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that any such function u is uniformly continuous, so that :P0u --+ u 
pointwise as 6-!- 0. Then, we can use the dominated convergence theorem 
to conclude. 

We now define an approximate gradient as follows: it is constant on 
the cell Af for every 6, i E N and it takes the value 

VxEAf. 

We can accordingly define the functional ::fo,q : Lq(X, m) --+ [0, oo] by 

(7.3) ::fo,q(u) := L ITioulq(x) dm(x). 

Now, using the weak gradients, we define a functional Ch: Lq(X, m) 
--+ [0, oo] that we call Cheeger energy, formally similar to the one (5.3) 
used in Section 5, for the purposes of energy dissipation estimates and 
equivalence of weak gradients. Namely, we set 

Chq(u) := {fx IVul~,q dm if u ha~ a q-relaxed slope 
+oo otherwise. 

At this level of generality, we cannot expect that the functionals ::fo,q 
f-converge as 6-!- 0. However, since Lq(X, m) is a complete and separable 
metric space, from the compactness property of r-convergence stated in 
Proposition 4 we obtain that the functionals ::fo,q have f-limit points as 
6-!- 0. 

Theorem 40. Let (X, d, m) be a metric measure space with (suppm, 
d) complete and doubling, m finite on bounded sets. Let ::Fq be a r -limit 
point of ::fo,q as 6-!- 0, namely 

for some infinitesimal sequence (6k), where the f-limit is computed with 
respect to the Lq(X, m) distance. Then: 

(a) ::Fq is equivalent to the Cheeger energy Chq, namely there exists 

(7.4) 

rJ = rJ(q,cD) such that 

1 
- Chq(u):::; ::Fq(u):::; r]Chq(u) 
rJ 

(b) The norm on W 1,q(X, d, m) defined by 

(7.5) 



(7.6) 
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is uniformly convex. Moreover, the seminorm :r;/2 is Hilber­
tian, namely 

:f2(u + v) + :f2(u- v) = 2(:f2(u) + :f2(v)) 'Vu, v E W 1•2 (X, d, m). 

Corollary41 (ReflexivityofW1•q(X,d,m)). Let(X,d,m) beamet­
ric measure space with ( supp m, d) doubling and m finite on bounded 
sets. The Sobolev space W 1·q(X, d, m) of functions u E Lq(X, m) with a 
q-relaxed slope, endowed with the usual norm 

(7.7) 'Vu E W 1•q(X d m) 
' ' ' 

is reflexive. 

Proof. Since the Banach norms (7.5) and (7.7) on W 1·q(X, d, m) 
are equivalent thanks to (7.4) and reflexivity is invariant, we can work 
with the first norm. The Banach space W 1·q(X, d, m) endowed with the 
first norm is reflexive by uniform convexity and Milman-Pettis theorem. 

Q.E.D. 

We can also prove, by standard functional-analytic arguments, that 
reflexivity implies separability. 

Proposition 42 (Separability of W 1·q(X, d, m)). If W 1·q(X, d, m) 
is reflexive, then it is separable and bounded Lipschitz functions with 
bounded support are dense. 

Proof. The density of Lipschitz functions with bounded support 
follows at once from the density of this convex set in the weak topology, 
ensured by Proposition 16. In order to prove separability, it suffices to 
consider for any M a countable and Lq(X, m)-dense subset 'DM of 

LM := {f E Lip(X) nU(X,m): fx1Vfl~,qdm::; M}, 
stable under convex combinations with rational coefficients. The weak 
closure of 'D M obviously contains L M, by reflexivity (because iff n E 'D M 
converge to f ELM in Lq(X, m), then fn--+ f weakly in W 1·q(X, d, m)); 
being this closure convex, it coincides with the strong closure of 'D M. 
This way we obtain that the closure in the strong topology of UM'DM 
contains all Lipschitz functions with bounded support. Q.E.D. 

The strategy of the proof of statement (a) in Theorem 40 consists 
in proving the estimate from above of :fq with relaxed gradients and 
the estimate from below with weak gradients. Then, the equivalence 
between weak and relaxed gradients provides the result. In the estimate 
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from below it will be useful the discrete version of the q-weak upper 
gradient property given in Definition 26. 

In the following lemma we prove that for every u E Lq(X, m) we 
have that 4I1J.,ul is a q-weak upper gradient for P.,u up to scale 8/2. 

