Order 40 automorphisms of K3 surfaces

JongHae Keum

Abstract

. In each characteristic $p \neq 2,5$, it is shown that order 40 automorphisms of K3 surfaces are purely non-symplectic. Moreover, a K3 surface in characteristic $p \neq 2,5$, with a cyclic action of order 40 is isomorphic to the Kondō's example.

Let X be a K3 surface over an algebraically closed field k of characteristic $p \geq 0$. An automorphism g of X is called symplectic if it preserves a non-zero regular 2-form ω_{X}, and purely non-symplectic if no power of g is symplectic except the identity.

Over $k=\mathbb{C}$ Kondō [7] gave an example of a complex K3 surface with a purely non-symplectic automorphism of order 40 as the minimal resolution X_{40} of $X_{40}^{\prime} \subset \mathbf{P}(1,1,1,3)$:

$$
\begin{gather*}
X_{40}^{\prime}: w^{2}=x\left(x^{4} z+y^{5}-z^{5}\right), \tag{0.1}\\
g_{40}(x, y, z, w)=\left(x, \zeta_{40}^{2} y, \zeta_{40}^{10} z, \zeta_{40}^{5} w\right) \tag{0.2}
\end{gather*}
$$

where $\zeta_{40} \in k$ is a primitive 40 th root of unity. The surface X_{40}^{\prime} is a double plane branched along the union of a line and a smooth quintic curve. The surface X_{40}^{\prime} is defined over the integers and both the surface and the automorphism have a good reduction mod p unless $p=2,5$.

The main result of this short note is the following.
Theorem 0.1. Let k be an algebraically closed field of characteristic $p \neq 2,5$. Let X be a K3 surface defined over k with an automorphism g of order 40. Then
(1) g is purely non-symplectic;
(2) the pair $(X,\langle g\rangle)$ is isomorphic to the pair $\left(X_{40},\left\langle g_{40}\right\rangle\right)$.

Received December 16, 2013.
Revised February 26, 2014.
2000 Mathematics Subject Classification. 14J28, 14J50, 14J27.
Research supported by National Research Foundation of Korea (NRF-20070093858) .

Over $k=\mathbb{C}$ the second statement of Theorem 0.1 was proved by Machida and Oguiso [8], under the assumption that g is purely nonsymplectic. Our proof is characteristic free, does not use lattice theory and the holomorphic Lefschetz formula.

A similar characterization of K3 surfaces with a tame cyclic action of order 60 was given in [6], where it was proven that for such a pair $(X,\langle g\rangle)$ the K3 surface X admits a g-invariant elliptic fibration, thus can be given by a g-invariant Weierstrass equation. In the case of order 40 , we show that the K3 surface admits a g-invariant double plane presentation.

Using the algorithm for determining the Artin invariant of a weighted Delsarte surface whose minimal resolution is a K3 surface ([11], [3]), one can show that in characteristic $p \equiv-1(\bmod 40)$ the surface X_{40} is a supersingular K3 surface with Artin invariant 1.

Remark 0.2. In characteristic 5, cyclic actions of order 40 are wild and have been classified in [5] (Section 9 and Example 9.5). More precisely, a K3 surface in characteristic 5 with a cyclic action of order 40 must be isomorphic to the minimal resolution of the pair $(Y,\langle g\rangle)$:

$$
\begin{gather*}
Y: w^{2}=z\left(y^{5}-y x^{4}+x z^{4}+B_{5} x^{5}\right), \quad B_{5} \in k \tag{0.3}\\
g(x, y, z, w)=\left(x, 2 x+y, \zeta_{8}^{2} z, \zeta_{8} w\right) \tag{0.4}
\end{gather*}
$$

where $\zeta_{8} \in k$ is a primitive 8 th root of unity. The surface Y is a double plane branched along the union of a line and a smooth quintic curve.

Notation

- NS (X) : the Néron-Severi group of X.
- $X^{g}=\operatorname{Fix}(g)$: the fixed locus of an automorphism g of X.
- $e(g):=e(\operatorname{Fix}(g))$, the Euler characteristic of $\operatorname{Fix}(g)$ for g tame.
- $\operatorname{Tr}\left(g^{*} \mid H^{*}(X)\right):=\sum_{j=0}^{2 \operatorname{dim} X}(-1)^{j} \operatorname{Tr}\left(g^{*} \mid H_{\mathrm{et}}^{j}\left(X, \mathbb{Q}_{l}\right)\right)$.

For an automorphism g of a K3 surface X,

- $\left[g^{*}\right]=\left[\lambda_{1}, \ldots, \lambda_{22}\right]$: the eigenvalues of $g^{*} \mid H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)$.
- ζ_{a} : a primitive a-th root of unity in $\overline{\mathbb{Q}_{l}}$.
- $\zeta_{a}: \phi(a)$: all primitive a-th roots of unity where ϕ is the Euler function and $\phi(a)$ the number of conjugates of ζ_{a}.
- $[\lambda . r] \subset\left[g^{*}\right]: \lambda$ repeats r times in $\left[g^{*}\right]$.
- $\left[\left(\zeta_{a}: \phi(a)\right) \cdot r\right] \subset\left[g^{*}\right]:$ the list $\zeta_{a}: \phi(a)$ repeats r times in $\left[g^{*}\right]$.

