^{20}) = R \cup C_6$, giving (2).

Since $e(g^8) < 0$, $\operatorname{Fix}(g^8)$ must contain a curve D_a of genus a > 1(hence no elliptic curves). Since $g^4|C_6$ has 5 fixed points and $D_a \cap C_6 \subset \operatorname{Fix}(g^4)$, the intersection number $D_aC_6 \leq 5$. By the Hodge Index Theorem

$$(D_a^2)(C_6^2) \le 5^2.$$

This is possible only if

$$a = 2$$
 and $D_2C_6 = 5$.

Since $e(g^8) = -1$, $\operatorname{Fix}(g^8)$ consists of D_2 and a point p. Since g^4 acts on $\operatorname{Fix}(g^8)$, it is easy to see that $p \in \operatorname{Fix}(g^4)$. Since $\operatorname{Fix}(g^4) = \operatorname{Fix}(g^8) \cap \operatorname{Fix}(g^{20})$ and $e(g^4) = 7$, we infer that $p \in R$ and $D_2R = 1$. This proves (3).

Since g^5 acts on $\operatorname{Fix}(g^{20}) = R \cup C_6$ and $\operatorname{Fix}(g^5) \subset \operatorname{Fix}(g^{20})$, we see that $e(g^5) > 0$. This rules out the possibility $[\eta_1, \ldots, \eta_5] = [\zeta_{10} : 4, \pm 1]$. Thus we have

$$[\eta_1, \ldots, \eta_5] = [\zeta_5 : 4, \pm 1].$$

Finally, g^{10} fixes 6 points on C_6 (and g^5 fixes 6 or 4 points on C_6). Considering the action of g on these 6 points, we see that g fixes at least one of them, hence $e(g) \ge 3$. Thus the last eigenvalue must be 1, proving (1). Q.E.D.

Proof of the second statement of Theorem 0.1.

Lemma 2.3 plays a key role in the proof. We modify the proof of [8] Section 4. The quotient

$$Y := X/\langle g^{20} \rangle$$

416

is a smooth rational surface with

$$K_Y = -\frac{1}{2}(\bar{R} + \bar{C}_6)$$

where $\overline{R}, \overline{C}_6 \subset Y$ are the images of R and C_6 . Note that

$$\bar{R}^2 = -4, \quad \bar{C}_6^2 = 20.$$

Let

$$\pi:X\to Y$$

be the projection map. By Proposition 1.2 Y has Picard number $\rho(Y) = 6$.

Claim: If $E \subset Y$ is a smooth rational curve with $E^2 < -1$, then $E = \overline{R}$.

If $E^2 < -2$. Then $K_Y E > 0$, thus $(\bar{R} + \bar{C}_6)E < 0$. This is possible only if $E = \bar{R}$. Suppose that E is a (-2)-curve on Y. Then $K_Y E = 0$, thus E is disjoint from the branch divisor $\bar{R} + \bar{C}_6$, and $\pi^*(E) \subset X$ is a disjoint union of two (-2)-curves, say E_1 and E_2 . Note that $E_1.E_2 =$ $0, E_1.g^{10}(E_1) = g^{10}(E_1).E_2 \ge 0$. It is easy to check that the four (-2)-curves $E_1, g^{10}(E_1), g^{20}(E_1) = E_2, g^{30}(E_1) = g^{10}(E_2)$ are linearly independent in the Néron-Severi group of X, hence their Chern classes are linearly independent in the second cohomology group. They are rotated by g^{10*} , hence $[1, \zeta_4, \zeta_4^2, \zeta_4^3] \subset [g^{10*}]$, impossible. This proves the claim.

The linear system $|D_2|$ gives a degree 2 morphism $\phi : X \to \mathbf{P}^2$. Take the Stein factorization

$$X \xrightarrow{\mu} X' \xrightarrow{\phi'} \mathbf{P}^2.$$

Let $\tilde{R}, \tilde{C}_6 \subset \mathbf{P}^2$ are the images of R and C_6 . Since $D_2C_6 = 5, D_2R = 1$, we infer that \tilde{R} is a line, \tilde{C}_6 is a quintic and their union is the branch of the double cover $\phi' : X' \to \mathbf{P}^2$. Thus the map $\phi : X \to \mathbf{P}^2$ factors through

$$X \xrightarrow{\pi} Y \xrightarrow{\nu} \mathbf{P}^2$$

where ν is the contraction of five mutually disjoint (-1)-curves, $E_1, \ldots, E_5 \subset Y$ by Claim. Each E_i satisfies $E_i \overline{R} = E_i \overline{C}_6 = 1$. Their pre-images $E_i^* \subset X$ are (-2)-curves satisfying $E_i^* R = E_i^* C_6 = 1$, and contracted by μ . Our automorphism g induces an automorphism \tilde{g} of J. Keum

 \mathbf{P}^2 . Thus the automorphism \bar{g} of Y permutes E_1, \ldots, E_5 . This permutation must be a cycle of length 5, because otherwise g^8 would fix R pointwise. It implies that g^5 fixes R pointwise, hence

$$\operatorname{Fix}(\tilde{g}^5)) = \tilde{R}.$$

We may assume that the equation of \tilde{R} is given by x = 0 and $(0, 1, \zeta_5^i)$ are the five intersection points of \tilde{R} and \tilde{C}_6 . Now a standard computation of invariant polynomials such as in ([8] p. 293) yields the result.

\S **3.** Proof: the Complex Case

We may assume that X is projective, since a non-projective complex K3 surface cannot admit a non-symplectic automorphism of finite order (see [12], [10]) and its automorphisms of finite order are symplectic, hence of order ≤ 8 . Now the same proof goes, once $H^2_{\text{et}}(X, \mathbb{Q}_l)$ is replaced by $H^2(X, \mathbb{Z})$ and Proposition 1.3 by the usual topological Lefschetz formula.

References

- P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161.
- [2] I. Dolgachev, J. Keum, Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic, Ann. of Math. 169 (2009), 269-313
- [3] Y. Goto, The Artin invariant of supersingular weighted Delsarte surfaces, J. Math. Kyoto Univ., 36 (1996), 359–363.
- [4] L. Illusie, Report on crystalline cohomology, in "Algebraic Geometry, Arcata 1974", Proc. Symp. Pure math. vol. 29, AMS, pp. 459–478
- [5] J. Keum, Orders of automorphisms of K3 surfaces, arXiv:1203.5616 [math.AG]
- [6] J. Keum, K3 surfaces with an order 60 automorphism and a characterization of supersingular K3 surfaces with Artin invariant 1, Math. Res. Letters, 21 (2014), no. 3, 509–520.
- [7] S. Kondō, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), 75–98
- [8] N. Machida, K. Oguiso, On K3 surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo 5 (1998), 273–297
- [9] J. S. Milne, *Étale cohomology*, Princeton University Press, Princeton, NJ, 1980
- [10] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3, Uspehi Mat. Nauk **31** (1976), no. 2; Trans. Moscow Math. Soc., **38** (1980), 71-135

- [11] T. Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), 415–432
- [12] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Springer Lect. Notes in Math. 439 (1975)

School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Korea E-mail address: jhkeum@kias.re.kr