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Topology and geometry of real singularities

Nicolas Dutertre

Abstract.

The aim of these lecture notes is to provide the students with tools
and techniques used in the theory of real singularities and to apply them
in order to get interesting results on the topology and geometry of real
singularities.

§1. Introduction

This mini-course is aimed at young researchers and graduate stu-
dents who want to learn basic tools and techniques of real singularity
theory.

It starts with well-known notions and results of differential topology:
the Brouwer degree, the index of a vector-field, the Poincaré-Hopf theo-
rem, the Gauss-Bonnet theorem. Although theses notions may be very
familiar to any researcher experienced in singularity theory, we believe
it is worth recalling them here.

Then in the next chapter, we apply these techniques of differential
topology to some real analytic or semi-analytic sets and we get several
nice formulas for topological invariants of these sets.

We end with a chapter about semi-algebraic sets. After a brief intro-
duction on semi-algebraic sets and maps, we give several semi-algebraic
singular versions of the Poincaré-Hopf theorem and the Gauss-Bonnet
theorem.

The author would like to thank the organizing committee of this
School on Singularity Theory, and especially Raimundo Araújo dos
Santos, for inviting him to give this mini-course.
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§2. Tools of differential topology

In this chapter, we give the main tools and results in differential
topology that we will need and apply in the study of real singularities.
Our main references are [35], [37], [42] and [43].

2.1. The Brouwer degree

Let M and N be two oriented n-dimensional manifolds (without
boundary) and let f : M → N be a smooth (i.e. C∞) map. We assume
that M is compact and N is connected. Let x be a regular point of
f . This means that Df(x) : TxM → Tf(x)N is a linear isomorphism
between oriented vector spaces. We define the “sign” of Df(x) to be +1
(resp. −1) if Df(x) preserves (resp. reverses) the orientation.

Definition 2.1. For any regular value y ∈ N , we define:

deg(f, y) =
∑

x∈f−1(y)

sign Df(x).

Remark 2.1. Since y is a regular value of f , f−1(y) consists of
regular points. Since M is compact, f−1(y) is a finite collection of points
since it is a 0-dimensional manifold.

Theorem 2.1. The integer deg(f, y) does not depend on the choice
of the regular value y.

Definition 2.2. It is called the (Brouwer) degree of f , denoted by
deg f .

Theorem 2.2. If f is smoothly homotopic to g then

deg f = deg g.

For the proof of these two theorems, the reader is referred to Milnor’s
book [42].

Examples: 1) The map on the left has degree 0 and the map on the right
has degree 1.
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2) The map pictured below has degree 2.

3) Let ri : S
n → Sn be defined by:

ri(x1, . . . , xn+1) = (x1, . . . ,−xi, . . . , xn+1).

The degree of ri is −1.
4) The map S1 ⊂ C → S1 ⊂ C, z �→ zm, m ∈ Z∗ has degree m.

Actually each point has exactly m preimages and the map is regular and
preserves orientation if m > 0 and reverses it if m < 0.

Proposition 2.1. If M , N and L are three smooth compact oriented
manifolds of the same dimension and f : M → N and g : N → L are
two smooth maps then deg(g ◦ f) = deg g × deg f .

Proof. It is easy from the definition. �

Example: The antipodal map σ : Sn → Sn, x �→ −x has degree (−1)n+1

because σ = r1 ◦ r2 ◦ · · · ◦ rn+1. Hence if n is even, σ is not smoothly
homotopic to the identity.

Theorem 2.3. If M = ∂W , W is compact, and f : M → N
extends to F : W → N then deg f = 0.

Application: Assume that M is a smooth compact connected hyper-
surface in Rn. By the Jordan-Brouwer Separation Theorem, it bounds
a connected open set D ⊂ Rn, i.e. M = ∂D. This induces a nat-
ural orientation on M . Let F : D → Rn be a map that does not
vanish on ∂D = M . We assume that F inside D has finite number
of zeroes p1, . . . , pm that are all regular points of F . We can define
F = F

|F | : M → Sn−1. Then we have:

deg F =

m∑
i=1

sign det[DF (pi)].
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Let us explain this equality. We remove a small open ball B(pi, εi)
around each pi. Let W = D \∪m

i=1B(pi, εi), it is a manifold with bound-
ary:

∂W = M
⋃

∪m
i=1S(pi, εi).

The submanifold ∂W is oriented by the canonical orientation of the
boundary. Let us consider F ∂W : ∂W → Sn−1, x �→ F

|F | . Then F ∂W

extends to W , so deg F ∂W = 0. On the other hand, we have:

deg F ∂W = deg F −
m∑
i=1

deg F i,

where F i =
F
|F | : S(pi, εi) → Sn−1. A minus sign appears here because

the orientation of S(pi, εi) as a component of the boundary of W is the
opposite of the orientation of S(pi, εi) as the boundary of B(pi, εi).

Since pi is a regular point of F , the degree of F i is equal to the sign
of det[DF (pi)], because

F
|F | : S(pi, εi) → Sn−1 is homotopic to the map:

S(pi, εi) → Sn−1, p �→ DF (pi)(p− pi)

|DF (pi)(p− pi)]| ,

and therefore has the same degree as the map:

S(0, εi) → Sn−1, h �→ DF (pi)(h)

|DF (pi)(h)| .

This last map has degree equal to sign det [DF (pi)], because the map
h → DF (pi)(h) is homotopic to ±IdRn , depending on the sign of the
determinant of DF (pi) since GL(n,R) has two connected components.

2.2. Vector fields and the Poincaré-Hopf theorem

Definition 2.3. Let M be a smooth manifold. A vector field V
on M is a smooth mapping V : M → TM such that for all x ∈ M ,
pr(V (x)) ∈ TxM , where pr : TM → M is the natural projection.

Remark 2.2. If M ⊂ Rn then a vector field is just a smooth map-
ping V : M → Rn such that for all x ∈ M , V (x) ∈ TxM .
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Definition 2.4. Let p be an isolated zero of a vector field V on a
manifold M of dimension n. In local coordinates, we can view V as a
mapping from a small open set U ⊂ Rn to a small open set U ′ ⊂ Rn

where 0 ∈ U and 0 ∈ U ′ and such that 0 is the only zero of V in U . We
define the Poincaré-Hopf index of V at p by:

Ind(V, p) = degree of
V

|V | : S
n−1
ε → Sn−1,

where Sn−1
ε is a small sphere included in U .

Examples in R2:

(1) If V (x, y) = (y,−x) (circulation) then Ind(V, 0) = +1.

(2) If V (x, y) = (−x,−y) (sink) then Ind(V, 0) = +1.

(3) If V (x, y) = (x, y) (source) then Ind(V, 0) = +1.

(4) If V (x, y) = (−x, y) (saddle) then Ind(V, 0) = −1.

(5) If V (x, y) = (x2, x+ y) then Ind(V, 0) = 0.
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(6) If V (x, y) = (x2 − y2, 2xy) (z �→ z2 in complex coordinates)
then Ind(V, 0) = +2.

Remark 2.3. One may check that this definition does not depend
on the local coordinates (see [42] and [35] for example).

Theorem 2.4. (Poincaré-Hopf theorem) Let M be a smooth com-
pact manifold. Let V be a smooth vector field on M , with a finite number
of zeroes p1, . . . , pk. Then we have:

χ(M) =
k∑

i=1

Ind(V, pi).

Proof. See [42], [35] or [37]. �

2.3. Morse functions

Definition 2.5. Let M be a smooth manifold of dimension n, let
p ∈ M and f : M → R be a smooth function. Let (x1, . . . , xn) be local
coordinates around p in M . We say that p is a non-degenerate critical
point of f if p is a critical point of f (i.e. ∂f

∂x1
(p) = . . . = ∂f

∂xn
(p) = 0)

and the matrix: [
∂2f

∂xi∂xj
(p)

]
1≤i,j≤n

is non-singular.

Remark 2.4. One may check that this definition does not depend
on the choice of the local coordinate system (see [35]).

Proposition 2.2. (Morse lemma) Let p ∈ M , dim M = n, be a
non-degenerate critical point of a smooth function f : M → R. There
exists a local coordinate system (u1, . . . , un) around p such that:

f = f(p)− u2
1 − · · · − u2

λ + u2
λ+1 + · · ·+ u2

n.

Proof. See [43]. �

Definition 2.6. The integer λ is called the index of f at p.
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Corollary 2.1. Non-degenerate critical points are isolated (in the
set of critical points).

Definition 2.7. Let M be a smooth manifold. A function f : M →
R is a Morse function if it admits only non-degenerate critical points.

Theorem 2.5. (Openness and density) For any manifold M , Morse
functions form a dense open set in C∞

s (M,R) (Whitney strong topology).