§1. Preliminaries

We first recall the following basic result used in the paper [5].
Proposition 1.1. (Proposition 2.1 [5]) Let g be an automorphism of a projective variety X over an algebraically closed field k of characteristic $p>0$. Let l be a prime $\neq p$. Then the following hold true.
(1) (3.7.3 [4]) The characteristic polynomial of $g^{*} \mid H_{\mathrm{et}}^{j}\left(X, \mathbb{Q}_{l}\right)$ has integer coefficients for each j. The characteristic polynomial does not depend on the choice of cohomology, l-adic or crystalline. In particular, if a primitive m-th root of unity appears with multiplicity r as an eigenvalue of $g^{*} \mid H_{\mathrm{et}}^{j}\left(X, \mathbb{Q}_{l}\right)$, then so does each of its conjugates.
(2) If g is of finite order, then g has an invariant ample divisor, and $g^{*} \mid H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)$ has 1 as an eigenvalue.
(3) If X is a K3 surface, g is tame and $g^{*} \mid H^{0}\left(X, \Omega_{X}^{2}\right)$ has $\zeta_{n} \in k$ as an eigenvalue, then $g^{*} \mid H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)$ has $\zeta_{n} \in \overline{\mathbb{Q}_{l}}$ as an eigenvalue.

For a smooth projective variety Z in characteristic $p>0$, the Kummer sequence in étale cohomology [9] induces an exact sequence of $\mathbb{Q}_{l^{-}}$ vector spaces

$$
\begin{equation*}
0 \rightarrow \mathrm{NS}(Z) \otimes \mathbb{Q}_{l} \rightarrow H_{\mathrm{et}}^{2}\left(Z, \mathbb{Q}_{l}\right) \rightarrow T_{l}^{2}(Z) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $T_{l}^{2}(Z)=T_{l}(\operatorname{Br}(Z))$ in the standard notation in the theory of étale cohomology (cf. [11]). The Brauer group $\operatorname{Br}(Z)$ is known to be a birational invariant, and it is trivial when Z is a rational variety. In fact, one can show that

$$
\begin{gathered}
\mathrm{NS}(Z) \otimes \mathbb{Q}_{l}=\operatorname{Ker}\left(H_{\mathrm{et}}^{2}\left(Z, \mathbb{Q}_{l}\right) \rightarrow H^{2}\left(k(Z), \mathbb{Q}_{l}\right)\right) \\
T_{l}^{2}(Z)=\operatorname{Im}\left(H_{\mathrm{et}}^{2}\left(Z, \mathbb{Q}_{l}\right) \rightarrow H^{2}\left(k(Z), \mathbb{Q}_{l}\right)\right)
\end{gathered}
$$

Here $H^{2}\left(k(Z), \mathbb{Q}_{l}\right)=\underline{\lim }_{U} H^{2}\left(U, \mathbb{Q}_{l}\right)$, where U runs through the set of open subsets of Z. It is known that the dimension of all \mathbb{Q}_{l}-spaces from above do not depend on l prime to the characteristic p.

Proposition 1.2. (Proposition 2.2 [5]) Let Z be a smooth projective variety in characteristic $p>0$ and g be an automorphism of Z of finite order. Assume $l \neq p$. Then the following assertions are true.
(1) $\operatorname{Tr}\left(g^{*} \mid H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)\right)=\operatorname{Tr}\left(g^{*} \mid \mathrm{NS}(Z)\right)+\operatorname{Tr}\left(g^{*} \mid T_{l}^{2}(Z)\right)$ and the three traces are integers.
(2) $\operatorname{rank} \operatorname{NS}(Z)^{g}=\operatorname{rank} \operatorname{NS}(Z /\langle g\rangle)$.
(3) $\quad \operatorname{dim} H_{\mathrm{et}}^{2}\left(Z, \mathbb{Q}_{l}\right)^{g}=\operatorname{rank} \operatorname{NS}(Z)^{g}+\operatorname{dim} T_{l}^{2}(Z)^{g}$.
(4) If $\operatorname{dim} Z=2$ and the minimal resolution Y of $Z /\langle g\rangle$ has $T_{l}^{2}(Y)=0$ (e.g., if $Z /\langle g\rangle$ is rational or birational to an Enriques surface), then

$$
\operatorname{dim} H_{\mathrm{et}}^{2}\left(Z, \mathbb{Q}_{l}\right)^{g}=\operatorname{rank} \operatorname{NS}(Z)^{g} .
$$

Proposition 1.3. (Topological Lefschetz formula, cf. [1] Theorem 3.2) Let X be a smooth projective variety over an algebraically closed field k of characteristic $p>0$ and let g be a tame automorphism of X. Then $X^{g}=\operatorname{Fix}(g)$ is smooth and

$$
e(g):=e\left(X^{g}\right)=\operatorname{Tr}\left(g^{*} \mid H^{*}(X)\right) .
$$