Lemma 43. Let 'Y E ACP([O, 1]; X). Then we have that 

IP.,u('Yb)- P.,u('Ya)l ~ 4lb I1J.,ui('Yt)l"ftl dt 
(7.8) 

for all a< b s.t. lb li'tl dt > 8/2. 

In particular 4I1J.,ul is a q-weak upper gradient of P.,u up to scale 8/2. 

Proof. It is enough to prove the inequality under the more restric­
tive assumption that 

(7.9) 

because then we can slice every interval (a, b) that is longer than 8/2 
into subintervals that satisfy (7.9), and we get (4.12) by adding the 
inequalities for subintervals and using triangular inequality. 

Now we prove (4.12) for every a, b E [0, 1] such that (7.9) holds. 
Take any time t E [a, b]; by assumption, it is clear that d( "ft, "fa) ~ 8 and 
d('Yt, "!b) ~ 8, so that the cells relative to "fa and 'Yb are both neighbors 
of the one relative to 'Yt. By definition then we have: 

1 
I1Joulq('Yt) ~ 8q (IP.,u('Yb)- P.,u('YtW + IP.,u('Yt)- P.,u('YaW) 

1 
~ 2q_ 18q IP.,u('Yb)- P.,u('YaW· 

Taking the q-th root and integrating in t we get 

lb I1J.,ui('Yt)l"ftl dt ~ IP.,u('Y;L~I:;u('Ya)llb li'tl dt 

1 
~ 21P.,u('Yb)- P.,u('Ya)l, 

which proves (7.8). Q.E.D. 

We can now prove Theorem 40. 
Proof of the first inequality in (7.4). We prove that there exists a con­
stant 'f/1 = 'f/1 ( c D) such that 

(7.10) :rq(u) ~ 'f/1 L IV fl~,q dm \:lu E Lq(X, m). 
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Let u : X -+ JR. be a Lipschitz function with bounded support. We prove 
that 

(7.11) 

Indeed, let us consider i, j E [1, £&) n N such that Af and A~ are neigh­
bors. For every x E Af, y E A~ we have that d(x, y) ~ diam(Af) + 
diam(Af) + d(Af, A~) ~ (10/4 + 10/4 + 1)8 = 68 and that 
y E B(zf, 198/4) C B(zf, 58). Hence 

iuc) . - Uc) ·I 1 r 
,• 8 ,J ~ 8m(Af)m(A~) JAtxAJ iu(x) -u(y)ldm(x)dm(y) 

~ 6 Lip(u, B(zf, 58)). 

Thanks to the fact that the number of neighbors of Af does not exceed 
c'JJ (see (7.2)) we obtain 

Vx E suppm, 

which proves (7.11). 
Integrating on X we obtain that 

!.f'&,q(u) ~ 6qc'b i (Lip(u, B(x, 68)))q dm(x). 

Choosing 8 = 8k, letting k -+ oo and applying the dominated con­
vergence theorem on the right-hand side as well as the definition of 
asymptotic Lipschitz constant (3. 7) we get 

!.f'q(u) ~ liminf!.f'&k,q(u) ~ 6qc'JJ { Lip~(u,x)dm(x). 
k-+oo Jx 

By approximation, Proposition 16 yields (7.10) with ry1 = 6qc'JJ. 
Proof of the second inequality in (7.4). We consider a sequence ( uk) 
which converges to u in Lq(X, m) with liminfk !.f'&k,q(uk) finite. We prove 
that u has a q-weak upper gradient and that 

(7.12) :q i l\7uli,,qdm ~ limkinf!.f'&k,q(uk)· 

Then, (7.4) will follow easily from (7.10), (7.12), Definition 3b and the 
coincidence of weak and relaxed gradients. 

Without loss of generality we assume that the right-hand side is fi­
nite and, up to a subsequence not relabeled, we assume that the lim inf is 
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a limit. Hence, the sequence fk := I'Dok ukl is bounded in Lq(X, m) and, 
by weak compactness, there exist g E Lq(X, m) and a subsequence k(h) 
such that fk(h) --' g weakly in Lq(X, m). By the lower semicontinuity of 
the q-norm with respect to the weak convergence, we have that 

(7.13) 

We can now apply Theorem 27 to the functions uh = T 0k(h) (uk(h)), which 
converge to u in Lq(X, m) thanks to Lemma 39, and to the functions 
gh = 4fk(h) which are q-weak upper gradients of uh up to scale bk(h)/2, 
thanks to Lemma 43. We obtain that 4g is a weak upper gradient of u, 
hence g 2': I'Vulw,q/4 m-a.e. in X. Therefore (7.13) gives 