Proof. It is a consequence of Thom’s transversality theorem (See
[37], [33] or [5]). �

For our applications, we will be mainly interested in fibres of analytic
or polynomial mappings, so from now on, we shall assume that M ⊂ RN

and that dim M = n. Let f : M → R be a smooth function. This defines
a vector field ∇Mf (the gradient vector field of f on M) by:

∀p ∈ M,∀v ∈ TpM,Df(p)(v) = 〈∇Mf(p), v〉.

Hence p is a critical point of f if and only if ∇Mf(p) = 0. If p is a Morse
critical point of f of index λ, then there is a local coordinate system such
that:

f = f(p)− u2
1 − · · · − u2

λ + u2
λ+1 + · · ·+ u2

n,

and so:

∇Mf = (−2u1, . . . ,−2uλ, 2uλ+1, . . . , 2un).

Hence the Poincaré-Hopf index Ind(∇Mf, p) is equal to (−1)λ because,

as already explained above, the mapping ∇Mf
|∇Mf | : S(p, ε) → Sn−1 has

degree equal to sign det[D(∇Mf)(p)]. We can state:

Theorem 2.6. Let M ⊂ RN be a smooth compact manifold and let
f : M → R be a Morse function with critical points p1, . . . , pk. Then,
we have:

χ(M) =
k∑

i=1

(−1)λ(pi),

where λ(pi) is the Morse index of pi.

We will also consider the case of manifolds with boundary. Let
(M,∂M) ⊂ RN be a manifold with boundary. Let q ∈ ∂M , then Tq∂M
is a hyperplane in TqM and TqM = Tq∂M � TqM

+ � TqM
− where

TqM
+ consists of outwards pointing vectors (outward vectors for short)

and TqM
− consists of inwards pointing vectors.
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Definition 2.8. Let q ∈ ∂M and let f : (M,∂M) → R be a smooth
function. We say that q is a correct critical point of f if q is a critical
point of f|∂M : ∂M → R and Df(q)|TqM is not identically zero.

Definition 2.9. We say that f : (M,∂M) → R is a correct Morse
function if f admits only Morse critical points on M \ ∂M and f|∂M
admits only Morse correct critical points.

Theorem 2.7. Let (M,∂M) ⊂ RN be a compact manifold with
boundary and let f : M → R be a correct Morse function. Denote by
p1, . . . , pk the critical points of f|M\∂M and by q1, . . . , ql those of f|∂M .
Then we have:

χ(M) =
k∑

i=1

(−1)λ(pi) +
∑

j | ∇Mf(qj) inward

(−1)μ(qj),

where λ(pi) is the Morse index of f at pi and μ(qj) is the Morse index
of f|∂M at qj.

The following result is due to Haefliger [36] and Samelson [46].
Application: Let Mn ⊂ Rn+1 be a compact hypersurface canonically ori-
ented. Then M is the boundary of a compact manifold W of dimension
n + 1. Let g : M → Sn be the outwards pointing unit normal vector
field. We have:

deg g = χ(W ).

Proof. By Sard’s theorem, we can find a ∈ Sn such that a and
−a are regular value of g. Let us write {q1, . . . , ql} = g−1(±a). Let
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a∗ : Rn+1 → R be the function defined by a∗(x) = 〈a, x〉 and let us
consider a∗|M : M → R, x �→ 〈a, x〉 its restriction to M . The critical

points of a∗|M are exactly the qj ’s and furthermore, by a determinant

computation, there are non-degenerate. Hence a∗|M is a Morse function

having no critical points in W \M . It is straightforward to see that a∗|W
is a correct Morse function. By the previous theorem, we know that:

χ(W ) =
∑

j | ∇a∗(qj) inward

(−1)μ(qj),

where μ(qj) is the Morse index of a∗|M at qj . But ∇a∗ = a so ∇a∗(q) is
inward if and only if g(q) = −a. Therefore,

χ(W ) =
∑

j | g(qj)=−a

(−1)μ(qj).

It remains to relate (−1)μ(qj) to the local degree of g at qj . We use the
following lemma.

Lemma 2.1. We have:

deg(g, qj) = (−1)nsign〈g(qj), a〉n(−1)μ(qj).

Proof. See [20], Lemma 2.3. �

If g(qj) = −a then

deg(g, qj) = (−1)n
(
sign(−|a|2))n(−1)μ(qj) = (−1)μ(qj).

Finally, we find that:

χ(W ) =
∑

j | g(qj)=−a

deg(g, qj) = deg g.

�

In the following chapters of this mini-course, we will use relative
versions of the previous two theorems on Morse theory.

Theorem 2.8. Let M ⊂ RN be a smooth compact manifold and let
f : M → R be a Morse function with critical points p1, . . . , pk. For any
α ∈ R, we have:

χ(M ∩ {f ≥ α},M ∩ {f = α}) =
∑

i | f(pi)>α

(−1)λ(pi),

where λ(pi) is the Morse index of pi.

Theorem 2.7 has a similar relative version.
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2.4. The Gauss-Bonnet theorem

Let M ⊂ Rn+1 be a compact hypersurface, canonically oriented as
the boundary of a compact manifold with boundary W . Let g : M → Sn

be the Gauss map. Its Jacobian Jg(x) = k(x) is called the curvature
of M at x. It is the determinant of the differential Dg(x) : TxM →
Tg(x)S

n = TxM .

Theorem 2.9. We have:∫
M

k(x)dx = vol(Sn)χ(W ).

Proof. We denote by dv the volume form on Sn. By integral calculus
on manifolds, we can write:∫

M

k(x)dx =

∫
M

Jg(x)dx =

∫
M

g∗(dv) = deg g

∫
Sn

dv =

deg g × vol(Sn).

But we know that deg g = χ(W ). �

The following corollary is due to Hopf [38].

Corollary 2.2. If M is even-dimensional, we have:∫
M

k(x)dx =
1

2
vol(Sn)χ(M).

Proof. Use the equality χ(M) = 2χ(W ). �

§3. The Eisenbud-Levine formula, the Khimshiashvili formula
and applications

3.1. The Eisenbud-Levine formula

As seen in the second chapter, the Poincaré-Hopf index of a vector
field plays an important role in the topology of manifolds. Here we
present an algebraic formula for this index.
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Let f = (f1, . . . , fn) : (R
n, 0) → (Rn, 0) be a C∞ map-germ (this is

exactly the local expression of a vector field on a smooth manifold). We
assume that:

Q(f) =
C∞(Rn, 0)

(f1, . . . , fn)
,

is a finite dimensional vector space over R. Here C∞(Rn, 0) is the al-
gebra of germs at 0 ∈ Rn of C∞ real valued functions and (f1, . . . , fn)
is the ideal generated by the components f1, . . . , fn of f . We write
dimRQ(f) < +∞. We denote by Jf the jacobian of the map-germ f .
Namely, we have:

Jf =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
.

Theorem 3.1. (The Eisenbud-Levine formula) Let f : (Rn, 0) →
(Rn, 0) be a C∞ map-germ such that dimRQ(f) < +∞. Then we have:

(1) 0 is isolated in f−1(0),
(2) Jf �= 0 in Q(f),
(3) ∀g ∈ Q(f), gJf = g(0)Jf in Q(f),
(4) let ϕ : Q(f) → R be a linear form such that ϕ(Jf ) > 0 and let

Φ : Q(f)×Q(f) → R be the bilinear symmetric form defined by
Φ(g, h) = ϕ(gh). Then Φ is non-degenerate and signature Φ =
Ind(f, 0).

Proof. See [28], [5] or [8]. For a first approach, see [27]. �

Example: Let f be the map-germ defined by:

f : (R2, 0) → (R2, 0)
(x, y) �→ (x2 − y2, 2xy).

We have: Q(f) = C∞(R2,0)
(x2−y2,2xy) . We see that dimRQ(f) = 4 and that 1̄,

x̄, ȳ and x2 + y2 form a basis of Q(f). It is clear that 0 is isolated in
f−1(0). Let us compute Jf :

Jf (x, y) =

∣∣∣∣ 2x −2y
2y 2x

∣∣∣∣ = 4(x2 + y2).

Let ϕ : Q(f) → R be the linear form given by:

ϕ(1̄) = ϕ(x̄) = ϕ(ȳ) = 0 and ϕ(x2 + y2) =
1

4
.

Then ϕ(Jf ) = 1. Let Φ be the bilinear symmetric form defined by

Φ(P,Q) = ϕ(PQ). Let us find its matrix in the basis (1̄, x̄, ȳ, x2 + y2).
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We have:

Φ(1̄, 1̄) = ϕ(1̄) = 0,Φ(1̄, x̄) = Φ(x̄, 1̄) = 0,Φ(1̄, ȳ) = Φ(ȳ, 1̄) = 0,

Φ(x̄, x̄) = ϕ(x̄2) = ϕ(
1

2
x2 + y2) =

1

8
,

Φ(ȳ, ȳ) = ϕ(ȳ2) = ϕ(
1

2
x2 + y2) =

1

8
,

Φ(x̄, ȳ) = ϕ(xy) = ϕ(0̄) = 0 = Φ(ȳ, x̄),

Φ(1̄, x2 + y2) =
1

4
,Φ(x̄, x2 + y2) = ϕ(x̄3 + xy2) = ϕ(0̄) = 0,

Φ(ȳ, x2 + y2) = 0,Φ(x2 + y2, x2 + y2) = ϕ
(
(x2 + y2)(x2 + y2)

)
= 0.

