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Dynamics of topological defects in nonlinear field 
theories 

Robert L. Jerrard 

Abstract. 

We survey recent results that characterize the dynamics, in a cer­
tain asymptotic limit, of interfaces in certain semilinear hyperbolic 
equations, as well as vortex filaments in semilinear hyperbolic systems. 
This survey includes a lengthy discussion of heuristic considerations, 
together with some complete proofs in simple model cases. We also 
present some novel recent approaches to problem that geometric evo­
lution problem of timelike extremal submanifolds of Minkowski space, 
which governs the asymptotic dynamics of interfaces and vortex fila­
ments. 

§1. Introduction 

In this paper, we survey some recent results that establish links 
between certain semilinear hyperbolic equations, whose prototype is 

(1) 1 2 
Utt- flu+ 2 (1ul - l)u, 

E 
u: [0, oo) X lRn-+ JRk 

with n > k E {1, 2} and 0 < E « 1, and hyperbolic geometric evolution 
equations, exemplified by the problem 

(2) Minkowskian mean curvature = 0 

for ( timelike) submanifolds of codimension k in Minkowski space lR Hn. 

We will also survey some recent results about (2), which is of great 
interest in its own right. For a curve that sweeps out a (1 + 1 )-dimensional 
worldsheet, (2) is exactly the dynamical law associated to the celebrated 
Nambu-Goto action [51], [26]. 
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The links between the PDEs and the corresponding geometric prob­
lems can be stated, imprecisely, in several distinct but closely related 
ways. For example, 

• most level sets of suitable solutions of a PDE are close to a 
solution of the associated geometric problem. 

• for suitable solutions of a PDE, energy concentrates around a 
submanifold solving the associated geometric problem. 

• suitable solutions of a PDE exhibit an interface (in the scalar 
case k = 1) or a "vortex submanifold" (for k = 2) near a 
submanifold solving a geometric problem. 

The motivations for these questions come both from the large liter­
ature on parallel questions about elliptic and parabolic equations, and 
from certain problems arising in mathematical physics. These are dis­
cussed in the latter part of this introduction. 

Following that, Sections 2-4 discuss the asymptotic behaviour of 
interfaces in the scalar case of (1) and somewhat more general equa­
tions. The goal of this discussion is to make recent results of [35], [24], 
summarized in Section 3, accessible to people who do not have much 
prior knowledge of hyperbolic equations or (semi-) Riemannian geome­
try. Thus, Section 2 is devoted to heuristic arguments, and Section 4 
gives a complete and detailed proof of a simple model theorem 1, together 
with a discussion of modifications needed to this basic argument in or­
der to establish more satisfactory results. Many elements of the formal 
arguments of Section 2 reappear in the proofs of Section 4. 

In Section 5, we state results from [35], [18] describing dynamics of 
codimension 2 defects (sometimes called strings or vortex filaments) in 
~2-valued solutions of (1), as well as in a more complicated equation of 
the same general character called the Abelian Higgs model. The proofs 
of these results are discussed very briefly in Section 6. 

Section 7 discusses various aspects of the Minkowski extremal sur­
face problem (2). This is intended both to provide background to the 
results discussed in Sections 2-6, and also to survey recent some papers, 
including [6], [8], [36], [53], which suggest a number of interesting direc­
tions for future research. Finally, in Section 8 we describe some open 
problems. 

This paper is an expanded version of lectures presented by the au­
thor at a conference at the University of Hokkaido in July-August, 2012. 

1See Theorem 2. Although simple, this result is new, since it addresses a 
larger family of equations than is considered in [35], [24], see (8). 
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The author remains grateful for the invitation to a very stimulating and 
well-organized meeting. 

1.1. Background: elliptic and parabolic 

Elliptic versions of problems similar to the ones that we will study 
were first examined in the context of the calculus of variations, and char­
acterize the E---+ 0 limit, in the sense of r-convergence, of the sequence 
of functionals 

u E H 1 (D;JR) H EE(u) := r ~1Vul 2 + __!_(lul 2 -1) 2 
ln 2 2E 

for D c JRn, n ?: 2. These results (with the basic theory essentially 
established in [50], and further developed in papers such as [49], [64]) 
imply in particular that, roughly speaking, if uE E H 1 (D) satisfies 

(3) 1 2 
-D..u€ + 2(lu€1 - 1)u€ = 0, 

E 

and if in addition u€ is a minimizer of E€, subject to suitable boundary 
conditions, then (after possibly passing to a subsequence) u€ converges 
in L 1 to a limiting function u E BV(D) such that lui = 1 a.e. and 
r := a{x E D : u(x) = 1} is an area-minimizing hypersurface in D, at 
least in a weak sense. In particular, r (weakly) satisfies 

(4) mean curvature = 0. 

Refined results related to the r-convergence of E€ continue to be a topic 
of current interest, with important contributions in [30], [57]. A differ­
ent family of arguments (see for example [55], [20]) employ Liapunov­
Schmidt reduction and related arguments, relying ultimately on the im­
plicit function theorem and control of the spectrum of some linearized 
operator, to build solutions of (3) that are close to a given nondegen­
erate minimal surface ( 4). These arguments yield existence results that 
give very precise descriptions of the solutions that are constructed. 

In a different direction, results in [40], [1] consider vector-valued 
functions u E H 1 (D;JR2 ), D c lRn,n?: 3, and establish r-convergence 
results characterizing the asymptotic behaviour of the functionals E€ 
as E ---+ 0. These results imply, for example, that for suitable energy­
minimizing sequences of JR2-valued solutions of (3), the energy concen­
trates, as E ---+ 0, around a codimension 2 surface r satisfying (4), at 
least in a weak sense. A different approach to this question relies on 
PDE techniques and therefore, for the strongest results (see for example 
[10]), applies to arbitrary sequences of solutions (not necessarily energy­
minimizing) with appropriate uniform energy bounds. 
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There is a similarly long history of results that establish relationships 
between semilinear parabolic equations such as 

(5) u: [O,oo) X lftn-+ lftk 

with n > k E {1, 2} and 0 < E « 1, and geometric flows such as 

(6) velocity = mean curvature 

for co dimension k submanifolds of lftn. 

In the scalar case, these results show, roughly speaking, that for 
suitable initial data, solutions of (5) exhibit an interface whose evolution 
is governed by (6). This was first proved using linearization techniques 
[19], which yield quite a detailed description of solutions but are valid 
only locally in time. A number of different proofs followed, including 
maximum principle arguments (see [16], [21], [5]), and measure theoretic 
methods combined with parabolic estimates as in Ilmanen [31]. These 
later arguments give less precise descriptions of the solutions of (5) than 
the earlier work of [19], but they make possible results that are valid 
globally in t, with (6) understood in a suitable weak sense. 

A little later, in a 1995 lecture series [63], Soner presented a new 
perspective on the relationship between (5) and (6). His argument relies 
on a rather straightforward but remarkable computation of 

(7) dd r ( eE(u)dx 
t }fitn 

where eE ( u) is a natural energy density associated with a solution u 
of (5), and ( is a smooth function such that ((t, x) = ~ dist(x, rt) 2 

near rt, where the latter solves (6). This argument did not improve 
much on earlier results about the scalar case-indeed, the results of 
[19], [31], [21], [5] are in some ways considerably stronger-but led to 
the first results [39], [43] relating (5) and (6) in the k = 2 case; these 
were essentially adaptations to the vector setting of Soner's weighted 
energy estimates [63]. These results, valid only locally in time, show 
that for solutions of (5) with suitable energy bounds, energy concentrates 
around a codimension 2 submanifold r satisfying (6). Proving that this 
behaviour holds globally in t turned out to be a very difficult question, 
finally completely settled in [11] following partial results of [4] and others. 
These authors employ a combination of PDE and measure theoretic 
arguments, along lines pioneered by Ilmanen [31] in the scalar case, and 
obtain results valid globally in time, phrased in the language of varifold 
convergence, describing the precise way in which energy concentrates 
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around the codimension 2 surface r. A very nice review of some of the 
most significant results relating (5) and (6) is given in [12], with explicit 
attention to similarities and differences between the analysis in the scalar 
and (more subtle) vector cases. 

Finally, we remark that an important conjecture holds that for 0 < 
E « 1, vortex filaments in solutions of the Gross-Pitaevskii equation 

iut- ,6.u + ~ (lul 2 - l)u = 0, 
E 

u: [0, oo) x JR.3 ---+ C 

with suitable initial data approximately evolve, at least locally in time, 
by a Hamiltonian evolution equation called the binormal curvature flow: 

velocity = binormal curvature. 

This is the Schrodinger variant of the family of problems that we consider 
here. Some partial results in this direction are proved in [38], but overall, 
this problem is very much open, and we will not discuss it in this paper. 

The literature on the E ---+ 0 limit of (3) and (5) generally relies 
very heavily on tools such as maximum principles (for scalar equations) 
or powerful elliptic and parabolic estimates, and thus does not suggest 
any plausible strategies for studying similar questions about hyperbolic 
equations such as (5). There are only two partial exceptions to this rule. 
First, it is possible that linearization arguments might be made work 
in the hyperbolic setting (see Problem 6 in Section 8 below) although 
the requisite estimate appear to be hard to obtain. Second, although 
the weighted energy estimates estimates of Soner [63] certainly use the 
parabolic character of (5), in retrospect one can see that they do not do 
so in an essential way. Indeed, it turns out our main estimates can be 
viewed as hyperbolic variants of these weighted energy estimates. 

1.2. Some physical models 

The equations considered here arise in various branches of physics, 
including the study of superconductivity, superfluidity, and phase bound­
aries in materials, sometimes as toy versions of more complicated physi­
cal models. The hyperbolic problems that we focus on date back to 1970, 
when Nambu proposed that string dynamics might be governed by an 
action functional which is exactly to the Minkowskian area swept out by 
the string as it evolves, see (110). As related by Goddard [25], "Nambu's 
initial discussion of this action was in notes [51] prepared for a sympo­
sium in Copenhagen in August 1970 that, in the event, he was unable to 
attend. (Although knowledge of this aspect of the content of the notes 
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spread by word of mouth over time, the notes were not generally avail­
able until the publication of Nambu's Selected Papers in 1995.)" A few 
months after the Copenhagen conference, work of Goto [26] elaborated 
on some properties of N ambu's proposed action functional, and this lead 
to it eventually becoming known as the Nambu-Goto action. Some as­
pects of this action are discussed in Section 7. The discussion there relies 
heavily on a now-standard choice of gauge that was another important 
contribution of Nambu, in joint work with Mansouri [46] which clarified 
slightly earlier work of Chang and Mansouri [15]. 

Shortly after Nambu's proposal, Nielsen and Olesen, who were inter­
ested in obtaining the N ambu-Goto action from a field theory, argued 
[54] that certain semilinear wave equations arising from gauge theory 
should have solutions that exhibit vortex lines that, in their words, "can 
approximately be identified with the Nambu string." They considered 
in detail the example of the Abelian Higgs model, see (82), (83), which 
is essentially a complex-valued wave equation (1) coupled to electro­
magnetic fields. Some aspects of the Nielsen-Olesen picture have been 
rigorously established in [18], as we describe in Section 5.2, and there 
remain a number of associated open problems; see Section 8.1. It is 
worth noting that the Nielsen and Olesen were explicitly motivated by 
the phenomenon of vortex lies in superconductors, which was by then 
already well-understood. 

The study of dynamics of defects in semilinear wave equations re­
ceived a major impetus from the work of Kibble [42], who noted that 
the ideas explored in [54], as well as in earlier work on elliptic and para­
bolic problems describing superconductivity and ferromagnetic materi­
als, may be relevant to descriptions of the large-scale structure of space­
time, and that these ideas suggest the possible existence of structures 
he dubbed cosmic strings or domain walls. A nonlinear wave equation 
ofroughly the form (1), but with a somewhat different nonlinearity, has 
also been suggested in the cosmological literature as a model for what 
is called the decay of a false vacuum, see Coleman [17]. 

As far as we know, the first work in the applied mathematics liter­
ature on defects in hyperbolic equations was a paper of Neu [52] that 
gave a formal analysis of interfaces for a scalar semilinear wave equa­
tion of the form (1). Neu's formal analysis has been elaborated on and 
extended to more complicated equations in [59], [58]. 

Some rigorous but conditional results about the E ---t 0 limit of equa­
tion (1) are given in [7]. Dynamics of point defects in various semilinear 
hyperbolic equations (such (1) when n = k = 2 or the Abelian Higgs 
model when n = 2) has been analyzed in works such as [28], [34], [44], 
[65], [66]. 
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§2. Heuristic arguments 

(8) 

In this section we give a formal analysis of the equation2 

2 2 1 C Utt + d Ut - /::,. U + 2 j ( U) = 0, 
E 

u : (0, T) x IRn -+ IR, 
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where at least one of c, d is nonzero and f has the form f = F', for a 
smooth F : IR -+ IR such that 

(9) F(±1) = 0, F(x) > 0 if lxl -1- 1, F" (±1) > 0. 

This discussion thus includes as special cases both the pure parabolic 
(5) and hyperbolic (1) problems. The standard cubic nonlinearity from 
the introduction corresponds to the choice F(s) = ~(1- s2 ) 2 . 

The formal considerations we discuss here also apply the elliptic case 
c = d = 0, provided only that the domain of u is taken to be an open 
subset of IRn. 

2.1. A formal analysis 

We first seek to build a family of approximate solutions (UE)O<E<:::l 
of (8), of the form 

(10) 

for q : IR -+ IR and 6 : JRl+n -+ IR, both independent of E, to be de­
termined. We do this in the hope, to be justified later, that one can 
find exact solutions that are close in suitable ways to the functions we 
construct here. 

To proceed, we substitute (10) into the left-hand side of (8), expand, 
and collect terms of the same order to obtain 

2 2 1 2 
c UE tt + d UE t-.6.UE + -2 (UE - 1)UE 

' ' E 

= 1
2 [q"(~)(c2 (8t5) 2 -l\761 2 ) + f(q(~))] 

E E E 

1 I 6 2 2 + -q (- )(c 8u- .6. + d 8t)6. 
E E 

2We have written (8) in a way that makes it easy to treat the pure parabolic 
case as a c -+ 0 limit of damped hyperbolic equations. It would however be more 
standard to write it in the from Utt + d2Ut- c26u + ~ f(u) = 0. In particular, 
as a result of our violation of standard conventions, loosely speaking, the "speed 
of light" in (8), and hence throughout our discussion, is c- 1 rather than c. 
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The terms of order { vanish if 
E 

(11) -q" + f(q) = 0 

and 

(12) 

If in addition 

(13) wherever q' ( ~) is large, 

then the terms of order l may be considered negligible, in which case 
E 

we can consider UE to be a good approximate solution of (8). 
We conclude that if q solves (11), and if 6 solves (12), (13), then UE 

as defined in (10) looks like a reasonable approximate solution. 

We will see that, roughly speaking, (11) and (12) determine the 
shape of the interface, and (13) determines the dynamics of the interface. 