A tame symplectic automorphism h of a K3 surface has finitely many fixed points, the number of fixed points $f(h)$ depends only on the order of h and the list of possible pairs $(\operatorname{ord}(h), f(h))$ is the same as in the complex case (Theorem 3.3 and Proposition 4.1 [2], see also Nikulin's paper [10] for the complex case) :

$$
(\operatorname{ord}(h), f(h))=(2,8),(3,6),(4,4),(5,4),(6,2),(7,3),(8,2)
$$

Thus by the topological Lefschetz formula, we obtain the following.
Lemma 1.4. (Lemma 2.6[5]) Let h be a tame symplectic automorphism of a K3 surface X. Then $h^{*} \mid H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)$ has eigenvalues

$$
\begin{array}{lll}
\operatorname{ord}(h)=2 & : & {\left[h^{*}\right]=[1,1.13,-1.8]} \\
\operatorname{ord}(h)=3 & : & {\left[h^{*}\right]=\left[1,1.9,\left(\zeta_{3}: 2\right) .6\right]} \\
\operatorname{ord}(h)=4 & : & {\left[h^{*}\right]=\left[1,1.7,\left(\zeta_{4}: 2\right) .4,-1.6\right]} \\
\operatorname{ord}(h)=5 & : & {\left[h^{*}\right]=\left[1,1.5,\left(\zeta_{5}: 4\right) .4\right]} \\
\operatorname{ord}(h)=6 & : & {\left[h^{*}\right]=\left[1,1.5,\left(\zeta_{3}: 2\right) .4,\left(\zeta_{6}: 2\right) .2,-1.4\right]} \\
\operatorname{ord}(h)=7 & : & {\left[h^{*}\right]=\left[1,1.3,\left(\zeta_{7}: 6\right) .3\right]} \\
\operatorname{ord}(h)=8 & : & {\left[h^{*}\right]=\left[1,1.3,\left(\zeta_{8}: 4\right) .2,\left(\zeta_{4}: 2\right) .3,-1.4\right]}
\end{array}
$$

where the first eigenvalue corresponds to an invariant ample divisor.
Lemma 1.5. (Lemma 1.6 [6]) Let X be a K3 surface in characteristic $p \neq 2$, admitting an automorphism h of order 2 with $\operatorname{dim} H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)^{h}=2$. Then h is non-symplectic and has an h-invariant elliptic fibration $\psi: X \rightarrow \mathbf{P}^{1}$,

$$
X /\langle h\rangle \cong \mathbf{F}_{e}
$$

a rational ruled surface, and X^{h} is either a curve of genus 9 which is a 4 -section of ψ or the union of a section and a curve of genus 10 which is a 3 -section. In the first case $e=0,1$ or 2 , and in the second $e=4$. Each
singular fibre of ψ is of type I_{1} (nodal), $I_{2}, I I$ (cuspidal) or III, and is intersected by X^{h} at the node and two smooth points if of type I_{1}, at the two singular points if of type I_{2}, at the cusp with multiplicity 3 and a smooth point if of type II, at the singular point tangentially to both components if of type III. If X^{h} contains a section, then each singular fibre is of type I_{1} or $I I$.

Remark 1.6. If $e \neq 0$, the h-invariant elliptic fibration ψ is the pull-back of the unique ruling of \mathbf{F}_{e}. If $e=0$, either ruling of \mathbf{F}_{0} lifts to an h-invariant elliptic fibration.

The following easy lemmas also will be used frequently.
Lemma 1.7. (Lemma 2.10 [5]) Let S be a set and $\operatorname{Aut}(S)$ be the group of bijections of S. For any $g \in \operatorname{Aut}(S)$ and positive integers a and b,
(1) $\operatorname{Fix}(g) \subset \operatorname{Fix}\left(g^{a}\right)$;
(2) $\operatorname{Fix}\left(g^{a}\right) \cap \operatorname{Fix}\left(g^{b}\right)=\operatorname{Fix}\left(g^{d}\right)$ where $d=\operatorname{gcd}(a, b)$;
(3) $\operatorname{Fix}(g)=\operatorname{Fix}\left(g^{a}\right)$ if $\operatorname{ord}(g)$ is finite and prime to a.

Lemma 1.8. (Lemma 2.11[5]) Let $R(n)$ be the sum of all primitive n-th root of unity in $\overline{\mathbb{Q}}$ or in $\overline{\mathbb{Q}_{l}}$, where $\operatorname{gcd}(l, n)=1$. Then

$$
R(n)=\left\{\begin{array}{cll}
0 & \text { if } & n \text { has a square factor, } \\
(-1)^{t} & \text { if } & n \text { is a product of } t \text { distinct primes. }
\end{array}\right.
$$

For an automorphism g of finite order of a K3 surface X, tame or wild, we write

$$
\operatorname{ord}(g)=m \cdot n
$$

if g is of order $m n$ and the natural homomorphism $\langle g\rangle \rightarrow \operatorname{GL}\left(H^{0}\left(X, \Omega_{X}^{2}\right)\right)$ has kernel of order m and image of order n.

§2. Proof: the Tame Case

Throughout this section, we assume that the characteristic $p>0$, $p \neq 2,5$. Let g be an automorphism of order 40 of a K3 surface X.

