On $(4,3)$ line degenerated torus curves and torus decompositions

Masayuki Kawashima

Abstract

. Let $C=\{f=0\}$ be an affine plane curve. In this paper, we study $(4,3)$ line degenerations of torus curves. Line degenerations of torus curves are divided into two types which are called visible or invisible degenerations. We will show that there does not exist a $(4,3)$ line degenerated torus curve which has two types decompositions.

$\S 1$ Introduction

Let \mathbb{P}^{2} be a complex projective plane with homogeneous coordinates $[X, Y, Z]$ and let $\mathbb{C}^{2}=\mathbb{P}^{2} \backslash\{Z=0\}$ be the affine space with affine coordinates $(x, y)=(X / Z, Y / Z)$. We study plane curves in \mathbb{P}^{2} and \mathbb{C}^{2}. Let $\mathcal{M}(d)$ (resp. $\mathcal{M}^{a}(d)$) be the set of projective (resp. affine) plane curves of degree d.

For a given curve $C \in \mathcal{M}(d)$ or $\mathcal{M}^{a}(d)$, we are interested in the topological invariant which is called the Alexander polynomial of C and torus decompositions. To explain this, we recall several curves which are called torus curves, quasi torus curves and line degeneration of torus curves. Let p and q be positive integers such that $p>q \geq 2$.

Definition 1.1. We say that $C=\{f=0\} \in \mathcal{M}^{a}(d)$ torus curve of type (p, q) if f is written as $f=f_{a}^{p}+f_{b}^{q}$ where f_{j} is a polynomial in $\mathbb{C}[x, y]$ of degree j. Put $\mathcal{T}(p, q ; d)$ as the set of (p, q) torus curves of degree d.

Definition 1.2. We say that $C=\{f=0\} \in \mathcal{M}^{a}(d)$ quasi torus curve of type (p, q) if there exist three polynomials f_{a}, f_{b} and f_{c} such that they do not have a common component and they satisfy the following

Received June 19, 2012.
Revised November 30, 2012.
2010 Mathematics Subject Classification. 14H20, 14H30, 14H45.
Key words and phrases. Torus curve, torus decomposition.
relation:

$$
f_{c}^{p q} f=f_{a}^{p}+f_{b}^{q} \quad \text { in } \mathbb{C}[x, y], \quad \operatorname{deg} f_{j}=j .
$$

Put $\mathcal{Q T}(p, q ; d)$ as the set of (p, q) quasi torus curves of degree d.
For a given curve $C \in \mathcal{M}^{a}(d)$, we say that C has a torus decomposition (resp. quasi torus decomposition) if C is in $\mathcal{T}(p, q ; d)$ (resp. $\mathcal{Q T}(p, q ; d))$ for some (p, q).

Example 1.1. There is an interesting phenomenon. Let $Q=\{f=$ $0\} \in \mathcal{M}^{a}(4)$ be a three cuspidal quartic. Then Q has two torus and one quasi torus decompositions ([3]):

$$
\begin{equation*}
f=f_{1}^{3}+f_{2}^{2}, \quad f=g_{2}^{3}+g_{3}^{2}, \quad h_{1}^{6} f=h_{3}^{3}+h_{5}^{2} \tag{1.1}
\end{equation*}
$$

where $\operatorname{deg} f_{i}=i, \operatorname{deg} g_{i}=i$ and $\operatorname{deg} h_{i}=i$. Furthermore its tangential Alexander polynomial is $\left(t^{2}-t+1\right)^{2}([5])$. For other quartics, if there exist a torus decomposition, then it is unique and its tangential Alexander polynomial is $t^{2}-t+1$.

We will want to consider the relation between the number of torus decompositions and the degree of its Alexander polynomial. To study this, we consider whether there exist a plane curve which has several torus decompositions.

To construct two torus decompositions in Example 1.1, we used line degenerations of torus curves. Now we recall line degenerations of torus curves which are defined by M. Oka in [5].