We will first show that such approximate solutions exist and gain 
a detailed understanding of what they look like, by considering (11), 
(12) and (13) in turn. A later goal will be to prove that certain actual 
solutions of (8) are in fact close to these approximate solutions. 

We will consider (11) together with the additional conditions 

(14) q(O) = 0, q( s) ---+ ±1 as s ---+ ±oo. 

For such q, the ansatz (10) then implies that UE has an interface near 
r := {(t,x): 6(t,x) = 0}, by which we mean that 

UE ~ 1 where J(t, x) » E, UE ~ -1 where J(t, x) «-E. 

The set r is thus expected to play a central role in our analysis. We will 
often use the notation 

(15) ft := {x E lRn: (t,x) E r}. 

To solve (12) and (approximately) (13), we will argue as follows: 
First, we consider a hypersurface r c JR1+n, which we take to be smooth, 
and we find a function, say br, that solves (12) near r and in addition 
satisfies 

(16) br = 0 on r. 

Having found br in this way (at least near f), we will then ask what 
geometric information about r is encoded in the expression 
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and in particular, what does it mean for this expression to vanish ev­
erywhere on r. This will enable us to reformulate (13) as a geometric 
evolution equation for r 0 

The differential operator c28tt - ~ + d2 8t has a hybrid character, 
in that the second-order part c2 Ott - ~ is naturally associated to a 
metric (rJaf3) described below, and is invariant with respect to maps 
that preserve this metric, whereas the first-order part d2 8t does not 
have these properties. So parts of our discussion will refer heavily to the 
metric, whereas other parts will neglect it completely. 

2.2. The profile q 

Multiplying (11) by q', integrating, and using properties (9) ofF, 
we find that (11) and (14) hold if and only if 

(17) q' = &, q(O) = 0, 

and it is clear that this first-order equation has a unique solution. Since 
we have assumed that F" > 0 at ±1, this solution also satisfies 

(18) lq(s)- sign(s)l s ce-clsl ass-+ ±oo. 

The profile q is characterized by an optimality property. Indeed, for 
any q E HlaJIR) such that q(s)-+ ±1 ass-+ ±oo, 

11 100 100 ([2 
(19) co:= _

1 
&ds = -oo yi2F((j)q(s)ds S -oo 2+F((j)ds. 

Moreover, equality holds if and only if q = J2F((j), and this equation 
characterizes q up to translation. 

Since ~q'2 = F(q) pointwise, it is easy to check that for any E > 0 
and r > 0, if we define qr(s) := q(7), then 

(20) 100 E 12 1 E r 
-q + -F(qr)ds =(-+-)co. 

_ 00 2 r E 2r 2E 

Thus for this scaled energy, the parameter E fixes a length-scale: a di­
lation of the basic profile q by exactly the factor r = E is energetically 
optimal. 

2.3. Solution of the eikonal equation for c =1- 0 

Now consider (12), (16) with some fixed nonzero c. 
We will write 

(21) (rJa(3)=diag(-c-2 ,1, ... ,1), (rJaf3) = diag(-c2 , 1, ... , 1), 
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where o:, (3 run from 0 to n. Thus (7Jaf3) is a form of the Minkowski 
metric on JR1 +n, and we will view (TJaf3) as the dual inner product on 
1-forms. We implicitly sum over repeated upper and lower indices. We 
will sometimes write x = ( x 0 , ... , xn) to denote a point in JRn+ 1 , and 
we may write x 0 and t interchangeably. We will also sometimes use the 
notation X = ( t, x)' with X E JRn. 

We use upper indices such as va or vf3 to denote the components 
of a vector, and lower indices Va or Vf3 to denote the components of a 
covector. The metric ( 7Jaf3) induces a natural isomorphism between the 
spaces of vectors and covectors, and given a vector with components va, 
the associated covector is defined by Va := 7Jaf3Vf3. Similarly, if Va are 
components of a covector, then va := 7Jaf3vf3 denote the components of 
the associated vector. 

In particular, given a function f the differential df (a covector) has 
components ax"' f' and the gradient grad f (a vector) has components 
T)af3 axf3 f. 

Lemma 1. Assume that r c JR.l+n is a smooth hypersurface and 
that for every x E r, there exists a vector v = v(x) such that x E r r-+ 
v( x) is continuous, and 

(22) 

and 

(23) 

Then there is a neighborhood N of r in which there exists a smooth 
solution Or of (12), (16). In addition, for every x E r, 

(24) Or(x + sv(x)) = s 

for all s in a neighborhood of 0. 

Below, we briefly recall the (standard) proof of Lemma 1, to em­
phasize that some aspects of our later arguments arise naturally from 
simple considerations involving the first-order equation (12). First we 
give some definitions: 

We say that r is timelike at X E r, with respect to the metric (7Jaf3), 
if there exists a vector n(x) satisfying (22), (23), and that r is timelike 
if it is timelike at every point x. One can verify that r is timelike at x if 
and only if lvl < ~'where v(x) is the velocity of rat x (see (42) below 
for the definition.) 

We say that a vector v is spacelike with respect to the metric ( 7Jaf3) 
if 7Jaf3Vavf3 > 0, and timelike if 7Jaf3Vavf3 < 0. Geometrically, (22), (23) 
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state that v( x) is a spacelike unit normal to Txr with respect to the ( T/a.f3) 
metric. Since the space of normal vectors at any point x is !-dimensional, 
if r is timelike then at every x E r there are exactly two normal vectors 
satisfying (23), and a continuous choice of v(x) is possible exactly when 
r is orientable - this can be taken as the definition of orientable. 

We interpret or as the (signed) distance to r with respect to the 
metric (TJa(3)· Indeed, x + sv(x) is a point reached by starting at x E r 
and moving a (signed) distance s in the direction v(x) normal tor at 
x (where "distance" and "normal" are both understood with respect to 
the metric ( T/a.f3)). According to ( 24), at this point the value of Or is just 
the distance parameter s. 

Proof of Lemma 1. It is helpful to rewrite (12) in the form 

(25) F(x, or, dor) = 0, for F(x, z,p) = F(p) := ~- (TJa(3PaP(3- 1), 

where (rya.f3) := diag( -c2 , 1, ... , 1). Following the standard method of 
characteristics (see for example [22], Section 3.2), we consider the sys­
tems of ODEs 

(26) 

(27) 

(28) 

d a_ D ( ) _ a(3 ds x - I'p"' x, z,p - TJ Pf3 a=O, ... ,n 

d _ F, ( ) _ a(3 ds Z- Pa. Pa X, z, p - T} Pa.P(3 

d 
dsPa = -pa.Fz(x,z,p)- Fxa(x,z,p) = 0, a=O, ... ,n. 

We fix some x E r, and we solve (26)-(28) with initial data 

x(O) = x, z(O) = or(x) = 0, 

where vf3 is the (spacelike) unit normal tor. With this choice, it is clear 
that F(x(O), z(O),p(O)) = F(p(O)) = 0, and also that the data satisfies 
the standard compatibility condition, which in this case reduces to the 
requirement that Pa. be conormal to the surface r on which the solution 
we seek is constant. Indeed, these conditions are equivalent to (23) and 
(22) respectively. 

It is almost immediate that the solution of (26)-(28) is given by 

(29) Pa(s) = va.(x), z(s) = s, x(s) = x + sv(x). 

Standard facts about characteristics (i.e., a short argument using the 
inverse function theorem) then guarantees that the map (X' s) E r X IR H 
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x + sv(x) is invertible in a neighborhood of (x, 0) for every x E r, and 
that in this neighborhood, the condition 

6r(x(s)) = z(s) = s along each solution (29), 

yields a well-defined function br that satisfies (12), (16), and (24). 
Q.E.D. 

Remark 1. In the argument sketched above, it is natural to pa­
rametrize a subset of r by an embedding \[! : 0 --+ JRl+n, where 0 is an 
open subset of JRn. It is often convenient to assume that \[! has the form 

(30) •T•( 0 n-1) ( 0 .!,( 0 n-1)) 'l'y, ... ,y = y,<py, ... ,y ' 

and that 

(31) i E {1, ... , n- 1 }. 

Then the y0 coordinate on 0 corresponds to time, and 'ljJ(t, ·)parametrizes 
(a subset of) rt. Having fixed\[!, we may define 

Then ¢ is a diffeomorphism of a neighborhood in JRn x lR of 0 x {0} 
onto its image, which is a neighborhood of r - this is the local invert­
ibility claim mentioned in the proof above. Equivalently, we can view 
(y0 , ... , yn) as defining a local coordinate system, and we will sometimes 
refer to these as normal coordinates near r. 

It follows from (24) and (32) that 

(33) 

and hence that UE = q(6r/E) satisfies 

(34) 

Thus UE has a particularly simple form in the (y0, ... , yn) coordinates. 
Note also that (33) states exactly that 

(35) (i.e., the nth component of q;- 1 ). 
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2.4. Solution of the eikonal equation for c = 0 

When c = 0, the problem (12), (16) reduces to 

8r = 0 on r 
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where i, j are summed implicitly 1, ... , n and ()ii is the Kronecker delta. 
Parallel to Lemma 1 we have 

Lemma 2. Assume that r c JR.l+n is a smooth hypersurface and 
that for every X E r, there exists a vector V = v(x) such that X Err-+ 
v(x) is continuous, and 

(37) 

Then there is a neighborhood N of r in which there exists a smooth 
solution 8r of (36), and for every x E r, 

(38) 8r(x + sv(x)) = s for all s near 0. 

Now (37) states that at X = (t, x) E r, the vector v(x) is the Eu­
clidean unit normal in JR.n to r t at x. 

We will sometimes abuse terminology and say that, in the case c = 0, 
r is timelike if it has finite velocity everywhere. 

The proof of the lemma, which we omit, can be established by the 
same procedure as in the case c > 0, or (at least formally) by taking the 
c \. 0 limit of Lemma 1. 

2.5. The geometry of r 
We now consider (13). More precisely, we seek timelike hypersur­

faces r such that 

(39) on r 

where 8r is the solution of the eikonal equation (12), (16) that we have 
found above. We will proceed by making the geometric content of (39) 
more transparent, and then arguing that, at least in some interesting 
special cases, it reduces to geometric evolution equations for which we 
can obtain solutions by appealing to known well-posedness results. 

In this discussion, we will treat quantities such as mean curvature, 
velocity, and acceleration as (signed) scalars whose sign depends on a 
choice of the unit normal v. For us this choice is encoded in the choice 
of sign of 8r. Specifically, our convention is that the mean curvature of 
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a hypersurface r can be computed (in any Lorentzian or Riemannian 
manifold) by 

(40) Hr(x) := -divD(x), xEr 

where D is any smooth unit vector field such that D = v = grad b"r on 
r. Here "unit", "normal", "gradient", and so on are understood with 
respect to the relevant metric. For the convenience of the reader, we 
recall the definition of mean curvature and give the proof of ( 40) in 
Section 7.5. 

We will write Hr to denote the mean curvature of r with respect 
to the Minkowski metric ( 'T/af3), and Hf t to denote the Euclidean mean 
curvature of a time-slice rt as a submanifold of JR.n. 

To define velocity v and acceleration a, let I be a open interval and 
'/ : I --7 JR.n a map such that 

( 41) '!(t) E rt "y(t) j_ Ty(t)rt for all t E I, 

where j_ is here understood with respect to the Euclidean metric. Then 
for any t E I, writing x := (t, "((t)) E r we define 

( 42) 
. V'b"r 

v(x) = '!(t). IV'brl (x), a(x) = i(t) · ~~~~~ (x), 

where \7 b"r denotes the spatial gradient ( Oxtb"r, ... , Oxn b"r). We will 
prove 

Lemma 3. Assume that b"r solves the eikonal equation 

-c2 (8tb"r )2 + IV'brl 2 = 1 

for some c ~ 0, and let r := {x: b"r = 0}. 

(43) 

and 

(44) 

(45) 

Then for x = (t, x) E r, 

(c28 - 6.)6 (x) = {HF(x) 
tt r Hft (x) 

if c > 0 

if c = 0, 

-v 
Otb"r(x) = ( 2 2)1/2. 1-cv 

Moreover, if c > 0 then 
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A vectorial analog of (45) for timelike 1 +!-dimensional surfaces of 
arbitrary codimension is proved in [6]. In fact we will barely use (45) in 
the sequel, but it provides an interesting interpretation of HJf. 

Before giving the proof, we remark that the Lemma implies that 
if d = 0 then (39) is exactly the Minkowski extremal surface problem, 
that is, the condition that the Minkowski mean curvature vanishes; and 
if c = 0 then it exactly the mean curvature flow. In both cases, short­
time existence of smooth solutions for smooth data is well-known; see 
for example [45], [48], [13] in the Minkowski case. 

In the general case, (39) is a damped extremal surface problem. 
We do not know of any well-posedness results for this equation, but we 
suppose that such results can be proved by rather standard techniques. 

Proof. Formula (43) is well-known when c = 0, so we fix c > 0, 
and we simply recall the standard reasoning from the c = 0 case, which 
goes as follows: Let iJ be the vector field defined by iJ : = grad 8r, so 
that i/ 01 = TJ 01(30xf38r. It follows directly from the eikonal equation that 
'TJaf3V 01 iJf3 = 1 wherever it is defined, and it is generally true, and easy 
to check, that grad 8r is orthogonal to any level set of 8r, including in 
particular the level set r : = { 8r = 0}. Then using ( 40) 

HJf(x) = -divv(x) = -Oxai/01 = -TJ01(30x"'xf38r, 

proving (43) for c > 0. 
Next, we fix a curve"( as in (41), and we differentiate the identity 

8r(t,"((t)) = 0 to find that 

(46) Ot8r(t,"((t)) + "Y'8r(t,"((t)) · 'y = 0. 

Recalling the definition (42) of v and the fact that 'y(t) is normal tort, 
we deduce that 

Then we can rewrite the eikonal equation to find that 

(47) 

Combining these identities yields ( 44). 
The rest of the proof is a computation leading to (45) and can be 

skipped without much loss. First, by differentiating the eikonal equation 
we obtain 
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By (40) (with respect to the Euclidean metric on {t} x 1Rn), 

By using both identities in (48), we can rewrite this as 

e -1 c48t8r 8t8r 8u8r -1 4 2 
Hr,(x) = IY'8rl (~8r- IY'8rl2 ) = IY'8rl (~8r- c v 8u8r). 

So 

Next, differentiating (46) gives 

8u8r + 28t V' 8r · i' + '\72 8r : i' 181 i' + V' 8r · i = 0 

at (t,"((t)) for any curve 'Y· Expressing i' in terms of V'8r then again 
using (48) to convert space derivatives to time derivatives, and recalling 
the definitions and a and v, this identity becomes 

a = -8u8r (1 - 2c2v2 + c4v4 ) = -(1 - c2v2)28u8r. 

Substituting this into (49) and using (47), we arrive at (45). Q.E.D. 

2.6. Energetic considerations 

We record a couple of properties of the approximate solution Ue 
described above. 