So this matrix is: ⎡
⎢⎢⎣

0 0 0 1
4

0 1
8 0 0

0 0 1
8 0

1
4 0 0 0

⎤
⎥⎥⎦ .

The eigenvalues are 1
8 with multiplicity 2, 1

4 with multplicity 1 and − 1
4

with multiplicity 1. So the signature of Φ is 3− 1 = 2 = Ind(f, 0).
The Eisenbud-Levine formula gives an algebraic formula for the in-

dex of a vector field, hence an algebraic and “effective” way to compute
a topological data. In the sequel, using technics introduced in the second
chapter, we will present several formulas relating topological invariants
to indices of vector fields. Thanks to the Eisenbud-Levine formula, these
topological invariants become algebraically computable.

3.2. The Khimshiashvili formula

From now on, we will restrict ourselves to the analytic or polynomial
case.

Let f : (Rn, 0) → (R, 0) be an analytic-map germ with an isolated
critical point at 0. The Khimshiashvili formula (see [39]) relates the
Poincaré-Hopf index of the gradient vector field ∇f of f to the topology
of a small regular level of f .

Theorem 3.2. We have:

χ
(
f−1(δ) ∩Bn

ε

)
= 1− sign(−δ)nInd(∇f, 0), (1)

where δ is a regular value of f , 0 < |δ| � ε � 1, and:

χ({f ≥ δ} ∩Bn
ε )− χ({f ≤ δ} ∩Bn

ε ) = sign(−δ)n+1Ind(∇f, 0). (2)
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Proof. Let U be a small open subset of Rn such that 0 ∈ U , and
f is defined in U . We pertub f in a Morse function f̃ : U → R. Let
p1, . . . , pk be the critical points of f̃ , with respective indices λ1, . . . , λk.
Let δ > 0, by Morse theory we have:

χ
(
f−1([−δ, δ]) ∩Bn

ε

)− χ
(
f−1(−δ) ∩Bn

ε

)
=

k∑
i=1

(−1)λi .

Actually we can choose f̃ sufficiently close to f so that the pi’s lie
in f−1([− δ

4 ,
δ
4 ]). Now, f−1([−δ, δ]) ∩ Bn

ε retracts to the central fibre

f−1(0) ∩ Bn
ε and f−1(0) ∩ Bε is the cone over f−1(0) ∩ Sn−1

ε (see [44])
so:

χ
(
f−1([−δ, δ]) ∩Bn

ε

)
= 1.

Moreover, we have:

k∑
i=1

(−1)λi =
k∑

i=1

sign det[D(∇f̃)(pi)].

The sum on the right hand-side is the degree of the map ∇f̃

|∇f̃ | : S
n−1
ε →

Sn−1 which is equal, by homotopy, to the degree of ∇f
|∇f | : S

n−1
ε → Sn−1.

By definition, this last degree is Ind(∇f, 0). This gives the result for a
negative regular value. For a positive regular value, we apply the result
to −f and use the relation Ind(−∇f, 0) = (−1)nInd(∇f, 0). This proves
formula (1). Formula (2) is proved with similar arguments. �

We will call f−1(δ)∩Bn
ε the (positive or negative) real Milnor fibre.

The following formulas are due to Arnol’d [6] and Wall [55].

Corollary 3.1. With the same hypothesis on f , we have:

χ({f ≤ 0} ∩ Sn−1
ε ) = 1− Ind(∇f, 0),

χ({f ≥ 0} ∩ Sn−1
ε ) = 1 + (−1)n−1Ind(∇f, 0).

If n is even, we have:

χ({f = 0} ∩ Sn−1
ε ) = 2− 2 Ind(∇f, 0).
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Proof. By a deformation argument due to Milnor [44], f(−δ) ∩Bn
ε ,

δ > 0, is homeomorphic to {f ≤ −δ}∩Sn−1
ε , which is homeomorphic to

{f ≤ 0} ∩ Sn−1
ε if δ is very small.

�

3.3. The Fukui formula

The above real Milnor fibre can be also written as f−1
t (0) ∩ Bn

ε ,
0 < |t| � ε � 1, where ft(x) = f(x) − t. In this section, we will
present a method for the computation of the Euler characteristic of
f−1
t (0) ∩Bn

ε , 0 < |t| � ε � 1, where ft is a one-parameter deformation
of f : (Rn, 0) → (R, 0). It is interesting to study such deformations
because the topology of the fibre is somehow richer than the one of the
real Milnor fibre and contains more information about the singularity.
The setting is described below.

Let f : (Rn, 0) → (R, 0) be an analytic function-germ with an iso-
lated critical point at 0. Let F : (Rn+1, 0) → (R, 0), (t, x) �→ F (t, x)
be a one-parameter deformation of f , i.e. F0(x) = F (0, x) = f(x). Let
H : (Rn+1, 0) → (Rn+1, 0) be defined by H(t, x) = (F, ∂F

∂x1
, . . . , ∂F

∂xn
).

We assume that H has an isolated critical zero at 0, so that Ind(H, 0)
is well-defined.

Lemma 3.1. The function F has an isolated critical point at the
origin.

Proof. By the Curve Selection Lemma [44], ∇F−1(0) is included in
F−1(0). Hence ∇F−1(0) ⊂ H−1(0). �

Lemma 3.2. For t �= 0 small, the fibre

f−1
t (0) = {x ∈ Rn | F (t, x) = 0},

is smooth in a neighborhood of the origin.

Proof. A point x ∈ f−1
t (0) is a critical point of ft if and only if

∀i ∈ {1, . . . , n}, ∂ft
∂xi

(x) = 0. This implies that ∂F
∂xi

(t, x) = 0 and that

H(t, x) = 0.
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�

The following theorem was proved by Fukui [31].

Theorem 3.3. For 0 < |δ| � ε � 1, we have:

χ
(
F−1(δ) ∩ {t ≥ 0} ∩Bn+1

ε

)− χ
(
F−1(δ) ∩ {t ≤ 0} ∩Bn+1

ε

)
=

−sign(−δ)n+1Ind(H, 0).

Proof. We work in a small open subset U of Rn+1 that contains 0.
Let π : Rn+1 → R, (t, x) �→ t be the projection on the first coordinate.
After a small perturbation of F , we can assume that π|F−1(δ)∩ ˚

Bn+1
ε

:

F−1(δ) ∩ ˚Bn+1
ε → R admits only Morse critical points p1, . . . , pk with

respective indices λ1, . . . , λk. By Morse theory, we have:

χ
(
F−1(δ) ∩ {t ≥ 0} ∩Bn+1

ε

)− χ
(
F−1(δ) ∩ {t = 0} ∩Bn+1

ε

)
=∑

j | π(pj)>0

(−1)λj ,

χ
(
F−1(δ) ∩ {t ≤ 0} ∩Bn+1

ε

)− χ
(
F−1(δ) ∩ {t = 0} ∩Bn+1

ε

)
=

(−1)n
∑

j | π(pj)<0

(−1)λj .

Here we have to notice that F−1(δ)∩Bn+1
ε is a manifold with boundary.

By the Curve Selection Lemma, we can prove that the critical points
of π|F−1(δ)∩Sn

ε
in {t ≥ 0} point outwards, hence they do not appear

in the above equality. Now it is easy to see that the critical points of
π|F−1(δ)∩ ˚

Bn+1
ε

are exactly the zeros of Hδ = (F − δ, ∂F
∂x1

, . . . , ∂F
∂xn

). A

determinant computation shows that the pj ’s are non-degenerate zeros
of Hδ and that:

(−1)λj = −sign π(pj)
n+1 × sign(−δ)n+1 × sign det[DHδ(pj)].

Thus we obtain:

χ
(
F−1(δ) ∩Bn+1

ε ∩ {t ≥ 0})− χ
(
F−1(δ) ∩Bn+1

ε ∩ {t ≤ 0}) =
−

k∑
j=1

sign π(pj)
n+1 × (−1)λj =

−sign(−δ)n+1
k∑

j=1

sign det[DHδ(pj)] =
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−sign(−δ)n+1
(
degree of Hδ

|Hδ| : S
n
ε → Sn

)
=

−sign(−δ)n+1Ind(H, 0).