Let $C=\left\{F=F_{q}^{p}+F_{p}^{q}=0\right\} \in \mathcal{M}(p q)$ be a projective (p, q) torus curve. Suppose that F has the following form:

$$
\begin{equation*}
F(X, Y, Z)=Z^{j} G(X, Y, Z) \tag{1.2}
\end{equation*}
$$

where $G(X, Y, Z)$ is a reduced homogeneous polynomial of degree $p q-j$. We call a curve $D=\{G=0\}$ a line degenerated torus curve of type (p, q) of order j and the line $L_{\infty}=\{Z=0\}$ the limit line of the degeneration. Put $\mathcal{L} \mathcal{T}_{j}(p, q ; d)$ as the set of line degenerated torus curves of type (p, q) of order j and $\mathcal{L} \mathcal{T}(p, q)$ is the union of $\mathcal{L} \mathcal{T}_{j}(p, q ; d)$ with respect to j.

To state our theorem, we divide the situation (1.2) into two cases which are called visible degenerations and invisible degenerations. Put the integer $r_{k}:=\max \left\{r \in \mathbb{Z} \mid Z^{r}\right.$ divides $\left.F_{k}\right\}$ for $k=p, q$.

Visible case. Suppose that $r_{p} \cdot r_{q} \neq 0$ and $q r_{p} \neq p r_{q}$. Then F_{q} and F_{p} are written as $F_{q}(X, Y, Z)=F_{q-r_{q}}^{\prime}(X, Y, Z) Z^{r_{q}}$ and $F_{p}(X, Y, Z)=$ $F_{p-r_{p}}^{\prime}(X, Y, Z) Z^{r_{p}}$. Putting $j:=\min \left\{q r_{p}, p r_{q}\right\}$, we can factor F as
$F(X, Y, Z)=Z^{j} G(X, Y, Z)$. Then G is written using $F_{p-r_{p}}^{\prime}$ and $F_{q-r_{q}}^{\prime}$ as
$G(X, Y, Z)= \begin{cases}F_{q-r_{q}}^{\prime}(X, Y, Z)^{p}+F_{p-r_{p}}^{\prime}(X, Y, Z)^{q} Z^{q r_{p}-p r_{q}} & \text { if } j=p r_{q}, \\ F_{q-r_{q}}^{\prime}(X, Y, Z)^{p} Z^{p r_{q}-q r_{p}}+F_{p-r_{p}}^{\prime}(X, Y, Z)^{q} & \text { if } j=q r_{p} .\end{cases}$
We call such a factorization visible factorization and D is called a visible degeneration of (p, q) torus curve. We denote the set of visible degenerations of order j by $\mathcal{L} \mathcal{T}_{j}^{V}(p, q ; p q-j)$ and the union $\cup_{j} \mathcal{L} \mathcal{T}_{j}^{V}(p, q ; p q-j)$ by $\mathcal{L T}^{V}(p, q)$.

Example 1.2. We give an example of a visible degeneration. We take $(p, q)=(4,3),\left(r_{4}, r_{3}\right)=1, F_{3}(X, Y, Z)=\left(X^{2}+Y^{2}+Z^{2}\right) Z$ and $F_{4}(X, Y, Z)=\left(X^{3}+Y^{3}+Z^{3}\right) Z$. Then the order is 3 and $F(X, Y, Z)=$ $Z^{3} G(X, Y, Z)$ where

$$
G(X, Y, Z)=\left(X^{2}+Y^{2}+Z^{2}\right)^{4} Z+\left(X^{3}+Y^{3}+Z^{3}\right)^{3}
$$

Thus we have $D=\{G=0\} \in \mathcal{L T}_{3}^{V}(4,3 ; 9)$ and Sing $D=\left\{6 E_{6}\right\}$.
Invisible case. Either $r_{p}=0$ or $r_{q}=0$ but F can be written as (1.2). Then D is called an invisible degeneration of (p, q) torus curve. In this case, write $F_{p}^{q}+F_{q}^{p}=\sum_{i=0}^{p q} C_{i}(X, Y) Z^{i}$. Then $C_{i}(X, Y)=0$ for i is less than $j-1$ and therefore Z^{j} divides F. We denote the set of invisible degenerations of order j by $\mathcal{L} \mathcal{T}_{j}^{I}(p, q ; p q-j)$ and the union $\cup_{j} \mathcal{L T}^{I}{ }_{j}(p, q ; p q-j)$ by $\mathcal{L} \mathcal{T}^{I}(p, q)$.