4
1 r I'Vul~,q dm:::; r gq dm:::; lim S"ok,q( Uk)· 
q lx lx k-+oo 

Proof of statement (b). Let :Nq,o : Lq(X, m) --+ [0, oo] be the positively 
1-homogeneous function 

For q 2': 2 we prove that :Nq,o satisfies the first Clarkson inequality [22] 
(7.14) 

:N~,o ( u ~ v) +N~,6 ( u; v) :::; ~ (:N~, 6 (u)+N~,6 (v)) 'Vu, v E Lq(X, m). 

Indeed, let X6 C N U (N x N) be the (possibly infinite) set 

and let m0 be the counting measure on X 6 . We consider the function 
<I>q,6: Lq(X, m)--+ Lq(X0 , m6) defined by 

'ViE [1,£6) nN 
'V(i,j) E ([1,£6) nN) 2 

s.t. Af rvA~. 

It can be easily seen that <I>q,6 is linear and that 

(7.15) 

Writing the first Clarkson inequality in the space Lq(Xh, mh) and 
using the linearity of <I>q,o we immediately obtain (7.14). Let w: (0, 1) --+ 
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(0, oo) be the increasing and continuous modulus of continuity w(r) = 
1- (1- rq/2q) 1fq. From (7.14) it follows that for all u, v E Lq(X,m) 
with Nq,o(u) = Nq,o(v) = 1 it holds 

( u+v) Nq,o - 2- :::; 1- w(Nq,o (u- v)). 

Hence Nq,o are uniformly convex with the same modulus of continuity 
w. Thanks to Lemma 5 we conclude that also the r-limit ofthese norms, 
namely (7.5), is uniformly convex with the same modulus of continuity. 

If q < 2 the proof can be repeated substituting the first Clarkson 
inequality (7.14) with the second one 

where p = qf(q- 1), see [22]. In this case the modulus w is 1- (1-
(r/2)P)1/P. 

Finally, let us consider the case q = 2. From the Clarkson inequality 
we get 

(7.16) 

If we apply the same inequality to u = ( u' + v') /2 and v = ( u' - v') /2 
we obtain a converse inequality and, since u' and v' are arbitrary, the 
equality. 

We conclude this section providing a counterexample to reflexivity. 
We denote by /!1 the Banach space of summable sequences (xn)n~o and 
by 1!00 the dual space of bounded sequences, with duality ( ·, ·) and norm 
llvlloo· We shall use the factorization /!1 = Yi +!Rei, where ei, 0:::; i < oo, 
are the elements of the canonical basis of /!1. Accordingly, for fixed i we 
write x = x~ + Xiei and, for f : /!1 ~ ffi. and y E Yi, we set 

tER 

Proposition 44. There exist a compact subset X of 1!1 and m E 
.9' (X) such that, if d is the distance induced by the inclusion in I! 1, the 
space W 1,q (X, d, m) is not reflexive for all q E (1, oo). 

Proof. Fori ~ 0, we denote by mi the normalized Lebesgue mea­
sure in Xi := [0, 2-i] and define X to be the product of the intervals Xi 
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and m to be the product measure. Since X is a compact subset of R1 , 

we shall also view mas a probability measure in R1 concentrated on X. 
Setting r(x) := (v, x), we shall prove that the map v c---t r provides 

a linear isometry between Roc, endowed with the norm 

(7.17) lvloo := (L l(v, xW dm(x) + llvll%o) 
1
/q 

and W 1,q(X,d,m). Since the norm (7.17) is equivalent to the Roo norm, 
it follows that W 1 ,q(X, d, m) contains a non-reflexive closed subspace 
and therefore it is itself non-reflexive. 