The last equality is explained by the fact that the maps Hδ

|Hδ| and H
|H|

are homotopic if δ is small enough. �

Corollary 3.2. If n is even, then we have:

χ
(
f−1
t (0) ∩Bn

ε

)
= 1− Ind(∇f, 0),

χ({ft ≥ 0} ∩Bn
ε )− χ({ft ≤ 0} ∩Bn

ε ) = Ind(∇F, 0) + sign(t) Ind(H, 0).

If n is odd, then we have:

χ
(
f−1
t (0) ∩Bn

ε

)
= 1− Ind(∇F, 0)− sign(t) Ind(H, 0),

χ({ft ≥ 0} ∩Bn
ε )− χ({ft ≤ 0} ∩Bn

ε ) = Ind(∇f, 0).

Proof. By a deformation argument, we have for δ > 0:

F−1(δ) ∩ {t ≥ 0} ∩Bn+1
ε � {F ≥ 0} ∩ {t ≥ 0} ∩ Sn

ε �
{F ≥ 0} ∩ {t = δ} ∩Bn+1

ε ,

where � means homeomorphic to.

Similarly, we can write:

F−1(δ) ∩ {t ≤ 0} ∩Bn+1
ε � {F ≥ 0} ∩ {t = −δ} ∩Bn+1

ε ,

F−1(−δ) ∩ {t ≥ 0} ∩Bn+1
ε � {F ≤ 0} ∩ {t = δ} ∩Bn+1

ε ,

F−1(−δ) ∩ {t ≤ 0} ∩Bn+1
ε � {F ≤ 0} ∩ {t = −δ} ∩Bn+1

ε .

By Khimshiashvili’s formula, we get:

χ
(
F−1(δ) ∩Bn+1

ε

)
= 1 + (−1)nInd(∇F, 0),

χ
(
F−1(−δ) ∩Bn+1

ε

)
= 1− Ind(∇F, 0),



Topology and geometry of real singularities 17

χ
(
F−1(δ) ∩Bn+1

ε ∩ {t = 0}) = 1 + (−1)n−1Ind(∇f, 0),

χ
(
F−1(−δ) ∩Bn+1

ε ∩ {t = 0}) = 1− Ind(∇f, 0).

By the Mayer-Vietoris sequence, we have:

χ
(
F−1(δ) ∩Bn+1

ε

)
+ χ

(
F−1(δ) ∩Bn+1

ε ∩ {t = 0}) =
χ
(
F−1(δ) ∩ {t ≥ 0} ∩Bn+1

ε

)
+ χ

(
F−1(δ) ∩ {t ≤ 0} ∩Bn+1

ε

)
=

2 + (−1)nInd(∇F, 0) + (−1)n−1Ind(∇f, 0),

and:

χ
(
F−1(−δ) ∩Bn+1

ε

)
+ χ

(
F−1(−δ) ∩Bn+1

ε ∩ {t = 0}) =
χ
(
F−1(−δ) ∩ {t ≥ 0} ∩Bn+1

ε

)
+ χ

(
F−1(−δ) ∩ {t ≤ 0} ∩Bn+1

ε

)
=

2− Ind(∇F, 0)− Ind(∇f, 0).

Applying the previous theorem, we get:

χ
({F ≥ 0} ∩ {t = δ} ∩Bn+1

ε

)
= χ

(
F−1(δ) ∩ {t ≥ 0} ∩Bn+1

ε

)
=

1 +
(−1)n

2

(
Ind(∇F, 0)− Ind(∇f, 0) + Ind(H, 0)

)
.

Similarly, we have:

χ
({F ≥ 0} ∩ {t = −δ} ∩Bn+1

ε

)
=

1 +
(−1)n

2

(
Ind(∇F, 0)− Ind(∇f, 0)− Ind(H, 0)

)
,

χ
({F ≤ 0} ∩ {t = δ} ∩Bn+1

ε

)
=

1− 1

2

(
Ind(∇F, 0) + Ind(∇f, 0) + Ind(H, 0)

)
,

χ
({F ≤ 0} ∩ {t = −δ} ∩Bn+1

ε

)
=

1− 1

2
(Ind(∇F, 0) + Ind(∇f, 0)− Ind(H, 0)

)
.

We conclude with:

χ(Bn
ε ) = 1 = χ({ft ≥ 0} ∩Bn

ε ) + χ({ft ≤ 0} ∩Bn
ε )− χ({ft = 0} ∩Bn

ε ).

�
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Example: Let f(x, y) = x2− y3 and let F (t, x, y) = x2− y3− ty. If t > 0
then:

χ
(
f−1
t (0) ∩Bn

ε

)
= 1 and χ({ft ≥ 0} ∩Bn

ε )− χ({ft ≤ 0} ∩Bn
ε ) = 0.

If t < 0 then:

χ
(
f−1
t (0) ∩Bn

ε

)
= 1 and χ({ft ≥ 0} ∩Bn

ε )− χ({ft ≤ 0} ∩Bn
ε ) = −2.

Let us check that the above formulas hold in this example. We
have ∇f(x, y) = (2x,−3y2), hence Ind(∇f, 0) = 0. Let us compute
Ind(∇F, 0). We have ∇F (t, x, y) = (−y, 2x,−3y2 − t). The matrix of
the differential of ∇F is:

D(∇F )(t, x, y) =

⎛
⎝ 0 0 −1

0 2 0
−1 0 −6y

⎞
⎠ .

It is easy to see that ∇F−1(0, 0, ε) = (−ε, 0, 0) and that

det[D(∇F )(−ε, 0, 0)] < 0.

This implies that Ind(∇F, 0) = −1. Let us compute now Ind(H, 0). We
have H(t, x, y) = (x2 − y3 − ty, 2x,−3y2 − t) and

DH(t, x, y) =

⎛
⎝ −y 2x −3y2 − t

0 2 0
−1 0 −6y

⎞
⎠ .

Let us search for the preimages of (0, 0, ε) where ε > 0. If (t, x, y) is
such a preimage, then x = 0, y3 + ty = y(y2 + t) = 0 and 3y2 + t = −ε.
If y2 + t = 0 then 3y2 − y2 = 2y2 = −ε, which is impossible. Therefore
y = 0 and t = −ε. It is easy to see that DH(−ε, 0, 0) = 2ε > 0. We
conclude that Ind(H, 0) = +1. Applying Fukui’s formula, we recover the
above values for χ

(
f−1
t (0)∩Bn

ε

)
and χ({ft ≥ 0}∩Bn

ε )−χ({ft ≤ 0}∩Bn
ε ).
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3.4. Applications to map-germs with an isolated critical
point

Let ψ = (f1, . . . , fk) : (Rn, 0) → (Rk, 0), 2 ≤ k ≤ n, be a real
analytic map-germ with an isolated critical point at the origin. This
means that 0 is isolated in

Σ(ψ) = {x ∈ Rn | rank(∇f1(x), . . . ,∇fk(x)) < k}.
This implies that for any l ∈ {1, . . . , k} and for any l-tuple (i1, . . . , il)
of pairwise distinct elements of {1, . . . , k}, the mapping (fi1 , . . . , fil) :
(Rn, 0) → (Rl, 0) has an isolated critical point at the origin as well, for
otherwise 0 would not be isolated in Σ(ψ). Let φ = (f1, . . . , fk−1) :
(Rn, 0) → (Rk−1, 0). The following result was proved by Araújo dos
Santos, Dreibelbis and the author [7].

Proposition 3.1. For 0 � |δ| � ε � 1, the following holds:

(i) if n is even, we have:

χ
(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
= 1− Ind(∇f1, 0);

(ii) if n is odd, we have Ind(∇f1, 0) = 0 and:

χ
(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
= 1.

Proof. Applying Morse theory for manifolds with boundary to the
function fk|φ−1(δ)∩Bn

ε
, we have:

χ
(
φ−1(δ) ∩ {fk ≥ 0} ∩Bn

ε

)− χ
(
φ−1(δ) ∩ f−1

k (0) ∩Bn
ε

)
= 0,

because fk|φ−1(δ) has no critical point as Σ(ψ) = {0}, and because the
gradient vector field ∇fk|φ−1(δ)∩Bn

ε
points outwards at the critical points

of fk|φ−1(δ)∩Sn−1
ε

lying in {fk > 0}. Similarly, we have:

χ
(
φ−1(δ) ∩ {fk ≤ 0} ∩Bn

ε

)− χ
(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
= 0.

Summing these two equalities and using the Mayer-Vietoris sequence,
we obtain that:

χ
(
φ−1(δ) ∩Bn

ε

)
= χ

(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
.

Applying this procedure k − 1 times, we obtain that:

χ
(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
= χ

(
f1

−1(α1) ∩Bn
ε

)
,

where α1 is a small regular value of f1.
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By Khimshiashvili’s formula, we know that:

χ
(
f1

−1(α1) ∩Bn
ε

)
= 1− sign(−α1)

nInd(∇f1, 0).