First, it is clear that Ue(t, ·) has an interface near ft, as desired. 
Second, for X = (t, x) E r and euclidean unit normal ve(x) .­

V'8r/IY'8rl(x), since IY'8rl = (1- c2v2)-112, 

8r(t, x + sve(x)) = s(1- c2v2)-112 + O(s2) 

so that 

A comparison with (20) suggests that if Ue :::::: Ue and Ue(t, ·) has an 
interface moving with nonzero velocity, then Ue ( t, ·) will not have an 
energetically optimal structure across the interface, due to the dilation 
(1- c2v2)-112. Hence it may be difficult to control Ue by naive energy 
methods if c #- 0. This is one way in which the c = 0 parabolic case is 
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easier. indeed, the parabolic weighted energy estimates of Soner [63] in 
some sense exploit the energetically optimal structure of the profile in 
the parabolic case. 

Note, however, that this difficulty (which is purely heuristic at this 
point) vanishes if we consider instead the coordinate system discussed 
in (32), (34). Indeed, in this coordinate system, our formal arguments 
suggest that the solution should always be close to the ground state of 
some variational problem, and we can hope to take advantage of this in 
our analysis. 

2.7. A different heuristic argument 
For a family of equations depending on a parameter E, such as (8) 

in the case c = 1, d = 0, that are the Euler-Lagrange equations of 
some family of functionals £., one can argue formally by a "reduced 
Lagrangian" approach. This is widely used in the physics literature, 
and has the advantages of flexibility and (often) simplicity. 

Consider generally a family of functionals £€ : X --+ ffi., where X 
is some function space. Suppose we want to describe solutions of the 
associated Euler-Lagrange equations in terms of some possibly simpler 
objects belonging to a different space Y. (In our example, possibly 
X= Hl0 JW) for some open subset W C ffi.l+n, andY may be the space 
of timelike hypesurfaces in W.) We may argue formally as follows: 

(1) First construct a suitable family of maps U€ : Y--+ X. 
( 2) Then define a functional £~ : Y --+ ffi. by £~ = £€ o U€, and if 

possible write£~= £ti + o(l) as E--+ 0, for some £ti : Y--+ R 
(3) Conclude(?!) that critical points of £€ have approximately the 

form U€ of, where fEY is a critical point of £ti. 

This argument, dubious though it might seem, often yields surpris­
ingly useful heuristic information if carried out well. To understand why, 
and what it means to "carry it out well", note that if £ti ~ £€ o U€ in a 
strong enough sense, and if V is a tangent vector to Y, then 

d£~(r)(V) ~ d£€(U€(f))(dU€(f)(V)). 

Thus if U€(r) is constructed as above (so that d£ti(f) = 0), then 

Hence d£€(U€(r)) ~ 0 (i.e., U€(r) is an approximate solution) if 

(50) d£€(U€(r)) "(approximately) annihilates (Image dU€(r))j_" 

assuming for simplicity a Hilbert space structure. Whether or not (50) 
holds depends on the construction of the maps U€ : Y --+ X. Competent 
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practitioners of this style of argument are able to produce constructions 
UE : Y--+ X that satisfy (50), based on intuition or other factors that are 
normally left implicit. If this is done, then this procedure yields good 
approximate solutions of the equation d£E = 0 (that is, a function UE 
such that d£E is small at UE), and a mathematician might hope to prove 
that some actual solutions are close to these approximate solutions. 

We illustrate this argument for the family of functionals 

£E(u) := j ~(-lutl 2 + 1Vul2 ) + E~F(u) dx dt. 

corresponding to (8) with c = 1, d = 0. We would like to describe 
solutions in terms of evolving interfaces. As suggested above, we may 
then let Y be the space of timelike hypersurfaces in W c JRHn. Given 
f E Y, we choose to define 

c5r 
uE(r) := q(-) 

E 

where q solves (11) and c5r solves the eikonal equation (12), (16). 
Of course our earlier formal arguments already suggest that this 

ansatz is reasonable, and presumably it could also be justified by careful 
consideration of (50). 

Wewouldnowliketowrite£~(r) = £E(UE(f)) as£~(f)+o(l). To do 
this it is convenient to represent a hypersurface r as the image of a map 
W : 0 c JR.n --+ JRHn as described in Remark 1, and to change variables 
via the diffeomorphism ¢ defined in (32). We assume for convenience 
that the domain of ¢ contains 0 x ( -r, r) for some r > 0, and that the 
energy outside ¢( 0 x ( -r, r)) is negligible. 

It is useful to introduce the notation 

(51) 

where a, (3, p,, v run from 0 to n; and similarly 

(52) 

where a, b from from 0, ... , n - 1. 
Writing VE = UE (f) o ¢ and changing variables yields 

£~ (r) ~ r (-2E gaf3 Oy"' 1l.o 0yf31i.o + ~ F(VE)) v19T dy0 ... dyn. 
lox(-r,r) E 

Now we recall from (34) that V'.o(y) = q(YEn). Also, we will see later that 
gnn = 1, gna = gan = 0 for a< n, and it follows that 
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Substituting into the right-hand side above and integrating over yn, we 
conclude from (19) that 

As we discuss in Section 7.2, £~(r) is exactly the Minkowskian area 
of r, and its Euler-Lagrange equation is exactly the condition that the 
Minkowskian mean curvature of r vanishes. (In particular, it is not hard 
to see that £~ depends only on r, and not on the parametrization 1]1.) 
Thus we conclude again that interfaces are expected to evolve by the 
Minkowski extremal surface equation. 

2.8. Filament dynamics and systems of equations 

The above heuristic considerations extend, albeit somewhat less per­
suasively, to systems of equations such as the Abelian Higgs model, see 
(82), (83) below. We will give no details about this, but make only a 
few remarks. 

First, these arguments lead to approximate solutions ( u;,m, A;,m) 
of the Abelian Higgs model that are described below in (92), (95), (97). 
The results of [18], stated in Section 5.2, establish precise estimates of 
the L 2 distance between these approximate solution and some actual 
solutions. 

Next, in the same way that the formal arguments above suggest 
the change of variables described in Remark 1 in Section 2.3, in the 
vector-valued case they suggest a similar vector-valued change of coor­
dinates which appears for example in the description (95), (97) of the 
approximate solution mentioned above, and also in our proofs. 

Finally, the heuristic arguments are less persuasive for the Ginzburg­
Landau wave equation, that is, equation (1) for JR2-valued maps, than 
for the Abelian Higgs model. This reflects genuine difficulties; of all the 
equations we consider, (1) in the vector case k = 2 is the hardest to an­
alyze, and is the one about which we obtain the weakest results. These 
are discussed in Section 5.1. 

§3. Rigorous results: interface dynamics 

In this brief section we state rigorous results about the c = 1, d = 0 
case of equation (8). The next section gives a complete proof of a simple 
theorem, and discusses some of the additional ingredients in the proofs 
of the stronger results stated here. 
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We consider a real-valued u solving the equation 

(53) 
1 

Utt- ,6.u + 2 f(u) = 0 
E 

where f = F', and F satisfies (9). We first state a typical result and 
then discuss some variations. 

Theorem 1. Assume that T* < 0 < T*' and that r c (T*, T*) X JRn 
is a smooth embedded timelike hypersurface of vanishing Minkowskian 
mean curvature. Then given T _, T + such that T* < T _ < 0 < T + < T*, 
there exists a neighborhood N of r in (T-' T +) X JRn in which the signed 
distance function Or (that is, the solution of (12), (16)) is well-defined 
and smooth, and for every E E (0, 1], there exists a solution uE of (53) 
such that 

j [xNOf+(1-xN)] (u;+l\7ul 2 + 1
2 F(u))dxdt < CE 

(T_,T+)xJRn E 

L (uE- UE)2 dx dt:::::; CE. 

where UE = q( Or/E) for q solving (11), and XN is the characteristic 
function of N. Also, 

{ (u; + 1Vul2 + 1
2 F(u)) dx ~ C/E 

J{t}xJRn E 

for every t. 

This is proved in [35] with some convenient but unnatural restric­
tions on the topology of r. The arguments whereby these restrictions 
may be dropped are presented in [24]. 

Recall that the existence and smoothness, near r, of the signed 
distance function Or is standard and can be found in in Lemma 1 above. 

The first estimate asserts that the energy is strongly concentrated 
near r, which is the only place at which the weight [XNOf + (1- XN)] 
vanishes. The point of the final assertion is simply that the total energy 
is large, so that the first estimate is nontrivial. 

Remark 2. The theorem in fact proves not only the existence of 
a single solution with the stated properties, but more general stability 
estimates. These state that for any solution with initial data that "has an 
interface near fo':, roughly speaking, the energy concentration around r 
and gradients of the solution in directions tangent to r are of the same 
order of magnitude fortE (T_,T+) as they are at t = 0. Examples 
of this sort of stability estimate are presented below in Lemma 7 and 
(without a full proof) Lemma 9. 
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Remark 3. The presentation in [35] extracts more conclusions than 
we have stated here from the stability estimates described above. In 
particular these include estimates in w- 1,1 of the difference between 
the energy-momentum tensor for u< and the energy-momentum tensor 
for r (which is a tensor-valued measure concentrated on r.) See [35] for 
a precise statement. 

Remark 4. The theorem remains true if Minkowski space is re­
placed by certain more general Lorentzian manifolds, see [24]. 

Remark 5. A variant of the theorem holds if the nonlinearity f(u) 
is replaced by a nonlinearity f< ( u) associated with a double-well potential 
with two wells of (slightly) unequal depth. The prototype is a cubic 
nonlinearity, say 

f<(u) = (u2 - 1)(u- Ek), 

so that f< = F; with 

1 2 2 1 3 
F< = 4(u - 1) + Ek(u- 3u ) 

so that F<(1) = -F<(-1) = ~Ek. In this case, solutions have roughly 
the form u< ~ q( 6r /E) where 6r is the signed distance to a hypersurface 
of constant Minkowskian mean curvature proportional to k. This too is 
proved in [24] and remains valid, with suitable modifications, in more 
general Lorentzian spacetimes, and also for inhomogeneous nonlineari­
ties, whose prototype is 

f<(t,x,u) = (u2 -1)(1- Ek(t,x)), k(-, ·) smooth. 

§4. Elements of proofs: interfaces in scalar equations 

In this section we prove a result (Theorem 2 in Section 4.5) that 
illustrates some points in the proof of Theorem 1, and more generally 
shows how one can convert the heuristic considerations from Section 2 
into rigorous arguments. We will suppress a number of difficulties by 
imposing strong hypotheses and proving weak conclusions. Following 
the proof, we discuss modifications to the basic argument that lead to 
more satisfying results such as those stated in Theorem 1. 

(54) 

As in Section 2, we consider the equation 

2 2 1 C Utt + d Ut - ~ U + 2 j ( U) = 0, 
E 

u : (0, T) x lRn -+ lR 

where f = F' for F satisfying (9). We briefly discuss the c = 0 case in 
Section 4.7. Apart from that, we assume throughout this section that 
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c -/=- 0. Since we allow d -/=- 0, the setting here is a little more general 
than those of [35, 24], and the results Theorem 2 are new. In particular, 
the arguments here illustrate how essentially the same framework can 
be used to analyze both hyperbolic and parabolic equations, as well as 
equations that interpolate between them. 

We will always consider smooth solutions of (54). In practice, Hfoc 
is all the smoothness we need, and all our conclusions are true in the 
energy space as long as (54) is well-powed in ifl x L2 topology, since then 
solutions with data in the energy space can be approximated sufficiently 
well by solutions for which our estimates hold. Well-posedness can be 
guaranteed by imposing suitable growth conditions on f, see for example 
[62]. 

Suppose that Ue is an approximate solution as constructed in Section 
2, so that 

8r 
Ue = q(- ), where 8r solves (12), (16), (39) 

E 

in a neighborhood of some hypersurface r. Thus r solves an evolution 
equation that may be written 

(in notation from Section 2.5) 

and 8r is the appropriate (depending on c) signed distance from r. For 
convenience we also assume that 

(56) Otbr = 0 when t = 0, on its domain. 

This occurs if r has velocity zero when t = 0. 

4.1. Basic idea 

The formal argument of Section 2 shows that, if one looks for a 
solution of the form 

(57) 

then roughly the best that can be done is to take q to be the standard 
profile, as discussed in Section 2.2, and 8r to be the signed distance from 
a submanifold r solving the appropriate geometric evolution problem 
(55). 

In the proof, we invert the logic, to some extent, by proving that if 8r 
is assumed from the outset to be the signed distance from a submanifold 
r solving (55), then the ansatz (57) is dynamically stable. This is proved 
by weighted energy estimates in a well-chosen coordinate system that 
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follows r. This coordinate system is in fact exactly the one, described 
in Remark 1 in Section 2.3, that emerges naturally from consideration 
of the eikonal equation (12), (16). 

4.2. Change of variables 
Given a subset of r parametrized by a map w: 0 c ffi.n---+ ffi.Hn of 

the form (30), we define a map ¢ as in (32), which is a diffeomorphism 
once its domain is restricted to a suitable neighborhood of 0 x {0}. 
Having done this, we can rewrite (54) in terms of coordinates (y0 , ... , yn) 
defined by (t, xl, ... , xn) = ¢(y0 , .•. , yn). A great advantage of this 
procedure is that, as noted earlier, our approximate solution u. satisfies 

and so to find a solution such that u, ~ U,, it should suffice, to arrange 
that v, = u,o¢ satisfies v,(O,yl, ... ,yn) ~ q(lf-), and then to show that 
8yoV ~ 0. 

Thus, this change of variables reduces the study of the dynam­
ics of interfaces to a question about stability of specific initial data 
(v,8yov) = (q(yn/E),O) when y0 = 0, for a modified equation, see (58) 
below. The key point is that the transformed equation inherits certain 
good properties, see (59), (60) below, from the evolution equation sat­
isfied by the surface r. It is precisely these good properties that make 
the desired stability estimates possible. 

Lemma 4. If u solves (54) with c > 0, then v = u o <P solves 

(58) 

where (ga~) are defined in (51), and 

(59) bn = ( ( c28tt + d28t - .6.)8r) o ¢, 

As a result (in view of (39) and (33)), 
(60) 

bn(y) ~ GIYni, for C uniform on compact subsets of Domain(¢). 

Proof. Let us write Y := ¢-1 , so that u = v o Y on the image of 
¢. Thus (writing x0 = t) 

8xaU = (8yi'V 0 Y) 8xaY~', 

axfJ x"'U = (8yi'V 0 Y) axfJ x"' Y~-' + (8yv yi'V 0 Y) axfJ yv 8xa Y~'. 
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So 

for 

A1w := (c28tY"' OtYv- VY"' · VYv) o ¢ 

B"' := ( (c28tt + d28t- b.)Y"') o ¢. 

It follows from the definitions (51) of (gaf3) and (gaf3), together with the 
fact that DY o ¢ = (D¢)-1, that 

Combining these facts, we find that (54) transforms to 

where 
bl' := B~' + Oyvg~'v. 

To complete the proof we must verify (59). Since we have seen in (35) 
that yn =Dr, from the definitions we see that we only need to check that 
Oyvgnv = 0, and this follows immediately from Lemma 5 below. Q.E.D. 