Since the Lipschitz constant of r is llvlloo, it is clear that 
IIIVrlw,qiiLq::::; llvlloo· To prove equality, suffices to show that 
J X IV' r I~ ,q dm ;:::: II vII %o. Therefore we fix an integer i ;:::: 0 and we prove 
that fx IV rl~,q dm;:::: lvilq· 

Fix a sequence (in) of Lipschitz functions with bounded support 
with rand Lipa(r) strongly convergent in Lq(X, m) tor and IV' rlw,q 
respectively. Possibly refining the sequence, we can assume that 

(7.18) 2:: 11r- r11~ < oo. 
n 

If we show that 

(7.19) 

we are done. Denoting m = mi ® mi the factorization of m (with mi E 
Y(Yi)), we can use the obvious pointwise inequalities 

and Fatou's lemma, to reduce the proof of (7.19) to the one-dimensional 
statement 

(7.20) l~~~f Li IY'f;lq(t)dmi(t);:::: lvilq 

Since (7.18) yields 

we have that f;-+ f; in Lq(Xi,mi) = Lq(Xi,2i.:t?1 ) for mi-a.e. y E 

Y;. We have also IVJ;I(t) = lvil for any t E xi, therefore (7.20) is 
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a consequence of the well-known lower semicontinuity in Lq (Xi, 5t'1 ) 

of g r--t fx. lg'(t)iq d5t'1 (t) for Lipschitz functions defined on the real 
line (notice' also that in this context we can replace the slope with the 
modulus of derivative, wherever it exists). Q.E.D. 

§8. Lower semicontinuity of the slope of Lipschitz functions 

Let us recall, first, the formulation of the Poincare inequality in 
metric measure spaces. 

Definition 45. The metric measure space (X, d, m) supports a weak 
(1, q)-Poincare inequality if there exist constants T, A > 0 such that for 
every u E W 1·q(X, d, m) and for every x E suppm, r > 0 the following 
holds: 

(8.1) 1 /u _1 u/ dm ~ Tr (1 IY'ul~ q dm) l/q 
j B(x,r) j B(x,r) j B(x,Ar) ' 

Many different and equivalent formulations of ( 8.1) are possible: 
for instance we may replace in the right hand side IY'ul~,q with IY'ulq, 
requiring the validity of the inequality for Lipschitz functions only. The 
equivalence of the two formulations has been first proved in [19], but one 
can also use the equivalence of weak and relaxed gradients to establish 
it. Other formulations involve the median, or replace the left hand side 
by 

inf 1 I u - m I dm. 
mER j B(x,r) 

The following lemma contains the fundamental estimate to prove our 
result. 

Lemma 46. Let (X, d, m) be a doubling metric measure space which 
supports a weak (1, q)-Poincare inequality with constants T, A. Let u E 

W 1·q(X, d, m) and let g = IY'ulw,q· There exists a constant c > 0 
depending only on the doubling constant cv and T such that 

(8.2) iu(x)- u(y)i ~ Cd(x,y)(M;Ad(x,y)g(x) + M;Ad(x,y)g(y)), 

for every Lebesgue points x, y E X of (a representative of) u. 

Proof. The main estimate in the proof is the following. Denoting 
by Uz,r the mean value of u on B(z, r), for every s > 0, x, y E X such 
that B(x, s) C B(y, 2s) we have that 

(8.3) 
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Since m is doubling and the space supports (1, q)-Poincare inequality, 
from (2.6) we have that 

lux,s - Uy,2s I ::; 1 lu - Uy,2s I dm ::; /32a 1 lu - Uy,2s I dm 
} B(x,s) } B(y,2s) 

and we obtain (8.3) with C0 = 21+af3T. 

For every r > 0 let Sn = 2-nr for every n 2: 1. If x is a Lebesgue 
point for u then Ux,sn-+ u(x) as n-+ oo. Hence, applying (8.3) to x = y 
and Sn = 2-nr, summing on n 2: 1 and remarking that MiAsn g ::; M:r g, 
we get 
(8.4) 

00 00 

n=O n=O 

For every r > 0, x, y Lebesgue points of u such that B(x, r) C 

B(y, 2r), we can use the triangle inequality, (8.3) and (8.4) to get 

lu(x)- u(y)l ::; lu(x)- Ux,rl + lux,r- Uy,2rl + luy,2r- u(y)l 

::; CorM:rg(x) + CorM;Arg(y) + CorM:rg(y). 

Taking r = d(x, y) (which obviously implies B(x, r) c B(y, 2r)) and 
since Mgf(x) is nondecreasing in E we obtain (8.2) with C = 2C0 . 

Q.E.D. 

Proposition 47. Let (X, d, m) be a doubling metric measure space, 
supporting a weak (1, q)-Poincare inequality with constants T, A and with 
supp m = X There exists a constant C > 0 depending only on the dou­
bling constant cv and T such that 

(8.5) l\7ul ::; C l\7ulw,q m-a.e. in X 

for any Lipschitz function u with bounded support. 