Hence, if n is even, we find that:

χ
(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
= 1− Ind(∇f1, 0).

If n is odd, just changing α1 by −α1, we get that Ind(∇f1, 0) = 0
and χ

(
φ−1(δ) ∩ fk

−1(0) ∩Bn
ε

)
= 1. �

Corollary 3.3. Let γ be a small regular value of ψ. If n is even,
we have:

χ
(
ψ−1(γ) ∩Bn

ε

)
= 1− Ind(∇f1, 0) = · · · = 1− Ind(∇fk, 0),

and Ind(∇f1, 0) = · · · = Ind(∇fk, 0). If n is odd, we have Ind(∇f1, 0) =
· · · = Ind(∇fk, 0) = 0 and χ

(
ψ−1(γ) ∩Bn

ε

)
= 1.

3.5. Real versions of the Lê-Greuel formula

In the previous sections, we studied map-germs from (Rn, 0) to
(Rk, 0) when k ∈ {1, n} or when 2 ≤ k ≤ n and the map-germ has
an isolated critical point at the origin. Here we will investigate the
general case.

Let 1 ≤ k < n and let f = (f1, . . . , fk) : (Rn, 0) → (Rk, 0) be an
analytic map-germ such that 0 is an isolated singular point of f−1(0).
This means that 0 is isolated in {x ∈ Rn | rank[Df(x)] < k} ∩ f−1(0).
Let g : (Rn, 0) → (R, 0) be an analytic function-germ. Let I be the ideal
in ORn,0, the algebra of analytic function-germs at the origin, generated

by f1, . . . , fk and the minors ∂(f1,...,fk,g)
∂(xi1 ,...,xik+1

) and let AR =
ORn,0

I . We will

denote by Cε
δ the real Milnor fibre f−1(δ) ∩Bn

ε , 0 < |δ| � ε � 1.
The following theorem appeared in [19].

Theorem 3.4. If dimRAR < +∞ then we have:

χ(Cε
δ ∩ {g ≥ α})− χ(Cε

δ ∩ {g ≤ α}) ≡
χ(Cε

δ )− χ(Cε
δ ∩ {g = α}) ≡ dimRAR mod 2,

where (δ, α) is a regular value of (f, g) such that 0 ≤ |δ| � |ε| � 1.

Proof. We pertub g in g̃ such that g̃|Cε
δ
is Morse. By Morse theory,

we have:

χ(Cε
δ ∩ {g ≥ α})− χ(Cε

δ ∩ {g = α}) =
#{critical points of g̃|Cε

δ
such that g̃ > α} mod 2,
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χ(Cε
δ ∩ {g ≤ α})− χ(Cε

δ ∩ {g = α}) =
#{critical points of g̃|Cε

δ
such that g̃ < α} mod 2.

Hence we find that:

χ(Cε
δ ∩ {g ≥ α})− χ(Cε

δ ∩ {g ≤ α}) =
#{critical points of g̃|Cε

δ
} mod 2.

By intersection theory, the right-hand side of this last equality is equal
to dimRAR mod 2. �

Remark 3.1. In the complex case, the Lê-Greuel formula ([34],
[41]) states that:

μ(f) + μ(f, g) = dimCAC,

where μ(f) and μ(f, g) are the Milnor numbers of f and (f, g) and AC

is defined as in the real case.

The natural question that arises after this theorem is to ask if it is
possible to get rid of the mod2 in the equality, namely to express:

χ(Cε
δ ∩ {g ≥ α})− χ(Cε

δ ∩ {g ≤ α}),

or:

χ(Cε
δ )± χ(Cε

δ ∩ {g = α}),
in terms of the signature of a bilinear symmetric form defined on AR.
In general, as far as we know, this is still unknown and the question
remains open. However, in some cases, the problem is solved. The
strategy used is to find n − k analytic function-germs such that I =
〈f, . . . , fk;m1, . . . ,mn−k〉 and to relate:

χ(Cε
δ ∩ {g ≥ α})− χ(Cε

δ ∩ {g ≤ α}),

or:

χ(Cε
δ )± χ(Cε

δ ∩ {g = α}),
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to the Poincaré-Hopf index at 0 of the following map H:

H : (Rn, 0) → (Rn, 0)
x �→ (f1(x), . . . , fk(x);m1(x), . . . ,mn−k(x)).

Let us list the cases where this strategy works. If k = n− 1 then f−1(0)

is a curve (or a point). Let H = (f1, . . . , fn−1,
∂(g,f1,...,fn−1)

∂(x1,...,xn)
). Then we

have:

#
{
branches of f−1(0) | g > 0

}−#
{
branches of f−1(0) | g < 0

}
=

2(−1)n−1Ind(H, 0).

Here a branch is a connected component of f−1(0) \ {0}. This equality
was proved in some cases by Aoki, Fukuda, Nishimura and Sun ([2], [3],
[4]) and in full generality by Szafraniec [50].

If k = 1 then f is a function-germ with an isolated critical point at
the origin. As already explained above, when g = x1, Fukui [31] proved
that:

χ(Cε
δ ∩ {x1 ≥ 0})− χ(Cε

δ ∩ {x1 ≤ 0}) = −sign(−δ)nInd(H, 0),

where H = (f, ∂f
∂x2

, . . . , ∂f
∂xn

). Note that (δ, 0) is always a regular value

of (f, x1).
In [16], when n = 2, 4 or 8, we were able to construct explicitly a

map H = (f,m2, . . . ,mn) such that:

χ(Cε
δ ∩ {g ≥ α})− χ(Cε

δ ∩ {g ≤ α}) = −Ind(H, 0).

The main idea that we used there is that the fibre f−1(δ) is parallelizable
(like the spheres S1 ⊂ R2, S3 ⊂ R4 and S7 ⊂ R8). This last formula was
extended by Fukui and Khovanskii in [32]. They assume that g satisfies
the following Condition (P ): there exist C∞ vector fields v2, . . . , vn
defined in a neighborhood U of the origin such that:

(1) v2(x), . . . , vn(x) span Txg
−1(g(x)) whenever ∇g(x) �= 0,

(2) det[∇g(x), v2(x), . . . , vn(x)] > 0.

Let H be defined by:

H : (Rn, 0) → (Rn, 0)
x �→ (f(x), v1f(x), . . . , vnf(x)).

If 0 is isolated in H−1(0), then we have:

χ(Cε
δ ∩ {g ≥ 0})− χ(Cε

δ ∩ {g ≤ 0}) = −sign(−δ)nInd(H, 0),
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if (δ, 0) is a regular value of (f, g). If n is even, we can replace (δ, 0) with
a regular value (δ, α) where 0 ≤ |α| � |δ| � ε. Furthermore, they gave
situations where Condition (P ) is satisfied:

(1) n = 2, 4 or 8 (see [16]),

(2) when ∂g
∂x1

≥ 0,

(3) if ∇g−1(0) ∩Bn
ε ⊂ {0} then Condition (P ) is satisfied if:

(a) n = 2, 4 or 8,
(b) or n is even and n /∈ {2, 4, 8} and Ind(∇g, 0) is even,
(c) or n is odd and Ind(∇g, 0) = 0.

In [24], we continued this work and made some improvements.

3.6. Global versions

In this section, we briefly report on global versions of the previous
results.

Let F = (F1, . . . , Fk) : Rn → Rk be a polynomial map and let
W = F−1(0). Let G1, . . . , Gl : R

n → R be polynomials. The problem is
to compute the Euler-Poincaré characteristic of W ∩{G1?10, . . . , Gl?l0}
where ?j ∈ {<,≤,≥, >} for j ∈ {1, . . . , l}, i.e. to express it as a mapping
degree or a signature.

If the dimension of the algebra A = R[x1,...,xn]
(F1,...,Fk)

is finite, then W is a

finite collection of points. It is possible to express

#W ∩ {G1?10, . . . , Gl?l0},

in terms of signatures of bilinear symmetric forms defined on A (see [45]
and [9]).

In the case where W is a compact algebraic set, Szafraniec [49, 52]
and Bruce [13] discovered a signature formula for χ(W ). In [21], we
extended it to semi-algebraic sets of the form W ∩ {x1?10, . . . , xk?k0}
where W is compact, k ∈ {1, . . . , n} and ?j ∈ {≤,≥}.