The next Lemma completes the proof of the result above, and also 
will be useful in our subsequent analysis. 

Lemma 5. If c > 0, then inverse metric tensor satisfies 

gnn = 1, gan = gna = 0 if a< n. 

Moreover, on a sufficiently small neighborhood ofO, g00 < 0 and (gii)7,j~ 1 
is positive definite. 

Proof. Let us write i/ := vow, so that ¢ = \]! + yni/. Then we 
recall from the definitions that 

Differentiating the first identity, we find that 'TJaf3VaOyavf3 = 0 for a = 
0, ... , n-1. Using these facts, it follows directly from the definition (51) 
of (ga(3) that 

(61) gan = gna = 0 if a < n. 
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Then the same properties are inherited by gna for a E {0, ... , n}. 
Next, note that due to (30) and (31), when yn = 0 we have g00 = 

-c2 + v 2 < 0 (since r is assumed to be timelike), 9oa = 9oa = 0 for 
a = 1, ... , n - 1, and 

is positive definite, since 1/J is by assumption nondegenerate. It follows 
from these and (61) that g00 < 0 and (gij)~j~ 1 is positive definite when 
yn = 0 (that is, at points in 0), and the same facts then hold in a 
neighborhood of 0 by continuity. 

(62) 

4.3. A differential energy inequality 

Next we define 

ifa=,B=O 

if a ~ 1 and ,8 ~ 1 

otherwise. 

Q.E.D. 

If we restrict our attention to a domain on which the conclusions of 
Lemma 5 hold, then (a"'f3) is positive definite. We define the energy 

eE(v) := ~a"'f3[Jy"'v8yf3V + ~F(v). 
2 E 

Lemma 6. If v is a smooth solution of (58), (60), then 

(63) [J~OeE(v):::; E8y'(gi"'8y"'V 8yov) + CE (IDTvl 2 + (yn) 2 (8ynv) 2 ), 

where IDTvl2 := I:::~5(8yav) 2 , and Cis uniform on compact subsets of 
Domain(¢). 

In (63), and throughout this paper, we implicitly sum roman indices 
i, j, k from 1 to n, except where specified otherwise. We recall that 
a, ,8, f.L, v are summed from 0 ton. 

Proof. Multiply (58) by 8yov and rearrange to find that 

-8yf3 (g"'f3 8y"' V 8yo V) + g"'f3 8y"' V 8yf3 yo V + 8yo F ( V) = b"' 8y"' V 8yo V. 

We can rewrite 
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Combining these identities and rearranging, 

Oyo Dg"'13 8y<>V OyflV- g"'0 8y"V OyoV + F(v)] 

= Oyi (gi"'Oy<>V Oyov) + ~ (8yog"'f3)0y<>V 0yf3V + b"' Oy<>V OyoV. 

The left-hand side is just C 18yoeE(v), and it follows by elementary es­
timates from Lemma 5 and (60) that the right-hand side is bounded 
by 

Oy;(gi"'ay"v Oyov) + C (IDTvl 2 + (yn) 2(8ynv) 2), 

for C uniform on compact subsets of Domain(¢). Q.E.D. 

4.4. Weighted energy estimates for v, easiest nontrivial 
case 

Now we suppose for simplicity that r is parametrized by a map 
\II : [0, T) x 1rn-1 -+ JR;_l+n of the form (30), where 1I'k denotes the k­
dimensional torus. Thus \IJ(y0 , ... , yn-1) = (y0 , 7/J(y0 , ... , yn-1 )), where 
7/J is periodic (say with period 1) in the yi variables, i = 1, ... , n -1. This 
assumption imposes topological constraints on r that are reasonable if 
n = 2 and otherwise rather artificial. 

In this case, given any To < T, we can find some r > 0 (depending on 
To) such that the conclusions of Lemmas 5 and 6 hold on Mf0 = [0, To] x 
1rn-1 x [-r, r] with uniform constants, and in addition the restricion of 
¢ to Mf0 is a diffeomorphism onto its image. 

Lemma 7. Let v be a smooth solution of (58) on Mf0 , for To and 
r as above, and assume that there exists some T1 E (0, To] such that 

(64) v(y0 , ... ,yn) = sign(yn) ifO ~ y0 ~ T1 and IYnl = r. 

ForsE [0, To), define (recalling the definition (19) of c0 ) 

(1(s):= r (r (1+(yn)2)eE(v)dyn-Co)dy1•··dyn-11 
J{s}x'Jfn-1 J[-r,r] 

(2(s) := r EIDTvl 2 
}{ s} x'Jfn- 1 X [ -r.r] 

+ (yn) 2 (E(Oynv) 2 + ~F(v)) dy1 · · ·dyn. 

Then for 0 ~ s ~ T1, 

(2(s) ~ C(1(s) 
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The assumption (64) makes this situation particularly simple. We 
will see below that it is easy to find initial data u(O, ·), 8tu(O, ·) for (8) 
such that the corresponding solution v = u o ¢ of (58) satisfies (64), 
with T1 independent of E E (0, 1]. The lemma thus will yield a form of 
the heuristic statement "UE ::::::: uE" when applied to suitable initial data. 
However, the pointwise control required in (64) has distinct drawbacks, 
as we will see. 

Proof. Step 1. We first claim that for every (y0 , ... , yn~ 1 ) such 
that 0::; y0 < T1 , 

(65) Jr ~(8ynv) 2 + ~F(v) dynl _ 2: Co. 
~r (yo, ... ,yn 1) 

Indeed, this follows from integrating the inequality 

from yn = -r to r and using (64) and the definition (19) of c0 . 

Step 2. By Lemma 5, 

So by fixing s E [0, TI) and integrating (65) over (y1 , ... , yn~l) E 1['n~l 
with y0 = s, we deduce that 

(66) r (1 eE(v)dyn- Co) dy1 · · · dyn~l 
J{s}x'Jfn- 1 [~r,r] 

It immediately follows that ( 2 ( s) ::; C(1 ( s) for 0 ::; s < T1. 
Step 3. Next we claim that 

(67) for s E [0, T1]. 

In view of Step 2, this will prove that ({ ::; C(1 , and then the remaining 
conclusion of the Lemma will follows from Gronwall's inequality. 
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To prove (67), we employ the differential energy inequality (63) to 
find that 

(~(s)= r (1+(yn) 2 )8yoe,(v)dy1 ···dyn 
J {s }x'll'n- 1 x [-r,r] 

:::; r E(1 + (yn) 2 )8yi (gia8ya V 8yoV )dy1 · · · dyn 
J{s} x']['n- 1 x [-r,r] 

+ C(z(s). 

Now we integrate by parts and recall from Lemma 5 properties of (gna) 
to find that 

(~(s):::; 2E r 1Ynll8ynvll8yovl dy1 ... dyn + C(z(s). 
J{s}x1fn- 1 x[-r,r] 

There are no boundary terms coming from y1 , ... , yn-l by periodicity, 
and none from yn since 8yov = 0 when IYnl = r, by (64). Since 

1Ynll8ynvll8yovl:::; ~(yn) 2 (8ynv) 2 + ~IDTvl 2 , 
it follows that (~ :::; C ( 2 for s :::; T1 . 

4.5. A sample theorem 

Q.E.D. 

In this section we complete the proof of a relatively simple specific 
instance of the heuristic principle u, ~ U,. 

We continue to assume that the hypersurface r and numbers T0 , r 
have the properties described at the beginning of Section 4.4. These 
assumptions imply that r is the boundary in [0, T) X JR.n of a bounded 
(relatively) open set, say 0. We may choose the Minkowskian unit 
normal v to point into 0, so that 8r(t, x) > 0 for (t, x) E OnDomain(8r ). 

We will write Ot := {x E JRn: (t, x) E 0}, so that ft is the boundary 
in JRn of Ot. If S is any set, we will write 

sign8 := { 1 
-1 

if pES, 

if not. 

Again, for the sake of simplicity, we have imposed a very strong 
pointwise hypothesis, see (68). 

Theorem 2. Assume that u is a smooth solution of (8) with initial 
data such that 

(68) 
ua(x) := u(O,x) = sign00 (x) if dist(x,fo);:::: ~' 

8tu(O, x) = 0 everywhere. 
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Then there exists some T2 > 0, independent of E E (0, 1], and an open 
neighborhood N of r in [0, T2 ] x ~n such that 

(69) u = sign0 

and 

Here (o := (1 (0) as defined in Lemma 7, and v appearing in the definition 
of ( 1 (s) is given by v = u o ¢. 

An appropriate choice of initial data will then yield the following. 

Corollary 1. Under the above assumptions, for every E E (0, 1] 
there exists a solution uE of (8) such that ( 69) holds and 

L lu- UEI 2dt dx :::; CE. 

The proof of Theorem 2 is conceptually very simple. First, using 
assumption (68) about the initial data and standard considerations in­
volving finite propagation speed for semilinear wave equations, it is easy 
to prove that (69) holds for a suitable choice of N. 

Then from (69), we deduce that v = uo¢ satisfies (64) for some time 
T1 > 0. We may thus apply Lemma 7 to obtain, among other things, 
£ 2 estimates of Oyov, and we can use these and a form of Poincares 
inequality (in the y 0 variable) to control II v ( s, ·) - v ( 0, ·) II £2 for 0 :::; s :::; 
T1 . Translated back to the (t, x) variables, this will yield (70). 

Proof of Theorem 2. Step 1. Let us write 

E 2 2 1 
eE(u; 77) := 2 ((c8tu) + IVul ) + ~F(u). 

If u solves (8), then a short computation shows that 

(71) 

Then for xo E ~n and p > 0, if 0 < t < cp we compute 

d1 - eE(u; 77) 
dt B(xo,p-tjc) 
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But by (71) and the divergence theorem, 

Since 
c 1 1 

c:IBtlluVul :S c:(2(ut)2 + 2)Vul 2 ) :S ~e,(u; TJ) 

we conclude that ft JB(xo,p-tfc) e,(u; TJ) :S 0. 
As a result, if B(x0 , p) C ffi.n is any ball on which e,(u; TJ) vanishes 

when t = 0, then for 0 < t < cp, the same quantity also vanishes on 
B(x0 , p-tjc), and hence u is constant on the cone Uo<t<cp{t} xB(xo, p­
tjc). It follows from this and (68) that 

(72) u = sign0 on A:= {(t,x): t;::: O,dist(x,f0 ) > ~ + ~}, 

where dist denotes the Euclidean distance. 
Step 2. Our standing assumption (56) that 8tl5r = 0 when t = 0 

implies that the Minkowskian normal v to r when t = 0 has the form 
v = (0, ve), where ve E !Rn is the Euclidean unit normal to f 0 . It follows 
that ¢(0, y1, ... , yn) has the form (0, ¢o(y1, ... , yn)), where 

(73) ¢o(Y1 ... , yn) = '1/Jo(y\ ... , Yn-1) + ynve('l/Jo(yl, ... , Yn-1 )), 

and '1/Jo(·) := '1/J(O, ·). 
We deduce from (73) that our change of variables maps the Cauchy 

problem for u onto a standard Cauchy problem for v, with initial data 
given on the hyperplane {y0 = 0} rather than, say, on some more gen­
eral spacelike submanifold. This is the simplification that we gain from 
assumption (56). 

Step 3. We next claim that there exists T1 > 0 such that v = u o ¢ 
satisfies the main hypothesis (64) of Lemma 7, which we recall is that 

v(y0, ... , yn) = sign(yn) if 0 :S y0 :S T1 and IYnl = r. 

We have arranged that signyn = sign(l5r o ¢(y)) = sign0 (¢(y)), so it 
suffices by (72) to show that there exists T 1 > 0 such that 

¢(y0, ... , yn) E A if 0 :S y0 :S T1 and IYnl = r. 

And this is clear, since (73) implies that 

¢({0} x 'll'n-1 x {±r}) = {(O,x): dist(x,f0 ) = r} 
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and hence this set is a compact subset of the open set A. 
Step 4. We now apply Lemma 7 to conclude for example that 

Since [ayov[ ::::; [Drv[, it follows from this and a form of Poincares in­
equality that (writing v0 (y0 ,y\ ... ,yn) = v(O,y\ ... ,yn)) 

(74) 1 2 C(T1)2 
(v- vo) ::::; --(o. 

[O,T1 ]x']['n-lx[-r,r] E 

Recall that¢: [0, To] x 'll'n- 1 x [-r, r] is a diffeomorphism onto its image. 
The same thus holds for ¢0 on 'll'n-1 x [-r, r]. As a result, the Jacobian 
determinants of¢, ¢0 , and their inverses are uniformly bounded in the 
relevant domains, and we can change variables freely, at the expense of 
increasing our constants somewhat. Thus, defining N1 := ¢([0, Tt) x 
'll'n-1 X (-r,r)), since (u-Ue)o¢=v-q(Y:) 

{ [u- Ue[ 2 ::::; C { . [v- q(yn W 
}N1 J[o,T1 )x']['n- 1 x[-r,r] E 

:::;c r [v-vol2 + lvo-q(yn)l2 
J[o,T1 )x'll'n- 1 x[-r,r] E 

(75) ::::; CT{ (o + CT1 { [uo- Ue(O, ·)[ 2 . 
E J{xEJRn:dist(x,ro)<n 

In the last line we used (74) and changed variables again. 
Now we complete the proof of the theorem by remarking that there 

exists T2 > 0 such that 

This is easy to verify. Once this holds, (69) follows from (72), and (70) 
is a consequence of (75). Q.E.D. 

We close this section with the 

Proof of Corollary 1. We define 

where 

{
sign0 

ua(x) := 1le{8r(x)) 
if dist(x, ro) ~ ~ 
if dist(x, ro) < ~ 

s 
ij(s) := (1- x(s)) sign(s) + x(s)q(-) 

E 
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and X E C~ (IR) is an even function, nonincreasing on [0, oo), such that 

(76) 
. r 

x( 8) = 1 If 8 ::::; 4, . r 
x(8) = 0 If 8 ~ 3. 

The exponential decay (18) of q implies that ij(8) -q(;) is exponentially 
small in E (pointwise, and in any Sobolev norm), and it follows in par­
ticular that lluo- Ue(O, ·)ll£2({dist(·,ro)<r/2}) ::::; Ce-cfe. Also, for this 
data, v0 == u0 o ¢ = iie (yn), and then it is straightforward to verify that 
( 0 :=::;j CE2 . Q.E.D. 

4.6. Improvements 

Theorem 2 has some of serious weaknesses: 

• It requires extremely strong pointwise assumptions (68) on the 
initial data away from r 0 

• Its conclusions are valid only for a short time TI. In particular, 
if T denotes the first time (possibly +oo) at which the subman­
ifold r develops a singularity, then a better result would be one 
that is valid up to timeT. 

• It only applies to surfaces r such that r t is homeomorphic to 
the (n- 1)-torus for every t. 

• It only applies to surfaces r whose initial velocity vanishes. 