Proof. We set g = l\7ulw,q; we note that g is bounded and with 
bounded support, thus Mgg converges tog in Lq(X, m) as E-+ 0. Let us 

fix ).. > 0 and a Lebesgue point x for u where (2.8) is satisfied by M;g. 
Let Yn -+ x be such that 

(8.6) l\7ul(x) = lim lu(yn)- u(x)l 
n--+oo d (Yn, X) 
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and set rn = d(x, Yn), Bn = B(yn, Arn) C B(x, 2rn)· Since (8.2) of 
Lemma 46 holds for m-a.e. y E Bn, from the monotonicity of Mgg we 
get 

lu(x)- u(yn)l :::; j lu(x)- u(y)l dm(y) + Arn Lip(u, Bn) 
}En 

:::; Crn ( MiArng(x) + tn MiArng(y) dm(y)) + ArnL, 

where Lis the Lipschitz constant of u. For n large enough Bn C B(x, 1) 
and 4Arn :::; ..\. Using monotonicity once more we get 

for n large enough. Since B(yn, rn) = Bn C B(x, 2rn) and since x is a 
1-Lebesgue point for Mtg, we apply (2.9) of Lemma 8 to the sets Bn to 
get 

(8.8) 

We now divide both sides in (8.7) by rn = d(x, Yn) and let n --+ oo. 
From (8.8) and (8.6) we get 

l\7ul(x):::; 2CM;g(x) + ..\L. 

Since this inequality holds for m-a.e. x, we can choose an infinitesimal 
sequence ( ..\k) C ( 0, 1) and use the m-a.e. convergence of Mtk g to g to 
obtain (8.5). Q.E.D. 

Theorem 48. Let (X, d, m) be a metric measure space with m dou­
bling, which supports a weak (1, q)-Poincare inequality and satisfies 
supp m = X. Then, for any open set A c X it holds 

Un, U E Liploc(A), Un--+ U in Lfoc(A) 

===} liminf r l\7unlq dm ~ r l\7ulq dm. 
n--+oc } A J A 

(8.9) 

In particular, understanding weak gradients according to (6.4), it holds 
l\7ul = l\7ulw,q m-a.e. in X for all u E Lip10c(X). 

Proof. By a simple truncation argument we can assume that all 
functions Un are uniformly bounded, since I\7(M 1\vV -M)I:::; l\7vl and 
I\7(M 1\ v V -M)I t l\7vl as M--+ oo. Possibly extracting a subsequence 
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we can also assume that the liminf in the right-hand side of (8.9) is a 
limit and, without loss of generality, we can also assume that it is finite. 
Fix a bounded open set B with dist(B,X\A) > 0 and let 'ljJ: X--+ [0, 1] 
be a cut-off Lipschitz function identically equal to 1 on a neighborhood 
of B, with support bounded and contained in A. It is clear that the 
functions Vn := Un'¢ and v := u'lj; are globally Lipschitz, Vn --+ v in 
Lq(X, m) and (vn) is bounded in W 1 ,q(X, d, m). 

From the reflexivity of this space proved in Corollary 41 we have 
that, possibly extracting a subsequence, ( vn) weakly converges in the 
Sobolev space to a function w. Using Mazur's lemma, we construct 
another sequence (vn) that is converging strongly tow in W 1•q(X, d, m) 
and Vn is a finite convex combination of Vn, Vn+ 1, .. .. In particular we 
get Vn--+ win Lq(X, m) and this gives w = v. Moreover, 

Eventually, from Proposition 47 applied to the functions v- fin we get: 

(li\7vlq dm) 
1
/q 

~ l~~~f { (liVvnlq dm) 
11

q + (liv(v- vnW dm) 
11q} 

~lim sup { ( { l\7vniq dm) 
1/q} + Climsup llv- finllwl,q 

n---+oo }B n---+oo 

=lim sup ( r l\7vnlq dm) 
1
/q 

n---+oo JB 
Since Vn = Un and v = u on B we get 

and letting B t A gives the result. Q.E.D. 