Lemma 2.1. $\left[g^{*}\right] \neq\left[1, \zeta_{8}: 4, \pm 1, \zeta_{40}: 16\right]$.
Proof. Suppose that $\left[g^{*}\right]=\left[1, \zeta_{8}: 4, \pm 1, \zeta_{40}: 16\right]$. Then

$$
\left[g^{20 *}\right]=[1,-1.4,1,-1.16] .
$$

One can apply Lemma 1.5 to $h=g^{20}$. The quotient surface $X /\left\langle g^{20}\right\rangle$ is isomorphic to a rational ruled surface

$$
X /\left\langle g^{20}\right\rangle \cong \mathbf{F}_{e}
$$

X has a g^{20}-invariant elliptic fibration

$$
\psi: X \rightarrow \mathbf{P}^{1}
$$

and $\operatorname{Fix}\left(g^{20}\right)$ is either a curve C_{9} of genus 9 which is a 4 -section of ψ or the union of a section R and a curve C_{10} of genus 10 which is a 3 -section. The automorphism \bar{g} of $X /\left\langle g^{20}\right\rangle \cong \mathbf{F}_{e}$ induced by g preserves the ruling of \mathbf{F}_{e} if $e \neq 0$, and either preserves or interchanges the two rulings of \mathbf{F}_{e} if $e=0$.

Case 1: \bar{g} preserves the ruling(s) of \mathbf{F}_{e}.
In this case g preserves the fibration $\psi: X \rightarrow \mathbf{P}^{1}$. The fibre class is g-invariant and linearly independent from any g-invariant ample divisor class. Thus the eigenvalue 1 appears twice in $\left[g^{*}\right]$ and $\left[g^{*}\right]=\left[1, \zeta_{8}\right.$: $\left.4,1, \zeta_{40}: 16\right]$. Then we compute $e(g)=e\left(g^{2}\right)=e\left(g^{4}\right)=e\left(g^{5}\right)=$ $e\left(g^{10}\right)=4$. Consider the order 20 action of g on C_{9} or $C_{10} \subset \operatorname{Fix}\left(g^{20}\right)$. The action of g on C_{9} (resp. C_{10}) has 4 (resp. 2) points of ramification index 20 and no other ramifications. Neither is compatible with the Hurwitz formula.

Case 2: $e=0$ and \bar{g} interchanges the rulings of \mathbf{F}_{0}.
In this case $\operatorname{Fix}\left(g^{20}\right)=C_{9}$ and g interchanges the two elliptic fibrations coming from the rulings. Since g interchanges the two elliptic fibrations, -1 should appear as an eigenvalue and $\left[g^{*}\right]=\left[1, \zeta_{8}: 4,-1, \zeta_{40}: 16\right]$. We compute $e(g)=e\left(g^{5}\right)=2, e\left(g^{2}\right)=e\left(g^{4}\right)=e\left(g^{10}\right)=4$. The order 20 action of g on C_{9} has 2 points of ramification index 20, 2 points of ramification index 10 and no other ramifications. Unfortunately the Hurwitz formula cannot rule out this case.

The automorphism g^{2} preserves the elliptic fibration $\psi: X \rightarrow \mathbf{P}^{1}$. It preserves two fibres. By Lemma 1.5 a fibre of ψ is of type I_{0} (smooth), $I_{1}, I_{2}, I I$ or $I I I$. We claim that g^{2} does not preserve a reducible fibre of type I_{2} or $I I I$. Suppose it does. Then g^{4} preserves both components which, with an invariant ample class, give 3 linearly independent g^{4} invariant classes, hence $\left[g^{4 *}\right] \supset[1,1,1]$, absurd. If g^{2} preserves a fibre F_{0} of type I_{1} or $I I$, then g^{4} fixes all points in the set $F_{0} \cap \operatorname{Fix}\left(g^{20}\right)$, which consists of 3 points if F_{0} is of type I_{1} and 2 points if F_{0} is of type $I I$. If g^{2} preserves a smooth fibre F_{0}, then the involution $g^{20} \mid F_{0}$ of the elliptic curve F_{0} has non-empty fixed locus, hence must have 4 fixed points, thus the set $F_{0} \cap \operatorname{Fix}\left(g^{20}\right)$ consists of 4 distinct points and g^{4} fixes all of them. Since $e\left(g^{4}\right)=4$ and $\operatorname{Fix}\left(g^{4}\right) \subset \operatorname{Fix}\left(g^{20}\right)=C_{9}$, we see that $\operatorname{Fix}\left(g^{4}\right)$ consists of 4 points. From these we infer that g^{2} preserves two fibres of type $I I$, say F_{1} and F_{2}. Let

$$
F_{i}^{\prime} \subset X /\left\langle g^{20}\right\rangle \cong \mathbf{F}_{0}
$$

be the line, the image of F_{i}. On \mathbf{F}_{0} consider the rectangle with 4 sides $F_{1}^{\prime}, F_{2}^{\prime}, \bar{g}\left(F_{1}^{\prime}\right)$ and $\bar{g}\left(F_{2}^{\prime}\right)$. Let $C_{9}^{\prime} \subset \mathbf{F}_{0}$ be the image of C_{9}. At each vertex of the rectangle, the genus 9 curve C_{9}^{\prime} intersects one side with multiplicity 3 and the other with multiplicity 1 . This configuration admits no symmetry except rotations, and \bar{g} must be a rotation by 90 degrees. Then \bar{g}^{2} interchanges F_{1}^{\prime} and F_{2}^{\prime}, so g^{2} interchanges F_{1} and F_{2}, a contradiction.
Q.E.D.