Example 1.3. We give an example of an invisible degeneration. We take $(p, q)=(4,3), F_{3}(X, Y, Z)=3 Y Z^{2}+L^{3}$ and $F_{4}(X, Y, Z)=$ $z^{4}+4 Y Z^{2} L+L^{4}$ where $L=x+y$. Then the order is 3 and $F(X, Y, Z)=$ $F_{3}(X, Y, Z)^{4}-F_{4}(X, Y, Z)^{3}=Z^{3} G(X, Y, Z)$ where

$$
\begin{aligned}
& G(X, Y, Z)=-Z^{8}-12 Y L Z^{6}+\varphi_{1}(X, Y) Z^{4}+\varphi_{2}(X, Y) z^{2}+\varphi_{3}(X, Y) \\
& \varphi_{1}(X, Y)=81 y^{4}-3 L^{4}-48 y^{2} L^{2} \\
& \varphi_{2}(X, Y)=4 y L^{3}\left(11 y^{2}-6 L^{2}\right) \\
& \varphi_{3}(X, Y)=3 L^{6}\left(2 y^{2}-L^{2}\right)
\end{aligned}
$$

Thus we have $D=\{G=0\} \in \mathcal{L T}_{4}^{I}(4,3 ; 8)$ and $\operatorname{Sing} D=\left\{4 E_{6}, B_{4,6}\right\}$. where $B_{4,6}$ is defined as $u^{4}+v^{6}=0$.

Using these terminologies, two torus decompositions of 3-cuspidal quartic in Example 1.1 are written as

$$
f_{1}^{3}+f_{2}^{2} \in \mathcal{L} \mathcal{T}_{2}^{V}(3,2 ; 4), \quad g_{2}^{3}+g_{3}^{2} \in \mathcal{L} \mathcal{T}_{2}^{I}(3,2 ; 4)
$$

This shows that Q is in the both space $\mathcal{L} \mathcal{T}_{2}^{V}(3,2 ; 4) \cap \mathcal{L T}_{2}^{I}(3,2 ; 4)$.
In this paper, we consider whether such a phenomenon occur for the case $(p, q)=(4,3)$. By the definitions and simple calculations, $\mathcal{L} \mathcal{T}^{V}(4,3)$ and $\mathcal{L} \mathcal{T}^{I}(4,3)$ have following decompositions:

$$
\begin{aligned}
\mathcal{L T}^{V}(4,3) & =\mathcal{L T}_{3}^{V}(4,3 ; 9) \cup \mathcal{L T}_{4}^{V}(4,3 ; 8) \cup \mathcal{L T}_{6}^{V}(4,3 ; 6) \cup \mathcal{L} \mathcal{T}_{8}^{V}(4,3 ; 4) \\
\mathcal{L T}{ }^{I}(4,3) & =\bigcup_{j=1}^{6} \mathcal{L} \mathcal{T}_{i}^{I}(4,3 ; 12-j)
\end{aligned}
$$

Hence we consider only the cases order 3,4 and 6 .
Theorem 1. Suppose that $D \in \mathcal{L T}(4,3)$ does not consist of lines.
(1) There exist $C \in \mathcal{L} \mathcal{T}_{3}^{V}(4,3 ; 9)$ and $D \in \mathcal{L} \mathcal{T}_{3}^{I}(4,3 ; 9)$ such that

$$
\text { Sing } C=\operatorname{Sing} D=\left\{6 B_{4,3}, B_{6,3}\right\}
$$

(2) However it is not possible to find such C, D with $C=D$ that is to say

$$
\mathcal{L T}^{V}(4,3) \cap \mathcal{L T}^{I}(4,3)=\emptyset
$$

To express singularities, we use the same notations as in [7], [2]. In particular, we use important class of singularities which is called Brieskorn-Pham singularities $B_{n, m}$ which is defied by $u^{n}+t^{m}=0$ where $n, m \geq 2$. We also use the notations:

$$
B_{n, m} \circ B_{r, s} \quad: \quad\left(u^{n}+t^{m}\right)\left(u^{r}+t^{s}\right)=0, \quad m / n<s / r
$$

and $*^{\infty}$ which express singularities on the limit line L_{∞}.