§9. Appendix A: other notions of weak gradient 

In this section we consider different notions of weak gradients, all 
easily seen to be intermediate between l\7 flw,q and l\7 f'*.q, and therefore 
coincident, as soon as Theorem 35 is invoked. These notions inspired 
those adopted in [3]. 
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9.1. q-relaxed upper gradients and IV flc,q 

In the relaxation procedure we can consider, instead of pairs (!, 
Lipa f) (i.e. Lipschitz functions and their asymptotic Lipschitz con­
stant), pairs (!,g) with g upper gradient of f. 

Definition 49 (q-relaxed upper gradient). We say that g E Lq(X, 
m) is a q-relaxed upper gradient off E Lq(X, m) if there exist g E 

Lq(X, m), functions fn E Lq(X, m) and upper gradient gn of fn such 
that: 

(a) fn--+ f in Lq(X, m) and gn weakly converge tog in Lq(X, m); 
(b) g ~ g m-a.e. in X. 

We say that g is a minimal q-relaxed upper gradient off if its Lq(X, m) 
norm is minimal among q-relaxed upper gradients. We shall denote by 
IV flc,q the minimal q-relaxed upper gradient. 

Again it can be proved (see [7]) that IV flc,q is local, and clearly 

(9.1) m-a.e. in X 

because any q-relaxed slope is a q-relaxed upper gradient. On the other 
hand, the stability property of q-weak upper gradients stated in Theo­
rem 27 gives 

(9.2) IVflw,q ~ IVflc,q m-a.e. in X. 

In the end, thanks to Theorem 35, all these notions coincide m-a.e. in 
X. 

Notice that one more variant of the "relaxed" definitions is the one 
considered in [3], with pairs (!,IV fl). It leads to a weak gradient in­
termediate between the ones on (9.1), but a posteriori equivalent, using 
once more Theorem 35. 

9.2. q-upper gradients and IV fls,q 
Here we recall a weak definition of upper gradient, taken from [24] 

and further studied in [27] in connection with the theory of Sobolev 
spaces, where we allow for exceptions in (2.2). This definition inspired 
the one given in [3], based on test plans. 

Recall that, for r c AC([O, 1], X), the q-modulus Modq(r) is defined 
by 

(9.3) Modq(r) := inf { fx pq dm: i p ~ 1 't:/"f E r }, 

where the infimum is taken over all non-negative Borel functions p: X--+ 
[0, +oo]. We say that r is Modq-negligible if Modq(r) = 0. Accordingly, 
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we say that a Borel function g : X --+ [0, oo] with fx gq dm < oo is a 

q-upper gradient off if there exist a function j and a Modq-negligible 
set r such that j = f m-a~e. in X and 

V7 E AC([O, 1], X)\ r. 

Notice that the condition J'"Y g < oo for Modq-almost every curve '"Y is 
automatically satisfied, by the q-integrability assumption on g. It is not 
hard to prove that the collection of all q-upper gradients off is convex 
and closed, so that we can call minimal q-upper gradient, and denote 
by IV fls,q, the element with minimal Lq(X, m) norm. Furthermore, the 
inequality 

(9.4) IV fls,q S IV flc,q m-a.e. in X 

(namely, the fact that all q-relaxed upper gradients are q-upper gradi­
ents) follows by a stability property of q-upper gradients very similar 
to the one stated in Theorem 27 for q-weak upper gradients, see [27, 
Lemma 4.11]. 

Observe that for a Borel set r c C([O, 1],X) and a test plan 1r, 

integrating on r w.r.t. 7r the inequality J'"Y p ::::: 1 and then minimizing 
over p, we get 

which shows that any Modq-negligible set of curves is also q-negligible 
according to Definition 19. This immediately gives that any q-upper 
gradient is a q-weak upper gradient, so that 

(9.5) IV flw,q S IV fls,q m-a.e. in X. 

Combining (9.1), (9.4), (9.5) and Theorem 35 we obtain that also IV fls,q 
coincides m-a.e. with all other gradients. 

§10. Appendix B: discrete gradients in general spaces 

Here we provide another type of approximation via discrete gradi­
ents which doesn't even require the space (X, d) to be doubling. We 
don't know whether this approximation can be used to obtain the re­
flexivity of W 1,q(X, d, m) even without doubling assumptions. 

We slightly change the definition of discrete gradient: instead of 
taking the sum of the finite differences, that is forbidden due to the fact 
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that the number of terms can not in general be uniformly bounded from 
above, we simply take the supremum among the finite differences. Let 
us fix a decomposition Af of suppm as in Lemma 37. Let u E Lq(X, m) 
and denote by Uo,i the mean of u in Af as before. We consider the 
discrete gradient 

'Vx E Af. 