Concerning the topology of r, note that by assuming that r t is 
topologically a torus for every t, we have arranged that it admits a nice 
parametrization by a single coordinate chart. This is convenient, but 
it is certainly possible to carry out a similar argument with r given 
as the image of by a map \II : [0, T) x M -+ JRHn for some arbitrary 
smooth (n-1)-manifold M, and with¢ defined on the product manifold 
[0, T) x M x ( -r, r) for some r. This is carried out in detail in [24] and 
does not present any conceptual difficulties. 

We will not say much here about the question of nonzero initial 
velocity, which however is considered in detail in [35]. 

The first two weaknesses mentioned above both arise from the same 
source: they are needed to guarantee that the very strong pointwise 
boundary conditions (64) assumed in Lemma 7 are satisfied. To relax 
this assumption, we recall its role in the proof of Lemma 7, which is: 

assumption (64) =:?- lower energy bounds =:?- ( 2 (8)::::; C(I(8) 

where (1, (z are defined in the statement of the Lemma. In particular, 
lower energy bounds (65) that follow from (64) are used to neutralize 
a dangerous negative term in ( 1 and hence show that it possesses some 
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coercivity properties. Without such lower bounds, control of ( 1 can yield 
no useful information. 

We therefore need to identify weaker assumptions under which lower 
bounds like those in the proof of Lemma 7 still hold. This is done in the 
following 

Lemma 8. For every r > 0, there exist constants K,1 , C > 0 such 
that ifv E H 1 ([-r,r]) satisfies 

(77) jr/2 lsi lv(s)- sign(s)l2 ds::; /'1,1 

-r/2 

then l r/2 E 1 
-(v')2 + -F(v) ds ~co- Ce-C/£. 

-r/2 2 E 

The proof, which is not very difficult, is given in [35], Lemma 11. 
The informal idea is that if /'1, 1 is fixed to be small enough, then 

(77) ==? "v has an interface near s = 0", 

and this implies lower energy bounds. 
Using Lemma 8 one can prove 

Lemma 9. Let v be a smooth solution of (58) on Mf0 , for To and 
r as in Lemma 7. 

For a constant c* to be specified later, and depending on r, r, To, for 
s < r jc* let I(s) denote the interval ( -r + c*s, r- c*s) , and define 

(1(s;r):= r (!, (1+(yn) 2 )e£(v)dyn-eo)dy1 ···dyn-1 , 
J{s+r}xTn-1 I(s) 

(2(s; r) := r EIDrvl 2 
J{s+r }x'[n-1 xl(s) 

+ (yn) 2 (E(8ynv) 2 + ~F(v)) dy1 · · · dyn 

(3(s; r) := r IYnllv- sign(yn)l 2dy1 ... dyn. 
J{s+r }xTn-1 x [- ~ ,~] 

Then for any T <To and for 0 ::; s ::; T1 = max(To - T, 2~. ): 

and 
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for constants independent of E. 

Using the Lemma, one can easily argue by Gronwall's inequality 
that maxi=1,2,3 (i(s; T) :::; Ce08 maxj=1,2 (j(O; T). 

It is easy to convince oneself that Lemma 9 should allow for an 
improvement of Theorem 2 that does not require pointwise assumptions 
about the initial data, replacing these assumptions by integral estimates, 
including smallness of (3(0; 0). 

It is a little less obvious, but also true, that one can use Lemma 9 to 
prove that conclusions like those of Theorem 2 hold up to any time T0 < 
T, where T is the first time at which r develops a singularity. This can 
be done by an iterative argument that switches back and forth between 
energy estimates for u in the (t, x) variables and for v in they variables, 
where the latter just consist in invoking Lemma 9 for successively larger 
values of T. At each step, smallness conditions for either u or v are 
verified by using previous conditions proved previously for both u and v. 
It is proved in [35] that by arguing in this way, one can reach any time 
To <T. 

We sketch some elements of the proof of Lemma 9: 

• The estimate of (2, which proves the coercivity of ( 1 (modulo 
errors controlled by (3) rests on good lower energy bounds 
that are deduced from Lemma 8, together with an argument 
involving Chebyshev's inequality that uses (3 ( s) to control the 
size of the set of points (y1, ... , yn-1) E 'IT'n-1 on which the 
map z c-+ v(s, y0 , ... , yn-I, z) fails to satisfy hypothesis (77). 

• To estimate (~, as before we differentiate, appeal to the dif­
fererential energy inequality (63), and integrate by parts. The 
boundary terms arising from the integration by parts, which 
earlier vanished due to the pointwise assumption (64), here are 
controlled by taking the constant c* sufficiently large. 

• To estimate (3, we fix Q: JR. c-+ JR. such that Q' = V'FF, and we 
note that 

By integrating this identity we find that changes in (3 are con­
trolled by integrals of (2. 

4.7. The case c = 0 

In this section we present a very sketchy discussion of the parabolic 
case c = 0. In this case, we can no longer take advantage of finite 
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propagation speed. On the other hand, things simplify somewhat in 
that the diffeomorphism¢= (¢0 , ... , ¢n) defined in (32) now preserves 
the time variable. 

The argument we sketch here is conceptually very similar to the 
parabolic weighted energy estimates introduced in [63] and discussed 
in the introduction, and as mentioned there, there are much stronger 
results available concerning this equation. 

We proceed as follows, setting d = 1 in (8) for simplicity. The change 
of variables v = u o ¢ then leads to the equation 

where i, j are summed implictly from 1 to n, and 

using properties of the change of variables and the equation solved by r. 
In this case, (gi1) is positive definite, and the natural energy is simply 

Also, it remains true that gin = gni = 0 if 1 ::; i < n and 1 if i = n. 
Parallel to (63), we have a differential energy inequality 

(l(s) := r ( r x(yn)(1 + (yn)2)eE(v)dyn- Co) dyl ... dyn-l, 
J{s}x'Jfn- 1 J[-r,r] 

(2(s) := { x(yn) [EI\7rvl 2 
J{s}x1fn- 1 x[-r,r] 

+(yn)2 (E(Oynv) 2 + ~F(v))] dy 1 · · ·dyn, 

(3(s) := r IYnl lv- sign(ynWdy1 ... dyn, 
J{s} x'Jfn- 1 x [-:'f ,:;[] 

(4(s) := { (1- x(or )) [~l\7ul 2 + ~F(u)] dx. 
J{s}xJRn 2 E 
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Then, parallel to Lemma 9, one can verify that 

(~ (s) + CE r x(yn)(8yov) 2dy1 ... dyn ~ C((2(s) + (4(s) ), 
J{s}x1fn x [-r,r] 

(2(s) ~ C1(1(s) + C3(3(s) + Ce-Cf<, 

(3(s) ~ 2(3(0) + C las (2(D")dO", 

(~(s) + CE r (1- x(or )) (8tu) 2dx ~ C((2(s) + (4(s)). 
}{s}xlJi!.n 

Indeed, the estimates of (2 , ( 3 are exactly as in Lemma 9, and the es­
timates of ( 1 follows by arguing as in the earlier lemma, but keeping 
track of an additional negative term and using ( 4 ( s) to help control the 
boundary terms arising from integration by parts. It is at this point 
(and in the estimate of ( 4 , which is very similar to that of (I) that we 
use the fact ¢ preserves the time variable. 

Once the above analog of Lemma 9 is established, one can conclude 
(by some argument involving Gronwall's inequality, temporarily ignoring 
the (8yov? and (8tu) 2 terms in the first and fourth inequalities) that 

. max (i(s) ~ Ce 8 max (j(O) + Ce-Cf<. 
2=1,2,3,4 J=l,2,3 

Then recalling for example the (8yov) 2 , term we find that 

As before, one can find data such that (j(O) ~ CE2 for j = 1, 2, 3 and 
then prove via Poincare's inequality a statement of the form 

(78) 

for a suitable neighborhood of N of r in [0, To] X IR.n for any To less than 
the first time T at which r develops singularities. 

The above estimates also imply other conclusions such as energy 
concentration around r, as in the original weighted energy estimates of 
Soner [63]. The L 2 estimate (78), however, is not established in [63] 
and would require some work to extract from the basic estimates proved 
there. 

Remark 6. When c =J 0 one could presumably foliate a subset of 
JR. x IR.n that contains [0, To] x IR.n by spacelike hypersurfaces :Et such that 
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• {t} X rt C :Et, and 
• r is normal to :Et at every point of { t} X r t. 

This done, one could argue as above with ( 1 , ... , ( 4 , with no need to 
switch back and forth iteratively between ( t, x) and y variables. (In our 
sketch of the parabolic argument, a limited amount of switching back 
and forth is needed in the estimates of (i and (~, but it is only needed 
once in each estimate.) 

§5. Rigorous results: vortex/string dynamics 

In this section we state some rigorous results about dynamics of 
energy concentration sets in solutions of complex-valued semilinear wave 
equations. These theorems assert the existence of solutions for which 
energy concentrates around a codimension 2 submanifolds, which are 
sometimes referred to in the literature as either strings or vortices. We 
will discuss some aspects of the proofs in the following section. 

5.1. The Ginzburg-Landau wave equation 

We first consider the simplest vector-valued analog of the equation 
treated in Theorem 1: 

(79) 1 2 
Utt- /).u + 2 f(fuf )u = 0, 

E 
U: ~Hn-+ ~2 

where f: [0, oo)-+ ~is a strictly increasing function such that f'(O) = 0 
and f(1) = 0, !'(1) > 0. We will write F to denote the function such 
that 

f=2F', F(1)=0, F(s)>Ofors-:f.l. 

The prototype is f(s) = s -1 and F(s) = ~(s -1) 2 . 

There is no signed distance function for submanifolds of codimension 
> 1, so here we write 8r to denote the (unsigned) distance function 
to an extremal codimension 2 timelike submanifold, characterized in a 
neighborhood N of a submanifold r by 

8r = 0 on r, 

and 
8r > 0, 

This distance function is smooth inN\ r, for suitable N, but not at 
points of r. 

Theorem 3. Assume that T* < 0 < T*' and that r c (T*, T*) X ~n 
is a smooth embedded timelike codimension 2 surface of vanishing mean 
curvature. Assume further that rt is diffeomorphic to 1'n-2 for every t. 
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Then given T _, T + such that T* < T _ < 0 < T + < T*, there exists 
a neighborhood N ofr in (T_, T+) x JR.n in which the unsigned distance 
function <>r is well-defined, and for every E E (0, 1], there exists a solution 
u< of (79) such that 

j, [xN8f + (1- XN)] ( u; + IV'ul2 + ~ F(lul2)) dx dt < C, 
(T_,T+)xRn E 

and 

r ( u; + IV'ul2 + 12 F(lul2)) ~ Clln t:l 
J{t}xJRn E 

for every t E R 

This is proved in [35], where analogs the results discussed in Remark 
2 (more general stability estimates) and Remark 3 (estimates of the 
difference, in weak norms, between the energy-momentum tensors of u 
and of r) are also established. 

Remark 7. The proof also shows that the solution u exhibits a "vor­
tex structure" on most cross-sections tor. To state this more precisely, 
fix p Ern{ (t, x) : T_ < t < T+ }, and let v1 , v2 be an orthonormal basis 
for (Tpr)_i, where "orthonormal" and "_1_" are understood with respect 
to the Minkowski metric. We then define 

(80) 

for z = (z1 , z2 ) in a small ball around the origin in JR.2 . The proof shows 
that, except for points p in a subset of r of small measure, 

(81) Ill w(up) -n8o Ill«: 1, 80 := Dirac delta function 

where 111·111 denotes a weighted w- 1,1 norm and w(up) is the vorticity 
of up, defined in (103) below. Thus we interpret (81) as stating that up 
exhibits a quantized vortex near the origin. 

The restriction r t 9'_ 1rn-2 could be dropped following arguments in 
[24]. Note, however, that this assumption includes the most important 
special case, which it when n = 3 and r t is a closed string for every t. 
It should also be straightforward, following [24], to establish analogous 
results in more general Lorentzian manifolds. 

The conclusions of Theorem 3 are much weaker than those of The­
orem 1. It only shows that the total energy is divergent, and that the 
divergent part of the energy concentrates around r. One major new 
difficulty in the vector case is that there are new rotational degrees of 
freedom, as in the choice of v1 , v2 in (80). This makes it much harder 
to prove a statement along the lines of "u< ~ U<" for some explicitly 
constructed U<. 
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5.2. The Abelian Higgs model 

The equations of most interest in the cosmological literature on topo­
logical defects are gauge theories. Perhaps the simplest example is the 
Abelian Higgs model, which was the first hyperbolic equation for which 
it was suggested that solutions should exhibit topological defects. In 
this discussion we restrict our attention to the physical case of (1 + 3)­
dimensional Minkowski space. 

The Abelian Higgs model concerns a function u : JR1+3 --+ C, called 
the Higgs field, coupled to a 1-form A with components Aa : JR1+3 --+ JR., 
a E 0, ... , 3. We write Da to denote the covariant derivative 

and we define F := dA, a 2-form with components 

One may regard A as a U(1) connection and F as the associated curva­
ture. We write (!,g) to denote the real inner product 

(!,g)= Re(fg). 

The Abelian Higgs model is the system 

(82) 

(83) 

where we raise an lower indices with the Minkowski metric, so that 

In (82), (83), the parameter E is a scaling parameter, and plays a very 
similar role to E in Theorem 1 and 3. On the other hand, the behaviour 
of solutions depends on the parameter A in a essential way. In particular, 
A = 1 is a critical case in which the analysis simplifies in some ways. 

The following theorem is proved in [18]. In the statement of the 
theorem we use the notation 

Theorem 4. Assume that T* < 0 < T*' and that r c (T*' T*) X JR3 

is a smooth embedded timelike codimension 2 surface of vanishing mean 
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curvature. Assume also r t is homeomorphic to 8 1 for every t and that 
the initial velocity of r at t = 0 is everywhere 0. 

Let A> 0 and mE Z be such that conditions (89), (90) below hold, 
and let (u;,m, A;,m) be the associated m-vortex approximate solution 
around I', as described in (92) below 

Then given T _, T + such that T* < T _ < 0 < T + < T*, there exists 
a neighborhood N ofr in (T_, T+) x JR.3 in which the unsigned distance 
function 8r is well-defined, and for every E E (0, 1], there exists a solution 
(u" A.) of (82)-(83) such that 

{ [xN8f + (1- XN)] e,(u,, A.) dx dt ~ CE2 , 
j(T-,T+)xffi-3 

and 

Moreover, 

for every t E R 

As with the Theorems 1 and 3 (see Remark 2 above), the proof 
establishes a number of stability estimates that we have not stated here. 

Remark 8. Hypotheses (89), (90) are known to be satisfied for 

• lml = 1 and A E [~, 2], see [18]. 
• lml = 1 and all A larger than some Ao, see [56]. 
• A = 1 and all m E Z, see [32]. 
• any A> 0, and m minimizing n r-+ £~among nonzero integers, 

see [18]. 

They are believed to hold for all m E Z when 0 < A < 1, and for all 
A > 0 when lml = 1. 