§2. Preliminaries

2.1. Line degenerations

Let U be an open neighborhood of 0 in \mathbb{C} and let $\left\{C_{s} \mid s \in U\right\}$ be an analytic family of irreducible curves of degree d which degenerates into $C_{0}:=D+j L_{\infty}(1 \leq j<d)$ where D is an irreducible curve of degree $d-j$ and L_{∞} is a line. We assume that there is a point $B \in L_{\infty} \backslash L_{\infty} \cap D$ such that $B \in C_{s}$ and the multiplicity of C_{s} at P is j for any non-zero $s \in U$. We call such a degeneration a line degeneration of order j and we call L_{∞} the limit line of the degeneration and B is called the base point of the degeneration. In [5], M. Oka showed that there exists a canonical surjection:

$$
\varphi: \pi_{1}\left(\mathbb{C}^{2} \backslash D\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2} \backslash C_{s}\right), \quad s: \text { sufficiently small, }
$$

where $\mathbb{C}^{2}=\mathbb{P}^{2} \backslash L_{\infty}$ and as a corollary he showed the divisibility among the Alexander polynomials of a line degeneration family:

$$
\Delta_{C_{s}}(t) \mid \Delta_{D_{0}}(t)
$$

He also showed that a visible type of torus curve of type (p, q) can be expressed as a line degeneration of irreducible torus curves of degree $p q$. Hence the Alexander polynomial of visible degenerations are not trivial.

2.2. Local singularities of visible degenerations

Let D be a visible degeneration of type (p, q) which is defined as (1.3). We put two polynomials $F_{a}:=F_{q-r_{q}}^{\prime}$ and $F_{b}:=F_{p-r_{p}}^{\prime}$ and two plane curves $C_{a}:=\left\{F_{a}=0\right\}$ and $C_{b}:=\left\{F_{b}=0\right\}$. Using these notations, equations (1.3) is written as

$$
G(X, Y, Z)= \begin{cases}F_{a}(X, Y, Z)^{p}+F_{b}(X, Y, Z)^{q} Z^{a p-b q} & \text { if } j=p r_{q} \tag{1.3'}\\ F_{a}(X, Y, Z)^{p} Z^{b q-a p}+F_{b}(X, Y, Z)^{q} & \text { if } j=q r_{p}\end{cases}
$$

A singular point $P \in D \cap \mathbb{C}^{2}$ is called inner if $P \in C_{a} \cap C_{b}$. Otherwise $P \in D$ is called outer.

It is known that the topological type of the non-degenerate germ (C, P) is determined by its Newton principal part and does not depend on the terms with higher degree ([4], [1]). Moreover inner singularities depend on the intersection multiplicity of C_{a} and C_{b} at P and topological types C_{a} and C_{b} at P.

In this section, we consider possibilities of local singularities of D. If $P \in D$ is an inner singularity, we denote the intersection multiplicity of C_{a} and C_{b} at P by ι. If $P \in C_{i} \cap L_{\infty}$, then we denote the intersection multiplicity of C_{i} and L_{∞} by ι_{i} for $i=a, b$. By the same argument with Lemma 1 in [1] and Lemma 3 in [2], we have following.