By [5] Lemma 4.5 and $4.7, g$ cannot be of order $2.20,4.10$ or 8.5 . It remains to exclude the possibility 5.8 .

Lemma 2.2. $\operatorname{ord}(g) \neq 5.8$.
Proof. Suppose that $\operatorname{ord}(g)=5.8$. Then by Proposition 1.1 the action of g^{*} on $H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)$ has $\zeta_{8} \in \overline{\mathbb{Q}_{l}}$ as an eigenvalue. Hence $\left[\zeta_{8}: 4\right] \subset$ [$\left.g^{*}\right]$. By Lemma 1.4,

$$
\left[g^{8 *}\right]=\left[1,1.5,\left(\zeta_{5}: 4\right) .4\right] .
$$

From this we infer that

$$
\left[g^{*}\right]=\left[1, \zeta_{8}: 4, \pm 1, \eta_{1}, \ldots, \eta_{16}\right]
$$

where $\left[\eta_{1}, \ldots, \eta_{16}\right]$ is a combination of $\zeta_{5}: 4, \zeta_{10}: 4, \zeta_{20}: 8, \zeta_{40}: 16$, and the first eigenvalue corresponds to a g-invariant ample divisor.
By Lemma 2.1, $\zeta_{40}: 16$ cannot appear. Then

$$
\left[g^{4 *}\right]=\left[1,-1.4,1,\left(\zeta_{5}: 4\right) .4\right],
$$

hence $e\left(g^{4}\right)=\operatorname{Tr}\left(g^{4 *} \mid H^{*}(X)\right)=-4$. But $\operatorname{Fix}\left(g^{4}\right) \subset \operatorname{Fix}\left(g^{8}\right)$ and the latter consists of finitely many points, hence $e\left(g^{4}\right) \geq 0$. Q.E.D.

We have proved that g is purely non-symplectic, the first statement of Theorem 0.1.

Lemma 2.3. If $\operatorname{ord}(g)=1.40$, then
(1) $\left[g^{*}\right]=\left[1, \zeta_{40}: 16, \zeta_{5}: 4,1\right]$
where the first eigenvalue corresponds to a g-invariant ample class;
(2) $\operatorname{Fix}\left(g^{20}\right)=R \cup C_{6}$
where R is a smooth rational curve and C_{6} a curve of genus 6;
(3) $\operatorname{Fix}\left(g^{8}\right)=D_{2} \cup\{$ one point on $R\}$
where D_{2} is a curve of genus 2 with $D_{2} C_{6}=5, D_{2} R=1$.

Proof. Suppose that $\operatorname{ord}(g)=1.40$. Then by Proposition 1.1 the action of g^{*} on $H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)$ has $\zeta_{40} \in \overline{\mathbb{Q}_{l}}$ as an eigenvalue. Thus

$$
\left[g^{*}\right]=\left[1, \zeta_{40}: 16, \eta_{1}, \ldots, \eta_{5}\right]
$$

where the first eigenvalue corresponds to a g-invariant ample divisor and $\left[\eta_{1}, \ldots, \eta_{5}\right]$ is a combination of $\zeta_{8}: 4, \zeta_{10}: 4, \zeta_{5}: 4, \zeta_{4}: 2, \pm 1$.
By Lemma 2.1, $\left[\eta_{1}, \ldots, \eta_{5}\right] \neq\left[\zeta_{8}: 4, \pm 1\right]$.
Claim: $\left[\eta_{1}, \ldots, \eta_{5}\right]$ is not a combination of $\zeta_{4}: 2, \pm 1$.
Suppose that it is. Then

$$
\begin{gathered}
{\left[g^{20 *}\right]=[1,-1.16,1.5], \quad e\left(g^{20}\right)=-8} \\
{\left[g^{8 *}\right]=\left[1,\left(\zeta_{5}: 4\right) \cdot 4,1.5\right], \quad e\left(g^{8}\right)=4} \\
{\left[g^{4 *}\right]=\left[1,\left(\zeta_{10}: 4\right) \cdot 4,1.5\right], \quad e\left(g^{4}\right)=12}
\end{gathered}
$$

Thus

$$
\operatorname{Fix}\left(g^{20}\right)=R_{1} \cup \ldots \cup R_{d} \cup C_{d+5}, \quad d \leq 5
$$

where R_{j} 's are smooth rational curves and C_{d+5} a curve of genus $d+5$. Note that a non-symplectic automorphism of order 2 like g^{20} cannot have an isolated fixed point. The locus $\operatorname{Fix}\left(g^{4}\right)$, being a subset of $\operatorname{Fix}\left(g^{20}\right)$, consists of isolated points and possibly some $R_{j}^{\prime} s$. The action of g^{4} on Fix $\left(g^{20}\right)$ has order 5. If $d=5$ and g^{4} permutes R_{j} 's, then $g^{4} \mid C_{d+5}$ would have 12 fixed points, too many for an order 5 automorphism of a genus 10 curve. Thus
(*) $\quad g^{4}\left(R_{j}\right)=R_{j}$ for each j and $g^{4} \mid C_{d+5}$ has $12-2 d$ fixed points.
If $d \leq 2$, then the order 5 automorphism $g^{4} \mid C_{d+5}$ would have too many fixed points. Thus $d \geq 3$.