The Bruce-Szafraniec method does not work if W is not compact.
In [51, 53], Szafraniec proved several degree or signature formulas when
F = (F1, . . . , Fk) with 1 ≤ k ≤ n − 1 and W = F−1(0) is a smooth
(n − k)-dimensional manifold (not necessarily compact). In [15, 18] we
gave formulas for some semi-algebraic sets of the form W ∩{G?0}, where
? ∈ {≤,≥}, and of the form W ∩ {G1?10, G2?20}, where ?1 and ?2
lie in {≤,≥}. In [17, 22] we gave generalizations in some cases where
W admits isolated singularities. However, in general when W is not
compact, we do not have any signature formula neither for χ(W ) nor for
χ(W ∩ {G1?10, . . . , Gl?l0}). This seems to be a very difficult problem.
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§4. Results on the topology and geometry of semi-algebraic
sets

In this chapter, we recall briefly the definition and the main proper-
ties of semi-algebraic sets and semi-algebraic maps. Then we give results
on the topology and the geometry of semi-algebraic sets, that are singu-
lar versions of the results presented in Chapter 2. Our main references
for the results of the first section of this chapter are [10] and [11].

4.1. Definitions and important properties

Definition 4.1. A subset V ⊂ Rn is called semi-algebraic if its
admits a representation of the form:

V =

s⋃
i=1

rj⋂
j=1

{x ∈ Rn | Pi,j(x)σi,j0},

where, for each i = 1, . . . , s and j = 1, . . . , rj:

σi,j ∈ {<,=, >} and Pi,j ∈ R[x1, . . . , xn].

Examples:

• Real algebraic sets are semi-algebraic.
• A semi-algebraic subset of R is either empty or a finite union
of intervals (eventually reduced to a point or unbounded).

Let us list some important properties of semi-algebraic sets.

Proposition 4.1. (1) The family of semi-algebraic sets is clo-
sed with respect to the set-theoretic operations of finite union,
finite intersection and complementation.

(2) A semi-algebraic set has a finite number of connected compo-
nents and is locally connected.

(3) (The Tarski-Seidenberg theorem) The projection of a semi-alge-
braic set is semi-algebraic.

(4) The closure X̄ of a semi-algebraic set X, its interior X̊ and its

frontier X̄ \ X̊ are semi-algebraic.

Definition 4.2. Let X ⊂ Rn and Y ⊂ Rm be semi-algebraic sets.
A map f : X → Y is called semi-algebraic if its graph is a semi-algebraic
set of Rn+m.

Proposition 4.2. Let f : X → Y be a semi-algebraic map. Then
the image f(X) ⊂ Y is a semi-algebraic set.
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Theorem 4.1. (Hardt’s theorem) Let X ⊂ Rn and Y ⊂ Rm be
two semi-algebraic sets and let f : X → Y be a semi-algebraic con-
tinuous map. There exists a finite partition of Y into semi-algebraic
sets Y = �r

j=1Yj such that f is semi-algebraically trivial over each Yj.
This means that there exists a semi-algebraic set Fj and a semi-algebraic
homeomorphism hj : f

−1(Yj) → Yj ×Fj such that the following diagram
commutes:

hj

f−1(Yj) ⊂ X −→ Yj × Fj

f ↘ ↙ projection

Yj ⊂ Y

Moreover if Z1, . . . , Zq are finitely many semi-algebraic subsets of X, we
can ask that each trivialization hj : f

−1(Yj) → Yj×Fj is compatible with
all the Zk’s.

Theorem 4.2. Every semi-algebraic set admits a semi-algebraic
and finite Whitney stratification. This means that if X ⊂ Rn is a semi-
algebraic set then there exists a finite semi-algebraic partition of X, X =
�l
j=1Sj, such that each Sj is a smooth semi-algebraic manifold and this

partition is a Whitney stratification of X.

We end this section with an important result on Whitney stratified
sets (not necessarily semi-algebraic). Let X ⊂ Rn be a closed Whitney
stratified set and let f : Rn → Rm be a smooth map such that:

(1) f|X is proper,
(2) for each stratum S of X, the restriction f|S : S → Rm is a

submersion.

Definition 4.3. We call f|X a proper stratified submersion.

Theorem 4.3. (Thom’s first isotopy lemma) Let f|X : X → Rm

be a proper stratified submersion. Then f|X is trivial i.e. there exists a

homeomorphism h : X → Rm × f−1
|X (0) such that the following diagram

commutes:
h

X −→ Rm × f−1
|X (0)

f|X ↘ ↙ projection

Rm

4.2. Integration with respect to the Euler characteristic
and Poincaré-Hopf type theorems

In this section, we present Viro’s method of integration with respect
to the Euler characteristic with compact support (see [54]). We derive a
Morse type theorem for semi-algebraic functions on semi-algebraic sets.
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We first give the definition of the Euler characteristic with compact
support, denoted by χc. Our definition is specific to the semi-algebraic
case and there are more general definitions. IfX ⊂ Rn is a semi-algebraic
set then it is possible to write it in the following way (see [11], Theorem
2.3.6):

X = �l
j=1Cj ,

where Cj is semi-algebraically homeomorphic to ]− 1, 1[dj (Cj is called

a cell of dimension dj). We set χc(X) =
∑l

j=1(−1)dj .

Remark 4.1. This definition of χc does not depend on the cell
decomposition.

Proposition 4.3. • If X is compact, then χc(X) = χ(X),
• χc is multiplicative: χc(X × Y ) = χc(X)× χc(Y ),
• χc is additive: χc(X � Y ) = χc(X) + χc(Y ),
• χc is invariant by (semi-algebraic) homeomorphism.

Examples: χc({∗}) = 1, χc(R) = −1, χc([0,+∞[) = 0, χc(R
2) = 1,

χ({(x, y) ∈ R2 | x > 0, y > 0}) = 1 because the open first quadrant
is the product ]0,+∞[×]0,+∞[.

Remark 4.2. The Euler characteristic with compact support is not
invariant by homotopy.

Definition 4.4. Let X ⊂ Rnbe a semi-algebraic set. A constructible
function ϕ : X → Z is a Z-valued function that can be written as a finite
sum:

ϕ =
∑
i∈I

mi1Xi ,

where Xi is a semi-algebraic subset of X.

The sum and the product of two constructible functions on X are
again constructible. The set of constructible functions on X is thus a
commutative ring, denoted by F (X).

Definition 4.5. If ϕ ∈ F (X) then we set:

∫
X

ϕdχc =
∑
i∈I

miχc(Xi),

where ϕ =
∑

i∈I mi1Xi . The integral
∫
X
ϕdχc is called the Euler integral

of ϕ.
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Definition 4.6. Let f : X → Y be a continuous semi-algebraic map
and let ϕ : X → Z be a constructible function. The pushforward f∗ϕ of
ϕ along f is the function f∗ϕ : Y → Z defined by:

f∗ϕ(y) =
∫
f−1(y)

ϕdχc.

Proposition 4.4. The pushforward of a constructible function is a
constructible function.

Proof. Let us write ϕ =
∑

i∈I mi1Xi . By Hardt’s theorem, there
is a finite semi-algebraic partition Y = �j∈JYj such that, over each Yj ,
there is a semi-algebraic trivialization of f compatible with the Xi’s.
Hence, since for any y ∈ Y , f∗ϕ(y) is equal to

∑
i∈I miχc(Xi ∩ f−1(y)),

we see that f∗ϕ is constant on each Yj . �

Theorem 4.4. (Fubini’s theorem) Let f : X → Y be a continuous
semi-algebraic map and let ϕ be a constructible function on X. Then we
have: ∫

Y

f∗ϕdχc =

∫
X

ϕdχc.

Proof. We keep the notations of the previous proof. Let j ∈ J
and yj ∈ Yj . Then, for every i ∈ I, f−1(Yj) ∩ Xi is semi-algebraically
homeomorphic to Yj × (f−1(yj) ∩Xi). Therefore, we have:∫

Y

f∗ϕdχc =
∑
j∈J

χc(Yj)f∗ϕ(yj) =
∑
j∈J

χc(Yj)
∑
i∈I

miχc(f
−1(yj) ∩Xi) =

∑
i∈I

mi

∑
j∈J

χc(Yj)χc(f
−1(yj) ∩Xi) =

∑
i∈I

mi

∑
j∈J

χc(f
−1(Yj) ∩Xi) =

∑
i∈I

miχc(Xi) =

∫
X

ϕdχc.

�

Let us give a nice application of this theory. Let X ⊂ Rn be a
closed semi-algebraic set equipped with a finite semi-algebraic Whitney
stratification: X = �α∈ΛSα. Let f : Rn → R be a C2-semi-algebraic
function.

Definition 4.7. A point p ∈ X is a critical point of f|X if it is a
critical point of f|S(p), where S(p) is the stratum that contains p.

Definition 4.8. If p is an isolated critical point of f|X , we define
the index of f at p by:

ind(f,X, p) = 1− χ
(
X ∩ {f = f(p)− δ} ∩Bn

ε (p)
)
,
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where 0 < δ � ε � 1.

Theorem 4.5. If X is compact and f|X has a finite number of
critical points p1, . . . , pk then:

χ(X) =
k∑

i=1

ind(f,X, pi).