Lemma 2.1. Let $D=\{G=0\}$ be a (p, q) visible degenerations which is defined as

$$
D: \quad G=F_{a}^{p}+F_{b}^{q} Z^{k}=0, \quad k:=a p-b q>0
$$

Let P be a singular point of D. Assume that both curves C_{a} and C_{b} are smooth at P if P is on C_{j} for $j=a, b$. Then a singularity of D at P is as the following:
(1) If P is an inner singularity, then $(D, P) \sim B_{p \iota, q}$.
(2) If $P \in C_{a} \cap L_{\infty} \backslash C_{b}$, then $(D, P) \sim B_{\iota_{a} k, p}$ if $p \leq k$ and $B_{\iota_{a} p, k}$ if $p>k$.
(3) If $P \in C_{a} \cap C_{b} \cap L_{\infty}$ and $p<q+k$, then

$$
(D, P) \sim \begin{cases}B_{p, p \iota_{a}} & (k-p) \iota_{a}+q \iota_{b}=0 \\ B_{\iota q+\iota_{a} k, p} & (k-p) \iota_{a}+q \iota_{b}>0 \\ B_{\iota_{a} p-\iota_{b} q, k} \circ B_{\iota_{b} q, p-k} & (k-p) \iota_{a}+q \iota_{b}<0\end{cases}
$$

Proof. We prove only for the case (3). If $(k-p) \iota_{a}+q \iota_{b}=0$, then the assertion is clear. We assume $(k-p) \iota_{a}+q \iota_{b}>0$. The Newton boundary of $G(x, z)$ is given as the left side of Fig. 1. Then we can take a suitable local coordinates (u, v) so that G is defined as $v^{p}+c\left(v-u^{\imath}\right)^{q}(v-$ $\left.u^{\iota_{a}}\right)^{k}=0$ where c is a non-zero constant. Then the Newton boundary of $G(u, v)$ has non-degenerate one face and hence $(D, P) \sim B_{\iota q+\iota_{a} k, p}$. If $(k-p) \iota_{a}+\iota_{b} q<0$, then we have two non-degenerate faces in the Newton boundary (see the right side of Fig. 1). Hence we have the assertion.

Fig. 1
Q.E.D.

2.3. Invisible degenerations

In this section, we consider invisible degenerations of order 1,2 and 3 under assumptions p and q are relatively prime such that $2 q>$ p. Let $C_{p, q}$ be a (p, q) torus curve which is defined as $F(X, Y, Z)=$ $F_{q}(X, Y, Z)^{p}-F_{p}(X, Y, Z)^{q}$ where

$$
F_{q}(X, Y, Z)=\sum_{i=0}^{q} j_{i}(X, Y) Z^{i}, \quad F_{p}(X, Y, Z)=\sum_{j=0}^{p} k_{j}(X, Y) Z^{j}
$$

Here $j_{i}(X, Y)$ and $k_{j}(X, Y)$ are homogeneous polynomials in $\mathbb{C}[X, Y]$ of degree $q-i$ and $p-j$ respectively. Let $K(Z)=\sum_{i=0}^{m} a_{i} Z^{i}$ be an one variable polynomial. Using binomial theorem, we have

$$
\begin{aligned}
\operatorname{Coeff}\left(K^{n}, 1\right) & =a_{0}^{n}, \quad \operatorname{Coeff}\left(K^{n}, Z\right)=n a_{0}^{n-1} a_{1}, \\
\operatorname{Coeff}\left(K^{n}, Z^{2}\right) & =n a_{0}^{n-2}\left(\frac{n-1}{2} a_{1}^{2}+a_{0} a_{2}\right)
\end{aligned}
$$

where Coeff $\left(K^{n}, *\right)$ is the coefficient of $*$ in the polynomial K^{n}. We regard F as a Z-variable polynomial and then we have

$$
\begin{aligned}
\text { Coeff }(F, 1) & =j_{0}^{p}-k_{0}^{q}, \quad \operatorname{Coeff}(F, Z)=p j_{0}^{p-1} j_{1}-q k_{0}^{q-1} k_{1} \\
\operatorname{Coeff}\left(F, Z^{2}\right) & =p j_{0}^{p-2}\left(\frac{p-1}{2} j_{1}^{2}+j_{0} j_{2}\right)-q k_{0}^{q-2}\left(\frac{q-1}{2} k_{1}^{2}+k_{0} k_{2}\right)
\end{aligned}
$$