Now we consider $\operatorname{Fix}\left(g^{8}\right)$. Suppose that $\operatorname{Fix}\left(g^{8}\right)$ does not contain a curve of genus >1. Then it consists of $2 k$ points, d^{\prime} smooth rational curves and possibly some elliptic curves. Since $e\left(g^{8}\right)=4,2 k+2 d^{\prime}=4$. The action of g^{4} on $\operatorname{Fix}\left(g^{8}\right)$ has order 2 . We infer that there are 2 elliptic curves $E_{1}, E_{2} \subset \operatorname{Fix}\left(g^{8}\right)$ on each of which g^{4} has 4 fixed points. Then g^{4} fixes more than two fibres of the elliptic fibration $\left|E_{1}\right|=\left|E_{2}\right|$, hence fixes all fibres. Note that $\operatorname{Fix}\left(g^{8}\right) \cap \operatorname{Fix}\left(g^{20}\right)=\operatorname{Fix}\left(g^{4}\right)$. By $(*), g^{4} \mid C_{d+5}$ has at most 6 fixed points, so we see that there is an R_{j}, say R_{1}, that meets E_{1}. If $R_{1} E_{1}=R_{1} E_{2}>1$, then $g^{4} \mid R_{1}$ has more than two fixed points, hence is the identity, then $R_{1} \subset \operatorname{Fix}\left(g^{4}\right) \subset \operatorname{Fix}\left(g^{8}\right)$, contradicting the smoothness of a fixed locus. If $R_{1} E_{1}=R_{1} E_{2}=1$, then R_{1} is a section of $\left|E_{1}\right|$, hence $R_{1} \subset \operatorname{Fix}\left(g^{4}\right)$, again contradicting the smoothness of $\operatorname{Fix}\left(g^{8}\right)$.

We have proved that $\operatorname{Fix}\left(g^{8}\right)$ contains a curve D_{a} of genus $a>1$. Note that $D_{a} \cap C_{d+5} \subset \operatorname{Fix}\left(g^{4}\right)$, hence the intersection number

$$
D_{a} C_{d+5} \leq 12-2 d
$$

By the Hodge Index Theorem

$$
\left(D_{a}^{2}\right)\left(C_{d+5}^{2}\right) \leq(12-2 d)^{2}
$$

This is possible only if

$$
d=3, \quad a=2 \text { and } D_{2} C_{8}=6 .
$$

Therefore

$$
\begin{gathered}
\operatorname{Fix}\left(g^{20}\right)=R_{1} \cup R_{2} \cup R_{3} \cup C_{8}, \\
\operatorname{Fix}\left(g^{8}\right)=D_{2} \cup\{2 k \text { points }\} \cup R_{1}^{\prime} \cup \ldots \cup R_{c}^{\prime}
\end{gathered}
$$

where $R_{1}^{\prime}, \ldots, R_{c}^{\prime}$ are smooth rational curves. We know that $e\left(g^{4}\right)=12$. By $(*) g^{4}$ acts on R_{j} for $j=1,2,3$, hence $g^{4} \mid R_{j}$ fixes 2 points or the whole R_{j}. Thus the action of $g^{4} \mid C_{8}$ fixes 6 points. Since $\operatorname{Fix}\left(g^{4}\right)=$ $\operatorname{Fix}\left(g^{20}\right) \cap \operatorname{Fix}\left(g^{8}\right)$, we see that $C_{8} \cap \operatorname{Fix}\left(g^{8}\right)$ consists of 6 points. Since $C_{8} D_{2}=6$, we infer that

$$
(* *) \quad C_{8} \cap \operatorname{Fix}\left(g^{8}\right)=C_{8} \cap D_{2}=\{6 \text { points }\} .
$$

The order 5 automorphism g^{8} is non-symplectic and tame. The quotient

$$
Y:=X /\left\langle g^{8}\right\rangle
$$

is a normal surface. The image $\bar{C}_{8} \subset Y$ of C_{8} has self intersection number

$$
\bar{C}_{8}^{2}=\frac{1}{5} C_{8}^{2}=\frac{14}{5}
$$

which is not an integer, so \bar{C}_{8} must pass through some singular points of Y, then C_{8} must pass through some isolated fixed points of g^{8}, contradicting $(* *)$. The claim is proved.