Conditions (89), (90) on m, A are related to aspects of the Euclidean 
Abelian Higgs model on JR.2 , which we now describe. We will use the 
notation 

(84) 

for the 2-dimensional Abelian Higgs energy, where u E Hloc(JR.2 ; C) and 
A = A 1dy 1 + A 2 dy2 is a 1-form with components in Hloc' and F12 = 
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81A2- 82A1. A finite-energy configuration is a pair (u,A) such that 
e~ >. ( u, A) is integrable on JR2. 

' It is standard to define the vorticity w( u, A) to be 

For every A., one can check that lw(u, A)l :-::; C>,e~,>.(u, A). It is also a 
fact (see for example [18, Section 2]) that 

(86) { w(u,A) dyE 7rZ 
Jn:f.2 

for every finite energy ( u, A). 

Hence, the space of finite-energy configurations is a disjoint union of sets 

(87) Hm :={finite-energy (u,A) : { w(u,A) = 7rm} 
JJR2 

called weak homotopy classes by Riviere [56] (who gives a different but 
equivalent description of them). We will use the notation 

(88) &;, := inf{ { er >.(u,A) : (u,A) E Hm}· 
JJR2 , 

The two hypotheses that Theorem 4 imposes on A., m are 

(89) 3 (u>-,m A>.,m) E H such that 1 e" (u>.,m A>.,m) = t>-
' m l,A ' m JR2 

and 

(90) e;. :.:::: £~ for all n such that lnl ?: lml. 

Assuming that (89) holds, we will define them-vortex approximate 
solution to have the form (near r) 

(91) 

where 8-r = ( 8f,, 8f,) is a sort of vector-valued distance function and A;,m 
denotes the ith component of A>.,m for i = 1, 2. Equivalently, parallel 
to (34), the approximate solution admits a simple description in terms 
of suitable normal coordinates. That is, there exists a neighborhood N 
of r in lR 1+3 and a diffeomorphism 

¢: (T-,T+) X 8 1 X {y" E IR2 : IY"I < r}-+ N, 
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described in (95), (97) below, such that 

(92) 

where y = (y0, ... y3) and yv := (yv,l, yv•2) := (y2 , y3). Here ¢*A de­
notes the pullback of A by ¢. (In fact the vector-valued distance function 
8 in (91) just consists of the last two components of ¢-1 .) 

The construction of the approximate solution is not completely ca­
nonical, since there is a certain amount of arbitrariness in the construc­
tion (95), (97) of the normal coordinate system, or equivalently the 
function J'r. However, any two approximate solutions are close enough 
together that the difference between them scales like a lower-order term, 
compared to the estimates in Theorem 4. 

We remark that approximate solutions of the above form are pre­
dicted by "reduced Lagrangian" arguments of the type described in Sec­
tion 2.7. 

The conjecture of Nielsen and Olesen in their landmark 1973 paper 
[54] was that (82), (83) should have solutions of roughly the form (91), 
where ( u>-,m, A>.,m) is an equivariani" degree m vortex solution of the 
Euler-Lagrange equations associated to the 2-d euclidean action nmc­
tional 

{ e]' .>.(u,A). 
JJR2 ' 

This is believed to hold for 

(93) 0 < A :::; 1 and m E Z, or A > 1 and lml = 1. 

It follows from Theorem 4 that the Nielsen-Olesen picture holds when­
ever (89), (90) are satisfied and, in addition, the minimizer (u>-,m, A.>.,m) 
in (89) is equvariant. Jaffe and Taubes [32, Chapter III.1, Conjectures 1 
and 2] conjecture that this holds for all A, m as in (93). The conjecture 
is proved when 

• A= 1 and m is any nonzero integer, see [32]. 
• A is larger than some Ao, and lml = 1, [56]. 

Thus the exact Nielsen-Olesen scneario is verified for these values of the 
parameters A, m. 

It is known from work of Berger and Chen [9] that equivariant vortex 
solutions exist for all A > 0 and m E Z, and a paper of Gustafson and 

3 An equivariant configuration is one that can be written in the form 
(p(r)eime, a(r)dfJ). 
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Sigal [27] proves that the equivariant vortex is linearly stable for the full 
range of parameters (93). 

Thus, one might hope to prove that the Nielsen-Olesen scenario 
holds for the full range (93) of parameters either by 

• proving the Jaffe-Taubes conjecture in its entirety, or 

• finding a way to prove something like Theorem 4 using the 
weaker (but still highly nontrivial) stability properties of equi­
variant solutions from [27] in place of the global minimality 
(82), and the associated very strong stability properties, used 
in [18]. 

§6. Elements of proofs: string/vortex dynamics 

There are obvious parallels between the statements of the Theorems 
1, 3, and 4 above. Not surprisingly, the proofs have many similarities as 
well. Indeed, all of them follow more or less the same general template: 
a change of variables, built around a submanifold r solving the relevant 
geometric evolution problem, that eventually reduces the question of 
dynamics of codimension k defects in nonlinear field theories to the study 
of certain stability properties of ground states of associated variational 
problems in JRk. 

This reduction to a problem about stability is very robust. The 
stability analysis, however, depends intimately on the equation being 
considered. 

Throughout this section we will for concreteness consider ( 1 + 1 )­
dimensional strings in lR 1+3 . 

(94) 

6.1. The Ginzburg-Landau wave equation 

We first consider 

1 2 
Utt - D.u + 2 !(lui )u = 0, 

E 

for f as described in Section 5.1. 

Fix a codimension 2 timelike extremal submanifold r as in Theorem 
3, and assume r is parametrized by a map \[! : ( -T*, T*) x S 1 ---+ JR1+3 

of the form 

Fix smooth maps Vi : ( -T*, T*) X S 1 ---+ JR1+3 fori= 1, 2, such that 

(95) i,j = 1, 2 
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everywhere in ( -T*, T*) x 8 1 -+ JR1+3. Thus, {v1(y), v2 (y)} forms an 
orthonormal frame for (Tw(y)r).l. 

Note that the choice of {v1 , v2 } is rather arbitrary. Indeed, if o: : 
(-T*, T*) x 8 1 -+ lR is any smooth function, then 

(96) 

would also satisfy (95). 
Then, parallel to the coordinate system introduced for the codimen­

sion 1 case in Remark 1 in Section 2.3, we define 

(97) A.( 0 3) ·- •T•( 0 1) + 2 ( 0 1) + 3 ( 0 1) '+' y , ... , y .- ~ y , y y v1 y , y y v2 y , y . 

We will write B"'(r) := {(y2 ,y3): J(y2 ,y3 )J 2 < r 2 }. We may restrict 
the domain of ¢ to a set of the form (-T1 , T 1 ) x 8 1 x B"' (p), so that 
it becomes a diffeomorphism onto its image. Then given a solution u of 
(94), if we define v := u o ¢, we find that v solves an equation of the 
form 

(98) 

where 

and 

This last condition is exactly the fact that r is an extremal surface. We 
define (a"".B) see (62), and 

·- 1 [1 a,B 1 ] ee(v) .- JlogEJ 2a OyaV · Oyflv + E2 F(v) . 

The normalization is chosen so that J ee(v) = 0(1) in the regime we are 
interested in (that is, for functions with a vortex filament.) Then for 
any smooth solution v of (98), it follows from (100) that 

8 
(101) oy0 ee(v) 

:::::; Jlo~ Ei [t, Oy; (gi""oy"' v · Oyov) + C (ID7 vJ 2 + (y"')2 1Dvvl2)] , 
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where IDrvl 2 := L:!=0 (8yav) 2 , 1Dvvl2 := I:!=2 (8ya) 2 , and Cis uniform 
on compact subsets of Domain(¢). So far, all of this is exactly as in the 
scalar case, apart from the different normalizations. 

We are interested in initial data of the form 

(102) 

where q : IR2 -+ IR2 is a function such that4 q(rei0 ) ~ eil! as r -+ oo, 
where we identify IR2 and <C in the usual way. This is what is meant by 
a "string" or "vortex filament" . 

One might hope to choose q such that v is nearly independent of y0-

such data would possess a strong stability property. This would however 
be difficult, in part because it would require a very careful analysis to 
correctly fix the degree of freedom described in (96). 

Thus, we instead note that for data of the form (102), energy con­
centrates near 8 1 x {0}, in the sense that for example e<(v(O, ·)) -' 
c0 1i1L(S1 x {0} )weakly as measures. We will aim to use weighted en­
ergy estimates to show that this energy concentration near {yv = 0} 
(that is, near r) persists at later times. Following the scalar case, we 
consider 

for a suitable p(s) and c0 (in fact c0 = 1r is a good choice). One may use 
(102) to show that 

d 
ds(1(s;T)::::; C(2(s;T) 

provided s 1--+ p(s) is taken to decrease sufficiently quickly. To go farther, 
one needs for example to bound ( 2 by ( 1 . For this, it is necessary to 
prove lower bounds for the positive part of (1 that are strong enough 
to neutralize the negative term -c0 and leave a remainder with some 
coercivity properties. 

4In principle one could also consider q such that q(rei0) ~ eidO as r -+ oo 
for some integer d 2: 2, corresponding to a multiply quantized vortex filament, 
but such objects are not expected to be stable. 



202 R. L. Jerrard 

The informal idea is to construct a quantity (3 ( s; T) such that if 
( 3(s; T) is small, then for a large set (whose size is controlled by (3) of 
points y 1 E S 1 , 

v(s + T, y 1 , ·) "has a vortex rather near the origin in JR.2", 

so that a careful accounting of the energy associated to these vortices 
may yield the needed lower bound. This is necessary for our argu­
ments, and also yields the qualitative information about u discussed in 
Remark 7. 

The above strategy is similar to the scalar case (compare the discus­
sion of Lemma 8) but the implementation is very different, and relies on 
machinery for the study of energy and vorticity in (2-dimensional Eu­
clidean) Ginzburg-Landau functionals, developed in [33], [60], [40] and 
other references. Briefly, given u E H 1 ( Bv (p); q, if u is thought of as a 
quantum mechanical wave function, then it is standard to interpret 

j(u) := Im(u \lu) 

as the associated momentum density or current, and following [40] and 
others, we define 

(103) 
1 . 

w(u) := 2v x J(u) 

to be the associated vorticity5 . Results of [40], [41], [37] develop bounds 
relating the energy 

and the vorticity. For example, from [41] it is shown that if 

(104) 

(one may interpret this as asserting that "there exists a vortex rather 
near the center of Bv(p)") then there exists a constant such that for 
EE(0,1] 

(105) 

5If we write u = u 1 + iu2 , then w( u) = det ( ~~ ~~ ~~~~ ) , which is the 

Jacobian determinant of u. For this reason, it is often denoted Ju. 
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Moreover, this lower bound is attained. These estimates encode a sort 
of stability property of the set of wave functions u such that 

llw(u)- 7r8ollw-l,l(B"(p)) « p. 

Indeed, since v H w(v) is continuous as a map from H 1 into w-l,l, it 
follows from (104), (105) that if (106) holds, then the only H 1 pertur­
bations of u that can substantially decrease the energy are rather large 
perturbations that entail "moving the vortex away from the origin." 

Guided by these heuristics, and relying on estimates along the above 
lines from [41], [37], one can formulate and prove weighted energy esti­
mates that provide a crucial ingredient in the proof of Theorem 3, par­
allel to the role played by Lemma 9 in the proof of Theorem 1. These 
involve constructing a functional (3 of the form 

where Ill · Ill is a weighted w- 1,1 norm, such that 

and such that, in addition, changes in (3 can be controlled by ( 2 and ( 1 . 

For details, we refer to [35]. 

6.2. The Abelian Higgs model 

Finally, we discuss very briefly the proof of Theorem 4. 
The argument begins like the proof of Theorem 3, modulo some 

extra technical complications resulting from the presence of a vector 
potential A. One performs a change of variables, defined by (97), to 
rewrite the equations (82), (83) near a timelike extremal surface r in 
terms of coordinates (y0 , •.. , y3 ) E (-T1 , T 1 ) x 8 1 x Bv (p). The fact that 
r is extremal implies that certain advection terms in the transformed 
equation vanish when yv = 0, and this in turn yields a differential energy 
inequality with error terms of the form 

where yv = (y2 , y3 ), and we split the energy (which now depends on a 
para~eter .A as well as E) into parts that are "normal" and "tangential" 
to r. Here ( u, A) denotes the solution in the new coordinates 
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A key new point is to find a quantity, say ( 3 , such that 

(3 ( s; T) small ===? 

" ( u, A) ( s + T, yl, ·) has m quanta of vorticity near the origin" 

for most y 1 E 8 1 

===? lower energy bounds, 

and such that changes in ( 3 can be estimated sufficiently well. Again, 
the strategy is similar to the one used for Theorems 1 and 3, but the 
details are very different and depend intimately on the structure of the 
Abelian Higgs model. A sample result, which plays a role similar to that 
of Lemma 8 in the scalar case, is stated below. 

Proposition 1. Suppose that .A> 0 and mEN satisfy (90). Then 
for every R > 0, there exist constants ~1 and C, depending on R, .A, m, 
such that if ( u, A) is a finite-energy configuration on B(R) c JR2 , and if 

Jrm- r (1- ( M )3 ) w(u, A)(y) dy < ~1, 
JB(R) R 

then 

1 ev (u A) > E>-. - CE2 
E,A ' - m 

B(R) 

for all E E (0, 1]. 

The corresponding results (104), (105) in the ungauged case (94) rely 
on the large literature on lower bounds for Ginzburg-Landau functionals. 
By contrast, lower bounds such as Proposition 1 above are proved more 
or less by hand in [18]. 

The interesting regime for Proposition 1, as for Theorem 4, is .A fixed 
and 0 < E « 1; this is the scaling relevant in applications to possible 
cosmic strings. In the asymptotic regime E fixed, .A » 1, the relation­
ship between energy and vorticity is well-understood, due for example 
to works of Sandier and Serfaty [61]. This situation is in fact similar 
in spirit to the ungauged Ginzburg-Landau wave equation discussed in 
Section 6.1. 

§7. Timelike submanifolds of Minkowski space 

In this section we discuss some aspects of timelike submanifolds of 
Minkowski space, and in particular extremal surfaces, defined below. 
Our goal is twofold: first, we attempt to give some background for re­
sults, described elsewhere in this paper, about dynamics of interfaces in 
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semilinear hyperbolic equations. Second, we discuss some recent work 
of Bellettini, Novaga, and Orlandi [8] that initiates a measure-theoretic 
framework for the study of extremal surfaces and related problems, and 
we highlight some of the many open questions in this area. 

7.1. Basic definitions and notation 

Throughout Section 7 we consider the Minkowski metric ( 'T/a.f3) with 
c = 1 (compare (21)), so that 

(107) ('TJa.f3) = (rya.f3) = diag( -1, 1, .. . 1). 

Apart from this, we will follow notational conventions and definitions, 
such as those of timelike and spacelike vectors, introduced in Section 
2.3, 

We are interested in timelike embedded submanifolds r c ~l+n of 
codimension k ::::: 1, where r is timelike if every nontrivial vector normal 
to r is spacelike. (This is consistent with our definition of a timelike 
hypersurface in Section 2.3.) We recall that terms such as "normal" and 
"unit" are always understood with respect to the Minkowski metric, 
unless explicitly specified otherwise. 