Proof. For all x ∈ X, let ϕ(x) = χc

(
X ∩ f−1(x−) ∩ Bn

ε (x)
)
where

x− is a regular value of f close to f(x) with x− ≤ f(x). Note that ϕ is
constructible because ϕ(x) = 1 if x /∈ {p1, . . . , pk}.

Applying Fubini’s theorem, we get:∫
X

ϕ(x)dχc =

∫
R

(∫
f−1(y)

ϕ(x)dχc

)
dχc.

For any y ∈ R, let y− be a regular value of f|X close to y with y− ≤ y.

Let us denote by q1, . . . , qs the critical points of f|X lying in f−1(y). We
have:

χc

(
X ∩ f−1(y−)

)
= χc

(
X ∩ f−1(y−) \ ∪s

i=1B
n
ε (qi)

)
+

s∑
i=1

χc

(
X ∩ f−1(y−) ∩Bn

ε (qi)
)
=

χc

(
X ∩ f−1(y) \ ∪s

i=1B
n
ε (qi)

)
+

s∑
i=1

ϕ(qi) =

χc

(
X ∩ f−1(y) \ {q1, . . . , qs}

)
+

s∑
i=1

ϕ(qi) =

∫
X∩f−1(y)\{q1,...,qs} ϕ(x)dχc(x) +

∑s
i=1 ϕ(qi) =

∫
f−1(y)

ϕ(x)dχc(x).

Since X is compact, f(X) is a compact subset of R. Let us choose ]A,B]
such that f(X) �]A,B]. Let α1 < α2 < · · · < αl be the critical values
of f . Let us write:

]A,B] =]α0, α1] ∪ ]α1, α2] ∪ . . .∪ ]αl, αl+1].

Since χc(]a, b]) = 0 and f|X∩]αj ,αj+1[ is a trivial fibration, we obtain that:∫
R

( ∫
f−1(y)

ϕ(x)dχc

)
dχc =

∫
]A,B]

χc

(
X ∩ f−1(y−)

)
dχc = 0,

and so, ∫
X

ϕ(x)dχc = 0.
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But: ∫
X

ϕ(x)dχc = χc(X \ {p1, . . . , pk}) +
k∑

i=1

1− ind(f,X, pi),

and we find that:

0 = χ(X)−
k∑

i=1

ind(f,X, pi).

�

Examples:

In a recent paper [26], we generalized this result to the case of closed
semi-algebraic sets. Let us present these results now. Let X ⊂ Rn be a
closed semi-algebraic set equipped with a semi-algebraic finite Whitney
stratification (Sα)α∈Λ. Let f : Rn → R be a C2 semi-algebraic function
such that f|X : X → R has a finite number of critical points p1, . . . , pk.

Definition 4.9. Let ∗ ∈ {≤,=,≥}. We define Λ∗
f by:

Λ∗
f =

{
α ∈ R | β �→ χ

(
Lk∞(X ∩ {f ∗ β})) is not constant

in a neighborhood of α
}
.

Here Lk∞(Y ) = Y ∩ Sn−1
R , R � 1, for any semi-algebraic set Y of

Rn.

Lemma 4.1. The sets Λ≤
f , Λ

=
f and Λ≥

f are finite.

We can write Λ≤
f = {a1, . . . , ar} where a1 < a2 < . . . < ar and:

R \ Λ≤
f =]−∞, a1[ ∪ ]a1, a2[ ∪ · · · ∪ ]ar−1, ar[ ∪ ]ar,+∞[.

On each connected component of R \Λ≤
f , the function β �→ χ

(
Lk∞(X ∩

{f ≤ β}) is constant. For each j ∈ {0, . . . , r}, let a+j be an element of

]aj , aj+1[ where a0 = −∞ and ar+1 = +∞.

Theorem 4.6. We have:

χ(X) =
k∑

i=1

ind(f,X, pi) +
r∑

j=0

χ
(
Lk∞(X ∩ {f ≤ a+j })

)
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−
r∑

j=1

χ
(
Lk∞(X ∩ {f ≤ aj})

)
.

Similarly, we can write Λ≥
f = {b1, . . . , bs} with b1 < b2 < · · · < bs

and:

R \ Λ≥
f =]−∞, b1[ ∪ ]b1, b2[ ∪ · · · ∪ ]bs−1, bs[ ∪ ]bs,+∞[.

For each i ∈ {0, . . . , s}, let b+i be an element in ]bi, bi+1[ with b0 = −∞
and bs+1 = +∞.

Theorem 4.7. We have:

χ(X) =
k∑

i=1

ind(−f,X, pi) +
s∑

j=0

χ
(
Lk∞(X ∩ {f ≥ b+j })

)

−
s∑

j=1

χ
(
Lk∞(X ∩ {f ≥ bj})

)
.

Let us write Λ=
f = {c1, . . . , ct} with c1 < c2 < . . . < ct and:

R \ Λ=
f =]−∞, c1[ ∪ ]c1, c2[ ∪ · · · ∪ ]ct−1, ct[ ∪ ]ct,+∞[.

For each i ∈ {0, . . . , t}, let c+i be an element in ]ci, ci+1[.

Theorem 4.8. We have:

2χ(X)− χ
(
Lk∞(X)

)
=

k∑
i=1

ind(f,X, pi) +

k∑
i=1

ind(−f,X, pi)+

t∑
j=0

χ
(
Lk∞(X ∩ {f = c+j })

)− t∑
j=1

χ
(
Lk∞(X ∩ {f = cj})

)
.

WhenX = Rn, we find global versions of the Khimshiashvili formula
and the Arnol’d-Wall formula presented in Chapter 3.

Theorem 4.9. We have:

1 = deg∞∇f +
r∑

j=0

χ
(
Lk∞({f ≤ a+j })

)− r∑
j=1

χ(Lk∞({f ≤ aj})
)
=

(−1)ndeg∞∇f +
s∑

j=0

χ
(
Lk∞({f ≥ b+j })

)− s∑
j=1

χ
(
Lk∞({f ≥ bj})

)
.
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If n is even then we have:

2 = 2deg∞∇f +
t∑

j=0

χ
(
Lk∞({f = c+j })

)− t∑
j=1

χ
(
Lk∞({f = cj})

)
.

Here deg∞∇f is the degree of the map ∇f
|∇f | : S

n−1
R → Sn−1 where

Sn−1
R is a sufficiently big sphere.

Remark 4.3. The third equality of this last theorem was discovered
by Sekalski [47] for n = 2.

4.3. Gauss-Bonnet type theorems

In Chapter 2 of this mini-course, we gave a Gauss-Bonnet formula
for a smooth compact hypersurface M ⊂ Rn. Here we present a version
for smooth submanifolds of Rn and afterwards we give semi-algebraic
versions of the Gauss-Bonnet theorem.

4.4. Smooth case

Let M ⊂ Rn be a smooth submanifold of dimension d (1 ≤ d ≤
n − 1). Let x ∈ M and let Sx denote the unit sphere in (TxM)⊥. Let
v ∈ Sx and let IIx,v be the second fundamental form of M at x along
the vector v. It is defined as follows:

IIx,v(x1, x2) = −〈DV (x)(x1), x2〉,
where:

• V is a vector field in Rn normal to M such that V (x) = v,
• x1, x2 ∈ TxM .

The form IIx,v is bilinear and symmetric.

Definition 4.10. For i ∈ {0, . . . , d} and for x ∈ M , we define
Ki(x) by:

Ki(x) =

∫
Sx

σi(IIx,v)dv,

where σi is the i-th elementary symmetric function of the eigenvalues of
IIx,v. We call Ki the i-th Lipschitz-Killing curvature.

Remark 4.4. • If i is odd then Ki(x) = 0.
• The quantity 1

sn−d+i−1
Ki is intrinsic (here sk is the volume of

Sk).

The following Gauss-Bonnet theorem is due to Fenchel [29] and Al-
lendoerfer [1].
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Theorem 4.10. (Gauss-Bonnet theorem) If M is compact then:

χ(M) =
1

sn−1

∫
M

Kd(x)dx.

Remark 4.5. This theorem is trivial if M is odd-dimensional be-
cause both sides of the equality vanish.

The following theorem is due to Weyl [56].

Theorem 4.11. (Volume of the tube) If r > 0 is small enough,
then:

vol(Tubr(M)) =
d∑

i=0

1

n− d+ i

∫
M

Ki(x)dx · rn−d+i.

Here Tubr(M) is the tubular neighborhood of radius r around M .

Example: Let C ⊂ R3 be the circle centered at the origin and of radius
R. Then Tubr(C) is a torus. Applying the previous theorem, we obtain:

vol(Tubr(C)) = 1

3− 1

∫
C
vol(S1)dxr2 =

1

2
(2π)(2πR)r2.

Hence we recover the well-known result:

vol(Tubr(C)) = 2π2Rr2.

4.4.1. Exchange formulas In this subsection, we explain how to give
a topological proof of the Gauss-Bonnet theorem using Morse theory.