Now we may assume that $\left[\eta_{1}, \ldots, \eta_{5}\right]=\left[\zeta_{10}: 4, \pm 1\right]$ or $\left[\zeta_{5}: 4, \pm 1\right]$. In these cases we have

$$
\begin{gathered}
{\left[g^{20 *}\right]=[1,-1.16,1.5], \quad e\left(g^{20}\right)=-8} \\
{\left[g^{10 *}\right]=\left[1,\left(\zeta_{4}: 2\right) \cdot 8,1.5\right], \quad e\left(g^{10}\right)=8} \\
{\left[g^{8 *}\right]=\left[1,\left(\zeta_{5}: 4\right) \cdot 4, \zeta_{5}: 4,1\right], \quad e\left(g^{8}\right)=-1} \\
{\left[g^{4 *}\right]=\left[1,\left(\zeta_{10}: 4\right) \cdot 4, \zeta_{5}: 4,1\right], \quad e\left(g^{4}\right)=7}
\end{gathered}
$$

$$
\left[g^{2 *}\right]=\left[1,\left(\zeta_{20}: 4\right) .4, \zeta_{5}: 4,1\right], \quad e\left(g^{2}\right)=3
$$

Thus

$$
\operatorname{Fix}\left(g^{20}\right)=R_{1} \cup \ldots \cup R_{d} \cup C_{d+5}, \quad d \leq 5
$$

where R_{j} 's are smooth rational curves and C_{d+5} a curve of genus $d+5$. For a divisor r of 20 with $r<20$, the locus $\operatorname{Fix}\left(g^{r}\right)$, being a subset of Fix $\left(g^{20}\right)$, consists of isolated points and possibly some $R_{j}^{\prime} s$. Consider the action of g on the set $\left\{R_{1}, \ldots, R_{d}\right\}$ of d elements. In its cycle decomposition each cycle has length $1,2,4$ or 5 . If $d=5$, then g^{4} or g^{10} preserves each R_{j}, so has a negative number of fixed points on C_{10}, absurd. If $d=4$, then g^{4} preserves each R_{j}, so has a negative number of fixed points on C_{9}. If $d=2$ or 3 , then g^{2} preserves each R_{j}, so has a negative number of fixed points on C_{8}. If $d=0$, then g^{4} has 7 fixed points on C_{5}, too many for an order 5 automorphism. We have shown that $d=1, \operatorname{Fix}\left(g^{20}\right)=R \cup C_{6}$, giving (2).

Since $e\left(g^{8}\right)<0, \operatorname{Fix}\left(g^{8}\right)$ must contain a curve D_{a} of genus $a>1$ (hence no elliptic curves). Since $g^{4} \mid C_{6}$ has 5 fixed points and $D_{a} \cap$ $C_{6} \subset \operatorname{Fix}\left(g^{4}\right)$, the intersection number $D_{a} C_{6} \leq 5$. By the Hodge Index Theorem

$$
\left(D_{a}^{2}\right)\left(C_{6}^{2}\right) \leq 5^{2} .
$$

This is possible only if

$$
a=2 \text { and } D_{2} C_{6}=5 .
$$

Since $e\left(g^{8}\right)=-1, \operatorname{Fix}\left(g^{8}\right)$ consists of D_{2} and a point p. Since g^{4} acts on $\operatorname{Fix}\left(g^{8}\right)$, it is easy to see that $p \in \operatorname{Fix}\left(g^{4}\right)$. Since $\operatorname{Fix}\left(g^{4}\right)=\operatorname{Fix}\left(g^{8}\right) \cap$ $\operatorname{Fix}\left(g^{20}\right)$ and $e\left(g^{4}\right)=7$, we infer that $p \in R$ and $D_{2} R=1$. This proves (3).

Since g^{5} acts on $\operatorname{Fix}\left(g^{20}\right)=R \cup C_{6}$ and $\operatorname{Fix}\left(g^{5}\right) \subset \operatorname{Fix}\left(g^{20}\right)$, we see that $e\left(g^{5}\right)>0$. This rules out the possibility $\left[\eta_{1}, \ldots, \eta_{5}\right]=\left[\zeta_{10}: 4, \pm 1\right]$. Thus we have

$$
\left[\eta_{1}, \ldots, \eta_{5}\right]=\left[\zeta_{5}: 4, \pm 1\right] .
$$

Finally, g^{10} fixes 6 points on C_{6} (and g^{5} fixes 6 or 4 points on C_{6}). Considering the action of g on these 6 points, we see that g fixes at least one of them, hence $e(g) \geq 3$. Thus the last eigenvalue must be 1 , proving (1).
Q.E.D.

Proof of the second statement of Theorem 0.1.

Lemma 2.3 plays a key role in the proof. We modify the proof of [8] Section 4. The quotient

$$
Y:=X /\left\langle g^{20}\right\rangle
$$

is a smooth rational surface with

$$
K_{Y}=-\frac{1}{2}\left(\bar{R}+\bar{C}_{6}\right)
$$

where $\bar{R}, \bar{C}_{6} \subset Y$ are the images of R and C_{6}. Note that

$$
\bar{R}^{2}=-4, \quad \bar{C}_{6}^{2}=20
$$

Let

$$
\pi: X \rightarrow Y
$$

be the projection map. By Proposition $1.2 Y$ has Picard number $\rho(Y)=$ 6.

Claim: If $E \subset Y$ is a smooth rational curve with $E^{2}<-1$, then $E=\bar{R}$.