As in our arguments above (see for example Section 4.2), it is con­
venient to parametrize a subset of a timelike submanifold r by a map 
W: 0-+ ~l+n, where 0 is an open subset of ~l+no, for no = n- k. 
We may also always assume that 'ljJ is nondegenerate in the sense that 
Dw(y) is an injective linear map at every y E 0. It does not entail any 
loss of generality6 to assume that these maps have the form 
(108) 

w(yo, ... , yno) = (yo, 'lj;(yo, ... , yn°)), with 8yo'l/J. 8y;'l/J = 0 fori ::::: 1. 

Recall that we have defined, for a, b = 0, ... , no, 

6Indeed, for any t and any q E r t, there is an open subset Vt of r t containing 
q, and a diffeomorphism '1/Jt : Qt c Rno -+ Vt. For every y' = (y1 , ... , yno) E ot, 
one can check that there is a unique curve p(·; y') : (t- 8, t + 8)-+ Rn such that 

p(s;y') E fs for all s, p(t;y') = '1/Jt(y'), 

This verification requires an argument that uses the assumption that r is time­
like. Then one can define 'I/J(y0 , .•• yno) := p(y0 ; y') on an open neighborhood 
0 C R 1+no of (t, ('I/Jt)- 1 (q)) on which this definition makes sense, and this map 
has the stated properties. 
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Thus, bab) is the representation in local coordinates of the metric in­
duced on r by the Minkowski metric on JRl+n. If we assume (108), 
then 

(109) '/'Oi = '/'iO = 0, 

for i,j ~ 1, at every y E 0. In particular, the nondegeracy of '1/J implies 
that ('yij)~J=l is positive definite, and one can check that ')'oo < 0 (and 
hence 1' < 0) if and only if r is timelike. 

7.2. The area functional and extremal surfaces 
Given a submanifold r = \1!(0) for some \1! : 0 c JRl+no -t JRl+n, 

we define the Minkowskian area of r to be 

(110) A(r) := A( \I!; 0) = fa vfGT. 

This definition makes sense, since in fact A(r) depends only on 
r, and not on the parametrization \1!. That is, if F : 0' -t 0 is a 
diffeomprphism, so that \1! o F : 0' --+ lR l+n is a new parametrization of 
r, then it follows from basic multi-variable calculus that 

(111) A(\1!; 0) = A(\1! oF; 0'). 

Note also that A is preserved by isometries of Minkowski space. That 
is, if G is an isometry of JRl+n, then 

(112) A(r) = A(\1!; 0) = A(G o \!!; 0) = A(G(r)). 

It is also easy to see that for any bounded open n c ]Rna X {Ok}, 

(113) A((a, b) x 0) = (b- a) _cno(n). 

Any notion of "area" in Minkowski space should possess the symmetries 
(111), (112), and it is not hard to see that these completely determine 
the Minkowskian area, up to a normalization factor that we fix with the 
(natural) condition (113), for any submanifold that can be approximated 
sufficiently well by a sequence of piecewise afffine submanifolds. 

The area of a submanifold that is not contained in the image of a 
single map \1! can be computed as in the Riemannian case by using the 
above formula together with a partition of unity. 

We will say that a timelike submanifold that is a critical points of 
the area functional is -an extremal! surface. The equation satisfied by 

7In the literature, such surfaces are sometimes referred to as "minimal", 
including in some previous works of the author, and sometimes as "maximal". 
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extremal surfaces can be written in local coordinates as 

(114) 1 a ( ILl ab awo: ) VGT aya v i"Yir Byb = 0, a=O, ... ,n. 

As we discuss in more detail in Section 7.5 below (see Lemma 12), the 
left-hand side is exactly the Minkowskian mean curvature of r at \J!(y). 

Considered as a partial differential equation, (114) is underdeter­
mined, since any reparametrization of a solution is still a solution. One 
normally removes this degeneracy by imposing additional conditions to 
fix the parametrization. For example, if we insist on (108), then the 
resulting facts (109) imply that (114) becomes a quasilinear hyperbolic 
system, in the timelike case IBvo '¢1 2 < 1. 

Another way of obtaining a hyperbolic system of equations from 
(114) is to consider submanifolds r that can be written as graphs over 
lR Hno. In this case, 'I! has the form 

'l!(y) = (y,g(y)), Y E ]Rl+no, g : JRHno --+ JRk, k = n- no. 

Much of the literature on extremal surfaces considers this situation. In 
particular, [13], [45] prove global existence, for small, smooth initial 
data, of solutions of the equation for extremal graphs in the case k = 1 
of hypersurfaces. The results of [45] establish global existence for any 
n0 2: 1, whereas [13] assumes n0 2: 3 obtains stability and decay esti­
mates under somewhat weaker regularity hypotheses. Global existence 
for small data for n 0 2: 2 and arbitrary codimension is proved in [2], 
by arguments similar to those of [45] (but with a little more detail, and 
hence easier to read for non-experts.) 

Quite general results on local existence of smooth immersed sub­
manifolds of vanishing mean curvature in a general globally hyperbolic 
Lorentzian manifold are proved in [48]. 

7.3. no= 1 

The case n 0 = 1 is special, both due to poor decay properties 
of linear waves in 1 space dimension (this is the reason that some of 
the above-mentioned results are restricted to n 2: 2), and because the 
extremal surface equation, as first noted by Chang and Mansouri [15] 
and Mansouri and Nambu [46], is exactly solvable. To explain this, we 

In fact, in general they neither minimize nor maximize any quantity related 
to the area functional. Also, in the literature, "surface" is sometimes under­
stood to mean a submanifold of dimension 2 = 1 + 1, whereas here we intend a 
submanifold of dimension 2: 2 and codimension 2: 1. 
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will mostly restrict our attention to surfaces that admit a nondegnerate 
parametrization of the form 

(115) W(y0 , y 1) = (y0 , 7/J(y0 , y 1)) for some 7/J : [0, T) X 8}.; -+ lR.n 

for some E > 0, where S}.; := lR./ E7L Most of what we say remain valid 
however if S}.; is replaced by R It is easy to check that if (115) holds 
and 

(116) 

then M'Yab = ( - ~ ~ ) , so as long as 'Y does not vanish, (114) 

reduces to the linear wave equation 

(117) 

(together with the same equation for w0 = y0 , which holds trivially). 
It follows that if 

(118) 

where a, b are periodic maps JR. -+ JR_n, of period E say, such that 

(119) for all y 1 E S}.; 

then \]! parametrizes an extremal surface. Indeed, any solution 7/J of 
(117) has the form (118), and a short calculation shows that maps of 
the form (118) satisfy (116) if and only if (119) holds. 

We can use the above observations to give an easy proof of the 
existence of solutions of the Cauchy problem for (immersed) extremal 
(1 +I)-dimensional submanifolds of JR.Hn for any n. 

Lemma 10. Assume that E > 0 and that (,(/;0 , 'Jh) E C2 x C 1 (S1; 
JR.n) satisfy 

for all y 1 E S1. 
Then there exists a T > 0 and a immersion ~ : [0, T) x S1 -+ JR.n 

of the form (115) that solves (114), and such that 

(120) ,(/;(0, y1) = ,(/;o(y1), oyo,(/;(0, y1) = ,(/;l(y1). 

This solution is unique in the sense that if~ (yo, y1 ) = (y0 , ;j; (yo, y1 )) 

is an extremal immersion and satisfies (120) on (0, T) x S1, then ~ is 

a reparametrization of~. 
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The condition ~b -/=- 0 is necessary if we want W to be an immersion 
at t = 0. As discussed above, we do not sacrifice any generality in 
assuming ~o · ~1 = 0, and having imposed this condition, the assumption 
that l8yo~l 2 < 1 states that the surface we seek should be timelike at 
t = 0. 

The condition that a surface admit a parametrization of the form 
(115) turns out to be necessary for the uniqueness assertion in Lemma 10. 
Indeed, in [36] an example is presented of smooth nonunique extremal 
surfaces with the same initial data (120), in which one of the surfaces 
has the form (115) locally but not globally. Thus, in the uniquenes result, 
the topological constraints imposed by assumption (115) are significant. 

Our presentation follows [36], which in turn borrows from [6], which 
as far as we know was the first to prove the uniqueness part of the lemma. 

Proof. First, we define 

7./Jo = ~o 0 u, 7/J1 = ~1 o u, 

for u chosen so that 17./Jb 12 + I7/J1I2 = 1. This equation states that 

( ul)21~b o ul2 + ~~1 o ul2 = 1, 

which is an ODE for u, and if we impose the additional conditions 
u(O) = 0, 0"1 > 0, then it has a unique solution, and it is easy to see 
that this solution is a diffeomorphism Sf,; --+ S1 for some8 E > 0. 

Having reparametrized the initial data to arrange that the con­
straints (116) hold at time t = 0, if we now write down the solution 
7./J of the Cauchy problem for wave equation, we find that it respects 
the constraints at all times, and hence determines an extremal surface. 
Indeed, 7./J has form (118), where a, b satisfy 

so that 
I 1 ( I ) a = 2 7./Jo + 7/J1 , 

Then it follows from properties of 7/Jo, 7/J1 that (119) holds. As a result 
\fl = (y0 , 7./J) solves (114) as long as 1 -!=- 0. It is also clear from the 

8In fact E may be interpreted as the total energy of the string, and is given 
by 
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definitions that W is an immersion when '1 -:jc 0, and it is easy to check 
that if (116) holds, then '1 = -l~y' 14 . Since oy' ~o never vanishes and 
S1 is compact, it follows there exists T > 0 such that ~Y' does not 
vanish t < T. 

To find a parametrization of the same surface with the original 
Cauchy data (120), we simply define ,(/J(yo,y1) = ~(y0 ,(J"-l(yl)). 

To prove the uniqueness assertion, first we can use the diffeomor­
phism (}" as above to reduce to the case in which (116) holds when t = 0. 
We may further change variables to impose the condition Oyo;f;·oy' ;(; = 0. 
Once this is done, one can check that the (nonlinear) Euler-Lagrange 
equations (114) imply that the condition l8yo~l 2 + loy' ~1 2 = 1 is pre­
served by the evolution, so that (116) continues to hold as long as 
'1 -:jc 0. We refer to [6] for details. Then (116) and (114) imply that 
the wave equation (117) is satisfied. This implies the uniqueness asser­
tion. Q.E.D. 

Let us say that an extremal cylinder is a (1 + 1 )-dimensional extremal 
surface of the form (115). We can extract a great deal of information 
about extremal cylinders from the explicit formula (118), (119). For 
example: 

• There does not exist any globally smooth extremal cylinder in 
JR1+2 ; any initially smooth cylinder develops discontinuities in 
the spatial tangent in finite time. See [53]. 

• In lR Hn, n ;::: 4, for generic initial data (with respect to a 
natural topology) the corresponding extremal cylinder is glob­
ally smoothly immersed. For n = 3, roughly speaking, both 
globally smooth immersed solutions and solutions that develop 
singularities occur for large sets of initial data (that is, sets with 
nonempty interior). See [36]. 

• A subrelativistic closed string is a map of the form (118), where 
a, b : S1 -+ lRn are maps such that Ia' I ::; 1 and lb'l ::; 1 
everywhere. Any subrelativstic closed string is a uniform limit 
of extremal cylinders. See [14], [6]. 

These results show some smallness hypotheses are necessary for 
global well-posedness of graph-like extremal surfaces as proved in [2], 
[13], [45], and that in the more general situation considered in [48], one 
will not expect global well-posedness. 

7 .4. Lorentzian varifolds 

Singular extremal surfaces are expected to arise naturally in certain 
problems coming from mathematical physics, both due to singularity 
formation in the equations that govern immersed extremal surfaces, as 
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discussed in detail in 1 + !-dimensional examples above, and due to 
possibly singular resolutions of collisions or self-intersections. Thus it is 
desirable to have a mathematical framework in which to describe and 
study singular solutions. 

An intriguing proposal in this direction was put forward in recent 
work of Bellettini, Novaga, and Orlandi [8], who initiate the theory of 
what they call Lorentzian9 varifolds. The aim is to define, by analogy 
with classical (Euclidean) varifolds, a class of generalized submanifolds 
that are represented by measures on 

l11ll+n T 
m.. X l+no,l+n 

where Tl+no,l+n denotes the set of unoriented timelike (1 +no) planes 
in (1 + n)-dimensional Minkowski space. One would like the space of 
such generalized submanifolds to have good compactness properties, and 
a problem that immediately arises is that Tl+no,l+n is not compact in 
any reasonable10 topology. This issue is resolved in [8] by introducing a 
rather natural compactification of Tl+no,l+n, denoted Bl+no,l+n, then 
defining Lorentzian varifolds to be measures on JR.l+n x B 1+no,l+n· 

The authors of [8] then go on to define weakly rectifiable Lorentzian 
varifolds, and they obtain a formula in this setting for the first variation 
of (Minkowskian) area, which in particular yields a definition of extremal 
Lorentzian varifolds. They also find some properties of extremal vari­
folds, including in particular conservation laws for energy and angular 
momentum. 

Let us say that a weakly extremal cylinder is the imager= Image( \I!) 
of a map \1! of the form (115), (118), (119), not necessarily an immersion. 
It is proved in [8] that every weakly extremal cylinder can be identified 
as (the spatial support of) a (1 +I)-dimensional stationary Lorentzian 
varifold. One may introduce several possible notions of a singular set of 
such a cylinder, one of which is 

Sing:= {\l!(y0 ,y1): rank(V'\I!)(y0 ,y1 ) < 2} 

= {w(yo,yl): Oyt'l/J(yo,yl) = 0}. 

9In fact, in [8] this theory is only developed in Minkowski space, and certain 
aspects of the treatment there rely, at least superficially, on fixing standard 
global coordinates for Minkowski space. But the basic idea can be implemented 
in more general Lorentzian manifolds. 

100ne possible topology is obtained by mapping Tl+no,l+n into the space 
of (1 +n) x (1 +n) matrices corresponding to Minkowskian orthogonal projection 
onto elements of Tl+no,l+n• then using the topology induced from JR(l+n)x(l+n). 
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(The equality above follows by inspection of the explicit formula for W.) 
Then r is timelike and regularly immersed in an open neighborhood of 
every point of r \ Sing, while at every point of Sing, not only does 
the distinguished parametrization degenerate, but also, one can check, 
r fails to be timelike. A stricter notion of singular set is 

Sing* := {p E Sing: lim T(q) does not exist}, 
qEr,q--+p 

where T(q) := (8yt'l,l;/l8yt'l,l;l)o1,1;-1 , defined wherever it makes sense. The 
following conclusions are proved in [36]. 

• If r is a weakly extremal cylinder with initial data (in the sense 
of (120)) in Ck X ck-l' k ~ 1, then 

1 
dim(Sing) ~ 1 + k 

where dim denotes the (Euclidean) Hausdorff dimension. 
• This bound is sharp; in fact there exist examples of r satisfying 

the above assumption such that dim(Sing) = dim(Sing*) = 
1 + f· 

• If r is a weakly extremal cylinder in JR.l+2 , then dim(Sing*) ~ 
1. 