Let M ⊂ Rn be a smooth submanifold of dimension d (1 ≤ d ≤
n− 1). For almost all v ∈ Sn−1, the function v∗|M : M → R, x �→ 〈v, x〉
is a Morse function and hence admits isolated non-degenerate critical
points {pi}i∈I , with respective indices {λi}i∈I . Let U ⊂ M be a bounded
borelian set. We set μ(U, v) =

∑
i | pi∈U (−1)λi (this sum is finite since

U is bounded).
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The following proposition is proved in [40].

Proposition 4.5. (Exchange formula) We have:∫
U

Kd(x)dx =

∫
Sn−1

μ(U, v)dv.

As a corollary, we recover the above Gauss-Bonnet formula.

Corollary 4.1. If M is compact, then we have:∫
M

Kd(x)dx = sn−1χ(M).

4.4.2. Singular semi-algebraic case Let X ⊂ Rn be a closed semi-
algebraic set equipped with a finite and semi-algebraic Whitney strati-
fication: X = �α∈ΛSα.

Lemma 4.2. There exists a semi-algebraic set Γ1(X) ⊂ Sn−1 of
dimension strictly less than n − 1 such that if v /∈ Γ1(X), then v∗|X has

a finite number of critical points pv1, . . . , p
v
lv
.

Definition 4.11. Let U be a bounded borelian set of X. We set:

Λ0(X,U) =
1

sn−1

∫
Sn−1

∑
x∈U

ind(v∗,X, x)dv,

where ind(v∗,X, x) = 0 if x is not a critical point of v∗|X . The measure

Λ0(X,−) is called the Gauss-Bonnet measure.

The following results are due to Broecker and Kuppe [12] and Fu
[30].

Proposition 4.6. (1) (Gauss-Bonnet theorem) If X is com-
pact, then we have:

Λ0(X,X) = χ(X).

(2) The measure Λ0(X,−) is invariant by semi-algebraic isome-
tries.

Now we explain how to generalize the above Gauss-Bonnet theorem
when X is only closed (see [23] and [26]).

Lemma 4.3. There exists a semi-algebraic set Γ2(X) of Sn−1 of

dimension strictly less than n− 1 such that if v /∈ Γ2(X), Λ≥
v∗ = Λ≤

v∗ =
Λ=
v∗ = ∅.
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Corollary 4.2. If v /∈ Γ1(X) ∪ Γ2(X) then for all α ∈ R, we have:

χ
(
Lk∞(X ∩ {v∗ = α})) = 2χ(X)− χ

(
Lk∞(X)

)−
lv∑
i=1

ind(v∗,X, pi)−
lv∑
i=1

ind(−v∗,X, pi).

Proof. Apply Theorem 4.8. �

Let (KR)R>0 be an exhaustive family of compact sets of X, that is
a family (KR)R>0 of compact sets of X such that ∪R>0KR = X and
KR � KR′ if R ≤ R′. For every R > 0, we have:

Λ0(X,X ∩KR) =
1

sn−1

∫
Sn−1

∑
x∈X∩KR

ind(v∗,X, x)dv.

Moreover the following limit:

lim
R→+∞

∑
x∈X∩KR

ind(v∗,X, x),

is equal to
∑

x∈X ind(v∗,X, x), which is uniformly bounded by Hardt’s
theorem. Applying Lebesgue’s theorem, we obtain:

lim
R→+∞

Λ0(X,X ∩KR) =
1

sn−1

∫
Sn−1

lim
R→+∞

∑
x∈X∩KR

ind(v∗,X, x)dv =

1

sn−1

∫
Sn−1

∑
x∈X

ind(v∗,X, x)dv.

Definition 4.12. We set:

Λ0(X,X) = lim
R→+∞

Λ0(X,X ∩KR),

where (KR)R>0 is an exhaustive family of compact sets of X.

Theorem 4.12. If X is a closed semi-algebraic set then:

Λ0(X,X) = χ(X)− 1

2
χ
(
Lk∞(X)

)−
1

2sn−1

∫
Sn−1

χ
(
Lk∞(X ∩ {v∗ = 0}))dv.

Proof. We have:

Λ0(X,X) =
1

sn−1

∫
Sn−1

∑
x∈X

ind(v∗,X, x)dv =
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1

2sn−1

∫
Sn−1

∑
x∈X

ind(v∗,X, x) + ind(−v∗,X, x)dv =

1

2sn−1

∫
Sn−1

2χ(X)− χ
(
Lk∞(X)

)− χ
(
Lk∞(X ∩ {v∗ = 0}))dv,

by Corollary 4.2. �

If X is smooth of dimension d, 1 ≤ d ≤ n− 1, then:

Λ0(X,X) =
1

sn−1

∫
X

Kd(x)dx.

If d is even then χ
(
Lk∞(X)

)
= 0 because Lk∞(X) is a compact odd-

dimensional manifold. Furthermore, Lk∞(X ∩ {v∗ = 0}) is equal to
X ∩ {v∗ = 0} ∩ Sn−1

R where R � 1 ; it is thus the boundary of a com-
pact odd-dimensional manifold with boundary and therefore its Euler
characteristic is equal to 2χ(X ∩ {v∗ = 0} ∩ Bn

R), which is actually
2χ(X ∩ {v∗ = 0}). Hence, if d is even, the Gauss-Bonnet formula takes
the following form:

1

sn−1

∫
X

Kd(x)dx = χ(X)− 1

sn−1

∫
Sn−1

χ(X ∩ {v∗ = 0})dv.

Examples:

(1) Let V1 = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 − x2
3 − 1 = 0} be the

one-sheeted hyperboloid. We have
∫
V1

K2(x)dx = −4π
√
2.

(2) Let V2 = {(x1, x2, x3) ∈ R3 | x2
1 − x2

2 − x2
3 − 1 = 0} be the

two-sheeted hyperboloid. We have
∫
V2

K2(x)dx = 4π(2−√
2).

(3) Let V3 = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 − x3 = 0} be the elliptic
paraboloid. We have

∫
V3

K2(x)dx = 4π.

(4) Let V4 = {(x1, x2, x3) ∈ R3 | x2
1−x2

2−x3 = 0} be the hyperbolic
paraboloid. We have

∫
V4

K2(x)dx = −4π.

If d is odd then:

Λ0(X,X) =
1

sn−1

∫
X

Kd(x)dx = 0,

and,
χ(Lk∞(X ∩ {v∗ = 0}) = 0,

because Lk∞(X ∩ {v∗ = 0}) is an odd-dimensional compact manifold.
Furthermore for the same reasons as above, χ(X) = 1

2χ(Lk
∞(X)). So,

in case of an odd-dimensional closed semi-algebraic manifold, the above
Gauss-Bonnet theorem is trivial, as in the compact case. However, the
Euler characteristic of such a manifold is not necessarily zero and one
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can ask if it is possible to express it in terms of curvatures. This is
actually the aim of the following theorem that we proved in [25].

Theorem 4.13. Let X ⊂ Rn be a closed semi-algebraic set which
is a smooth submanifold of dimension d, 1 ≤ d ≤ n− 1. If d is even, we
have:

χ(X) =
1

sn−1

∫
X

Kd(x)dx+

d−2
2∑

i=0

lim
R→+∞

1

sn−d+2i−1bd−2iRd−2i

∫
X∩BR

K2idx,

where bi denotes the volume of the unit ball of dimension i. If d is odd,
we have:

χ(X) =

d−1
2∑

i=0

lim
R→+∞

1

sn−d+2i−1bd−2iRd−2i

∫
X∩BR

K2idx.

Examples:

• If d = 1 then X is a smooth semi-algebraic curve. The above
formula just states that the number of non-compact connected

components of X is equal to limR→+∞
length(X∩Bn

R)
2R .

• If X is of dimension 3, then the formula relates χ(X) to the
volume form and the scalar curvature K2. Namely, we have:

χ(X) = lim
R→+∞

1

sn−2b1R

∫
X∩BR

K2dx+ lim
R→+∞

vol(X ∩Bn
R)

b3R3
.

Let us give an application of this equality. If K2 > 0 then
χ(X) > 0 and χ(Lk∞(X)) > 0. If the link Lk∞(X) is ori-
entable then we can conclude that Lk∞(X) has at least one
connected component homeomorphic to S2.

Let us end with some remarks and questions.

(1) A version of Theorem 4.12 was proved by Dillen and Kuehnel
for submanifolds with finitely many cone-like ends in [14].

(2) A version of Theorem 4.13 was proved by Shiohama in [48] for
a class of riemaninan surfaces (i.e. d = 2).

(3) Is it possible to enlarge the class of riemannian manifolds for
which a similar formula is valid ?

(4) Is it possible to replace in Theorem 4.13 the distance on Rn

with the intrinsic distance on X, in order to get a fully intrinsic
formula ?
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