If $E^{2}<-2$. Then $K_{Y} E>0$, thus $\left(\bar{R}+\bar{C}_{6}\right) E<0$. This is possible only if $E=\bar{R}$. Suppose that E is a (-2)-curve on Y. Then $K_{Y} E=0$, thus E is disjoint from the branch divisor $\bar{R}+\bar{C}_{6}$, and $\pi^{*}(E) \subset X$ is a disjoint union of two (-2)-curves, say E_{1} and E_{2}. Note that $E_{1} \cdot E_{2}=$ $0, E_{1} \cdot g^{10}\left(E_{1}\right)=g^{10}\left(E_{1}\right) \cdot E_{2} \geq 0$. It is easy to check that the four (-2)-curves $E_{1}, g^{10}\left(E_{1}\right), g^{20}\left(\bar{E}_{1}\right)=E_{2}, g^{30}\left(E_{1}\right)=g^{10}\left(E_{2}\right)$ are linearly independent in the Néron-Severi group of X, hence their Chern classes are linearly independent in the second cohomology group. They are rotated by $g^{10 *}$, hence $\left[1, \zeta_{4}, \zeta_{4}^{2}, \zeta_{4}^{3}\right] \subset\left[g^{10 *}\right]$, impossible. This proves the claim.

The linear system $\left|D_{2}\right|$ gives a degree 2 morphism $\phi: X \rightarrow \mathbf{P}^{2}$. Take the Stein factorization

$$
X \xrightarrow{\mu} X^{\prime} \xrightarrow{\phi^{\prime}} \mathbf{P}^{2} .
$$

Let $\tilde{R}, \tilde{C}_{6} \subset \mathbf{P}^{2}$ are the images of R and C_{6}. Since $D_{2} C_{6}=5, D_{2} R=1$, we infer that \tilde{R} is a line, \tilde{C}_{6} is a quintic and their union is the branch of the double cover $\phi^{\prime}: X^{\prime} \rightarrow \mathbf{P}^{2}$. Thus the map $\phi: X \rightarrow \mathbf{P}^{2}$ factors through

$$
X \xrightarrow{\pi} Y \xrightarrow{\nu} \mathbf{P}^{2}
$$

where ν is the contraction of five mutually disjoint (-1)-curves, $E_{1}, \ldots, E_{5} \subset Y$ by Claim. Each E_{i} satisfies $E_{i} \bar{R}=E_{i} \bar{C}_{6}=1$. Their pre-images $E_{i}^{*} \subset X$ are (-2)-curves satisfying $E_{i}^{*} R=E_{i}^{*} C_{6}=1$, and contracted by μ. Our automorphism g induces an automorphism \tilde{g} of
\mathbf{P}^{2}. Thus the automorphism \bar{g} of Y permutes E_{1}, \ldots, E_{5}. This permutation must be a cycle of length 5 , because otherwise g^{8} would fix R pointwise. It implies that g^{5} fixes R pointwise, hence

$$
\left.\operatorname{Fix}\left(\tilde{g}^{5}\right)\right)=\tilde{R} .
$$

We may assume that the equation of \tilde{R} is given by $x=0$ and $\left(0,1, \zeta_{5}^{i}\right)$ are the five intersection points of \tilde{R} and \tilde{C}_{6}. Now a standard computation of invariant polynomials such as in ([8] p. 293) yields the result.

§3. Proof: the Complex Case

We may assume that X is projective, since a non-projective complex K3 surface cannot admit a non-symplectic automorphism of finite order (see [12], [10]) and its automorphisms of finite order are symplectic, hence of order ≤ 8. Now the same proof goes, once $H_{\text {et }}^{2}\left(X, \mathbb{Q}_{l}\right)$ is replaced by $H^{2}(X, \mathbb{Z})$ and Proposition 1.3 by the usual topological Lefschetz formula.

References

[1] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103-161.
[2] I. Dolgachev, J. Keum, Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic, Ann. of Math. 169 (2009), 269-313
[3] Y. Goto, The Artin invariant of supersingular weighted Delsarte surfaces, J. Math. Kyoto Univ., 36 (1996), 359-363.
[4] L. Illusie, Report on crystalline cohomology, in "Algebraic Geometry, Arcata 1974", Proc. Symp. Pure math. vol. 29 , AMS, pp. 459-478
[5] J. Keum, Orders of automorphisms of K3 surfaces, arXiv:1203.5616 [math.AG]
[6] J. Keum, K3 surfaces with an order 60 automorphism and a characterization of supersingular K3 surfaces with Artin invariant 1, Math. Res. Letters, 21 (2014), no. 3, 509-520.
[7] S. Kondō, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), 75-98
[8] N. Machida, K. Oguiso, On K3 surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo 5 (1998), 273-297
[9] J. S. Milne, Étale cohomology, Princeton University Press, Princeton, NJ, 1980
[10] V. V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3, Uspehi Mat. Nauk 31 (1976), no. 2; Trans. Moscow Math. Soc., 38 (1980), 71-135
[11] T. Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), 415-432
[12] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Springer Lect. Notes in Math. 439 (1975)

School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Korea
E-mail address: jhkeum@kias.re.kr