Note that if a, b in (118) are both Ck, then W is Ck. The upper 
bound on the dimension of Sing follows from only this, together with 
a rather general and sharp form of Sard's Theorem which can be found 
in Federer [23, 3.4.3]. The fact that this bound is sharp is proved by 
an explicit construction which is inspired by examples used to prove the 
sharpness of Sard's Theorem, see again [23]. 

7.5. Mean curvature of submanifolds of Minkowski space 
We end this section by reviewing some basic definitions and proper­

ties of mean curvature of timelike submanifolds of Minkowski space. 
Given two vector fields Y, Z on JR.l+n with components ya and za, 

we will write11 '\lyZ to be the vector field with components yf3axflza. 
Assume that r is an embedded timelike (1 + n 0 )-dimensional sub­

manifold of JR.l+n. If Y, Z are vector fields defined in a neighborhood of 
a point p E r, and Y, Z are both tangent to r at points of r, then we 
define 

A(Y, Z) := '\lyZ- 'V~Z, 

11 Everything in this section remains true for general Riemannian or semi­
Riemannian manifolds, the only change being that in general, one defines \7 to 
be the Levi-Civita connection associated to the (semi)-Riemannian metric. 
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where pr denotes Minkowski orthogonal projection onto Tpr. Thus, for 
v E Tpffi'.l+n, we define pr v to be the unique vector such that 

In particular, A(Y, Z) is just the orthogonal projection of \7y Z onto the 
orthogonal complement of Tpr. The following facts are standard and 
not hard to check. 

• If Y = Y and Z = Z on r, then A(Y, Z) = A(Y, Z). 
• If f is a smooth function, 

then A(JY,Z) = JA(Y,Z) = A(Y,jZ). 
• A(Y, Z) = A(Z, Y). 

These imply that A(Y, Z) depends only on Y(p) and Z(p), so that AlP 
defines a symmetric, bilinear map Tpr x Tpr ---+ (Tpr)j_. 

The mean curvature vector of r at p is defined to be the trace of A 
at p. Thus, in terms of an arbitrary basis { X 0 , . .. , X no} for Tpr, 

(121) fi :=mean curvature vector = rab A(Xa, Xb), 

where 

a, b = 0, ... , no. 

Indeed, it can easily be checked that the right-hand side of (121) is inde­
pendent of the choice of basis, and it reduces to the familiar expression 
2::::~0 A( ea, ea) with an orthonormal basis { ea} ~::,0 . 

We next find explicit expressions for the mean curvature at a point 
p E r, in the same normal coordinate system used throughout this paper. 
We recall the construction of the coordinates. Assume that 

is a map that parametrizes an open subset of r, with p E Image(w). 
Further assume that l}i nondegenerate in the sense that its gradient 
has full rank everywhere. We may fix smooth maps vi : 0---+ JRl.l+no, 

i = 1, ... k := n- n 0 , such that {vi(y)}~=l form an orthonormal basis 
for (Tw(y)r)j_ at every y E 0, exactly as in (95). Next, we define 

k 

(122) ¢(yo, ... ' yn) := w(yT) + L yv,i vi(YT) 
i=l 

where yr := (yo, ... , yno) and yv := (yv,l, ... , yv,k) := (yno+l, ... , yn ). 
We further define, exactly as in (99), 
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Let us write X, := /!a o ¢-1 to denote the coordinate vector fields 

on Image(¢) c JRl+n associated with (y0 , ... , yn), which we may view 
as a local coordinate system. It is a special case of a general fact from 
(semi-) Riemannian geometry that 

for a,(3 E {O, ... ,n}, 

where f"' ,a& denote the Christoffel symbols (which we hope will not be 
confused with the submanifold r) 

By construction, for every p E r 

and 

{X,} ~=no+ 1 is a orthonormal basis for ( Tpr) j_. 

It follows that 
(124) 
gab(Y7 , 0) = 'Yab(Y7 ) if a, b :S: no, 

where o,,a is the Kronecker delta, and also that 

A(Xa, Xb) = L f!L abXw 
!J.>no 

In particular, using (123) and (124), we find that 

(125) ii = L gabr!J. abX!J. = -~ L (gab&y,gab) xi' 
!J.>no !J.>no 

where a, bare summed implicitly from 0 to n0 . 

Lemma 11. Assume that r is a timelike hypersurface in JRl+n, 

and let D be any smooth unit vector field such that r~a,aD"'D,B = 1, and 
D(X) _1_ Txr at every X E r. 

Then everywhere on r, 

fi = HD for H := -div D 
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Proof. We use the coordinate system, and the coordinate vectors 
{Xa}, described above. With this notation, iJ = va Xa, where va = 0 
on r for a::::; no = n- 1, and vn = 1 on r. Using a general expression 
for the divergence with respect to a coordinate system, we compute 

Since vn attains its maximum on r, clearly a~" vn = 0 on r. And for 
a < n, because va vanishes on r' so do all tangential derivatives of va. 
Using these facts and (124), repeatedly using (124), we have 

where b, c are summed from 0 to n0 . Thus the lemma follows from 
Q.E.D. (125). 

Finally, we prove that a different formula for the mean curvature, 
given in (114) above, in fact coincides with the definition given in (121). 

Lemma 12. Iff is a timelike submanifold ofJRl+n parametrized by 
a map \li : 0 ---+ JRl+n, then 

(126) ~ 1 a ( ~ ab 8\li ) 
H(\li(y)) = VTYT aya y I'Yb 8yb ' 

We recall that a, b are summed implicitly from 0 to n0 . The Lemma 
is also valid in Euclidean space. For submanifolds of a more general 
(semi-) Riemannian manifold, it remains true as long as a~cx. is replaced 
by a covariant derivative. 

Proof. It is convenient to write ii to denote the right-hand side of 
(126). We define a diffeomorphism ¢ as in (122). We can replace \li by 
¢ and 1' by g in the definition of ii, since \li(y7 ) = ¢(yr, 0). Then for 
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any a E {0, ... , n }, at points of the form (y 7 , 0) we have 

- 8¢V ab 8¢f.t 82 ¢V 1 ab 0 
77~-tvfll-t 8ya = -g 77~-tv 8yb 8ya8ya = -2g y"'9ab· 

And if a::=; n 0 , then 

by a short computation that uses a standard formula for the derivative 
of the determinant function. 

Then by comparison with our formula (125) for fi oW in normal 
coordinates, we see that 

for a = 0, ... , n, which proves that H = fi o W as desired. Q.E.D. 

§8. Open problems 

We close this paper by mentioning some of the many open problems 
related to the themes discussed above. 

8.1. The Abelian Higgs model 

A complete resolution of leading-order open problems (more refined 
problems are mentioned below) about dynamics of vortex filaments in 
the Abelian Higgs model would follow from a proof of the conjecture of 
Jaffe and Taubes [32]. 

Problem 1 (Jaffe-Taubes conjecture). Prove that for all parame­
ters A, m satisfying (93), the minimization problem (89) has a unique 
soution, and this solution is equivariant. 

So far this is only know for ).. = 1 or ).. 2" )..0 , for some large )..0 . As 
noted above, however, it is proved in [27] that the equivariant vortex is 
linearly stable whenever (93) holds. This may provide an easier route 
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an analog of Theorem 4 in the entire range for which it is expected to 
hold. Thus one can ask 

Problem 2. Prove conclusions like those of Theorem 4 for all >., m 
satisfying (93) using the linear stability result of Gustafson and Sigal [27] 
rather than the Jaffe-Taubes conjecture. 

Either of the two above questions would not just prove an analog 
of Theorem 4, but would also do so with equivariant vortices in the 
approximate solution (91). The more modest goal of simply extending 
Theorem 4 (without equvariance) to its full expected range could be 
accomplished by the following problem. 

Problem 3. Prove that hypotheses (89), (90) are satisfied for all 
>., m satisfying (93). 

As shown in [18], Problem 3 can be reduced to the study of prop­
erties of the function m H £;., defined in (88). For example, in view of 
[18, Theorem 4.1], given>.> 0, to prove that (89), (90) hold form= 1, 
it suffices to show that £~ 2': £( for all n > 1. A result of this character is 
proved for a somewhat different problem, one without gauge invariance, 
by Almog et al [3], but the proof does not seem to be easy to adapt to 
the gauged case. 

8.2. Other equations 
Defects in a huge range of gauge theories have been explored in the 

cosmological literature, and for many of these models one expects results 
parallel to those of Theorem 4 to hold. Proving this, for any specific 
model, is likely to require a good understanding aspects of an associated 
lower-dimensional Euclidean action functional, and in particular of the 
relationship between energy and "vorticity", in the spirit of Proposition 
1 (and related results in [18]) for the Abelian Higgs model. This may 
involve genuine conceptual issues, the main one being that it is not 
generally clear, in these models, what the analog of "vorticity" should 
be. For example, for certain non-Abelian gauge theories, vortices are 
naturally classified by a degree that is an element of a finite group such 
as ZjnZ, rather than an integer, as in the Abelian Higgs model. For a 
model whose vortices have degrees in Z/nZ, for example, it is not at all 
clear whether there is a local notion of vorticity that can play the same 
role as in the Abelian Higgs case. The simplest case of this scenario 
arises when n = 2, which was discussed in the original paper of Nielsen 
and Olesen [54]. 

Problem 4. Consider the coupled SU(2) Yang-Mills Higgs model 
in JR.1+3 discussed in [54, Appendix] (see also [67, Section 4.2.2] for 
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example) and prove the existence of solutions that exhibit Z/2Z vortex 
filaments whose asymptotic dynamics is governed by the Nambu-Goto 
action. 

Models that give rise to exotic vortices, as discussed above, are still 
in many cases expected to exhibit strings governed by the N ambu-Goto 
action. However, a different family of models is expected to give rise 
to so-called superconducting strings, which in principle carry currents 
and are coupled to an ambient electromagnetic field. This was first 
proposed in a very influential paper of Witten [68] and is explained 
rather clearly in [67]. Basic well-posedness issues for the conjectured 
asymptotic dynamical law of superconducting strings are still open and 
are quite unclear. 

A completely different class of physical models also give rise to ques­
tions about interface dynamics in solutions of scalar hyperbolic equa­
tions. Papers investigating dynamics of phase boundaries in materials 
with memories, propose a variety of equations and present formal deriva­
tions of laws of interface motion. Examples include the equation 

(127) Utt + d2ut- flu+ E2 J2Llut + ~ (u2 -1)(u- Ek) = 0 
E 

(studied in [59]), and a hyperbolic analog of the phase field model (see 
[58]. 

Problem 5. Characterize the dynamics of interfaces in solutions of 
( 127), for well-prepared initial data. Presumably the description given 
in [59] can be made rigorous. 

As noted in Remark 5, a rigorous analysis of the d = d = 0 case of 
(127) is given in [24], and as seen in Section 4, incorporating nonzero 
d does not present a serious challenge. The phase field models of [58] 
also give rise to interesting open problems, but these may be hard to 
analyze. 

8.3. More refined analyses 

The scalar wave equation (53) can be seen as an infinite-dimensional 
Hamiltonian system in the state space X = H 1 x L 2 (~Rn). Arguments 
based loosely on dynamical systems ideas, such as center manifolds, have 
been spectacularly successful in some other problems (e.g. [29], [47], 
[28]) involving effective dynamics in infinite-dimensional Hamiltonian 
systems. For example, a widely-used strategy is to split the equation 
under consideration into a part that is expected to contain the leading­
order effective dynamics (essentially, a projection of the equation onto 
a well-constructed submanifold of the state space X) and an error term 
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that must be estimated. If this program can be carried out for (53), it 
would in principle yield a more detailed description ofinterface dynamics 
than that provided by Theorem 1. 

Problem 6. Carry out an analysis of the scalar wave equation (53) 
or the Abelian Higgs model (82), (83) along the lines developed for ex­
ample in [28], as described above. 

In most of the examples [29], [47], [28] cited above, the effective dy­
namics are governed by a finite-dimensional Hamiltonian system, which 
might describe the positions and velocities, and perhaps finitely many 
other degrees of freedom, attached to a finite number of objects one can 
think of as point particles-vortices or solitons. For any of the problems 
we consider, however, the effective dynamics are formally described by 
an infinite-dimensional Hamiltonian system-the Minkowski extremal 
surface problem, which admits such a formulation-and this is expected 
cause difficulties, including perhaps problems with loss of derivatives. 

The physics literature also contains a great deal of discussion of 
issues that are probably beyond the reach, for now, of rigorous mathe­
matical analysis. One such issue is the question of what happens when 
two strings collide-this is expected generically to result in something 
called "reconnection", but no rigorous results come close to a descrip­
tion of this, and we will not attempt to formulate even a vague question 
about it. This question remains open in the parabolic case as well-deep 
global-in-time results on asymptotics of the Ginzburg-Landau heat flow 
[11] encompass situations in which vortex filaments collide, but do not 
give any concrete information about how these collisions are actually 
resolved. 

8.4. Timelike extremal surfaces 

The results described in Section 7.4 about timelike extremal surfaces 
and Lorentzian varifolds suggest a large number of interesting directions 
for research, some of which may be very challenging. 

Given a compact immersed r 0 C JR.n of dimension n0 < n, for no ::::=: 

1, and a timelike vector field v : ro -+ JR.l+n along ro, it is known 
from [48] that there exists, locally in time, a smoothly immersed timelike 
extremal surface r of dimension 1 +no such that r o = {X E JR.n : ( 0, X) E 

r}, and such that v(p) E Tpr for every p E ro. 
Problem 7. Consider the Cauchy problem for timelike extremal 

surfaces with compact initial data, as described above, 
If n0 = n- 1 and n ::::=: 3, does every solution r necessarily develop 

singularities in finite time? This is the case when n0 = 1 and n = 2, see 
[53]. 
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Problem 8. For the Cauchy problem as described above, does there 
exist, globally in time, a stationary Lorentzian varifold that can be iden­
tified as assuming the Cauchy data at time 0? This is known to be true 
when no= 1 for arbitrary n;::: 2, see [8]. 

One can also ask about partial regularity of stationary Lorentzian 
varifolds. The easiest example of this kind of question, given below, is 
probably already difficult. 

Problem 9. Can one develop any sort of partial regularity theory 
for stationary rectifiable Lorentzian varifolds of dimension 1 + 1 ? 

In particular, to what extent to results proved in [36] for weakly 
extremal cylinders remain true for more general (1 + !)-dimensional 
Lorentzian varifolds? 

Partial regularity results from [36] described above, although sug­
gestive, are of limited scope, and do not suggest any reasonable approach 
to Problem 9, as they rely entirely on explicit formulas for weakly ex­
tremal cylinders. Any more general partial regularity theory is likely to 
be very subtle, in view for example of the delicate dependence of the size 
of the singular set on the smoothness of initial data, already evident in 
the relatively simple cases considered in [36]. 
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