Then we consider the functional 3";5 : Lq(X, m) ---+ [0, oo] given by 

3":5(u) := [ I'D<~(u)l&o(x) dm(x). 

With these definitions, the following theorem holds. 

Theorem 50. Let (X, d, m) be a Polish metric measure space with 
m finite on bounded sets. Let 3"'; be a r -limit point of 3";;,o8 as o + 0, 
namely 

3"q00 : = r- lim 3"q008 ' 
k-tCXJ ' k 

where ok ---+ 0 and the r -limit is computed with respect to the Lq(X, m)­
distance. Then the functional 3"'; is equivalent to Cheeger's energy, 
namely there exists a constant 7]00 = TJoo ( q) such that 

(10.1) 

The proof follows closely the one of Theorem 40. An admissible 
choice for 7]00 is 6q. 

§11. Appendix C: some open problems 

In this section we discuss some open problems. 

1. Optimality of the Poincare assumption for the lower semi­
continuity of slope. As shown to us by P. Koskela, the doubling 
assumption, while sufficient to provide reflexivity of the Sobolev spaces 
W 1•q(X,d,m), is not sufficient to ensure the lower semicontinuity (1.1) 
of slope. Indeed, one can consider for instance the Von Koch snowflake 
X c IR2 endowed with the Euclidean distance. Since X is a self-similar 
fractal satisfying Hutchinson's open set condition (see for instance [11]), 
it follows that X is Ahlfors regular of dimension a = ln 4/ ln 3 E ( 1, 2), 
namely 0 < Jt<'"'(X) < oo, where£"' denotes a-dimensional Hausdorff 
measure in IR2 . Using self-similarity it is easy to check that (X, d, £"') 
is doubling. However, since absolutely continuous curves with values 
in X are constant, the q-weak upper gradient of any Lipschitz function 
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f vanishes. Then, the equivalence of weak and relaxed gradients gives 
IV fl*,q = 0 £ 00-a.e. on X. By Proposition 16 we obtain Lipschitz 
functions fn convergent to fin Lq(X, £ 00 ) and satisfying 

lim r Lip~ (in, x) d£00 (x) = 0. 
n-+oo Jx 

Since Lipa(fn,·)?: IVfnl, if IVJI is not trivial we obtain a counterex­
ample to (1.1). 

One can easily show that any linear map, say f(x 1 , x 2 ) = x 1 , has 
a nontrivial slope on X at least £ 00-a.e. in X. Indeed, IVJI(x) = 0 
for some x E X implies that the geometric tangent space to X at x, 
namely all limit points as y E X -+ x of normalized secant vectors 
(y - x) /I y - xI, is contained in the vertical line { x1 = 0}. However, 
a geometric rectifiability criterion (see for instance [1, Theorem 2.61]) 
shows that this set of points x is contained in a countable union of 
Lipschitz curves, and it is therefore O"-finite with respect to £ 1 and 
£ 00-negligible. 

This proves that doubling is not enough. On the other hand, quan­
titative assumptions weaker than the Poincare inequality might still be 
sufficient to provide the result. 

2. Dependence on q of the weak gradient. The dependence of 
IV flw,q on q is still open: more precisely, assuming for simplicity that 
m(X) is finite, f E W 1•q(X, d, m) easily implies via Proposition 16 that 
f E W 1·r(X, d, m) for 1 < r:::; q and that 

m-a.e. in X. 

Whether equality m-a.e. holds or not is an open question. As pointed 
out to us by Gigli, this holds if IVglw,q is independent of q for a dense 
class ']) of functions (for instance Lipschitz functions g with bounded 
support); indeed, if this the case, for any g E '])we have 

and considering 9n E '])with 9n-+ f strongly in W 1•q(X, d, m) we obtain 
the result, since convergence occurs also in W 1•r(x, d, m) and therefore 
IVgnlr,*-+ IV fir,* in U(X, m). 

Under doubling and Poincare assumptions, we know that these re­
quirements are met with the class ']) of Lipschitz functions with bounded 
support, therefore as pointed out in [7] the weak gradient is independent 
of q. Assuming only the doubling condition, the question is still open. 1 

1 At the time of receiving the page proofs, a counterexample has been found 
in S. Di Marino, G.Speight: "The p-weak gradient depends on p", Proceedings 
AMS, in press. 
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