First we consider the case that the order is 1 , that is Z divide $F_{q}^{p}-$ F_{p}^{q}, then we have $j_{0}^{p}=k_{0}^{q}$. As we assumed that p and q are relatively prime, there exist a linear form $\ell \in \mathbb{C}[X, Y]$ such that $j_{0}=\ell^{q}$ and $k_{0}=\ell^{p}$. Put $R:=\{\ell=0\} \cap L_{\infty}$. If coefficients of j_{i} and k_{j} are generic for $i, j \geq 1$, then, by simple calculations, C_{p} and C_{q} are smooth at R, the intersection multiplicity of C_{p} and C_{q} is q and the singularity of D at R is given by

$$
(D, R) \sim B_{p(q-1), q-1}
$$

Next we consider the case that the order is 2, that is $Z^{2} \mid F_{q}^{p}-F_{p}^{q}$, then we have $\ell^{p(q-1)}\left(q k_{1}-p j_{1} \ell^{p-q}\right)=0$. As $\ell \neq 0, k_{1}$ is written as $k_{1}=\frac{p}{q} j_{1} \ell^{p-q}$. If coefficients of j_{i} and k_{j} are generic for $i, j \geq 1$, then C_{q} is smooth at R and C_{q} has $B_{p, 2}$ singularity at R. Their intersection multiplicities at R is p and we have

$$
(D, R) \sim B_{q(p-2), p-2}
$$

Finally assume that Z^{3} divides $F_{q}^{p}-F_{p}^{q}$. Then Coeff $\left(F_{q}^{p}, Z^{2}\right)$ must be equal to Coeff $\left(F_{p}^{q}, Z^{2}\right)$ where
$\operatorname{Coeff}\left(F_{q}^{p}, Z^{2}\right)=p \ell(X, Y)^{q(p-2)}\left(\frac{p-1}{2} j_{1}(X, Y)^{2}+\ell(X, Y)^{q} j_{2}(X, Y)\right)$
$\operatorname{Coeff}\left(F_{p}^{q}, Z^{2}\right)=q \ell(X, Y)^{q(p-2)}\left(\frac{p^{2}(q-1)}{2 q^{2}} j_{1}(X, Y)^{2}+\right.$

$$
\left.\ell(X, Y)^{2 q-p} k_{2}(X, Y)\right)
$$

We solve the equation $\operatorname{Coeff}\left(F_{q}^{p}, Z^{2}\right)=\operatorname{Coeff}\left(F_{p}^{q}, Z^{2}\right)$. Then we have

$$
\frac{p(p-q)}{2 q} j_{1}(X, Y)^{2}+p \ell(X, Y)^{q} j_{2}(X, Y)-q \ell(X, Y)^{2 q-p} k_{2}(X, Y)=0
$$

This implies j_{1} must be divided by ℓ^{s} where $s=q-\left[\frac{p}{2}\right]$ and we put $j_{1}(X, Y)=\ell^{s} \tilde{j}_{1}(X, Y)$. Hence we have

$$
k_{p-2}(X, Y)=\frac{p(p-q)}{2 q^{2}} \ell(X, Y)^{\varepsilon} \tilde{j}_{1}(X, Y)^{2}+\frac{p}{q} \ell(X, Y)^{p-q} j_{2}(X, Y)
$$

where ε is 0 if p is even and 1 if p is odd. If p is even, then ε is 0 and $\left(C_{q}, R\right) \sim B_{q-1,1} \circ B_{1,1}$ and $\left(C_{p}, R\right) \sim B_{p, 2}$. The intersection multiplicity is $p+2$ and

$$
(D, R) \sim B_{p\left(q-\frac{3}{2}\right), q}
$$

§3. Proof of Theorem 1

To prove Theorem 1, we take following steps:

- Classify possibilities of singularities of invisible degenerations of order 3,4 and 6.
- Classify possibilities of singularities of visible degenerations of order 3,4 and 6 .
- Compare with singularities which are classified by the above 2 steps.
- If there is a pair such that they have the same configurations of singularities, then we consider that whether these curves are the same or not.

3.1. Singularities of invisible degenerations of order 3,4 and 6

Let $D=\{G=0\}$ be a $(4,3)$ invisible degenerations of order j. The defining polynomial G satisfies the relation $Z^{j} G=F_{4}^{3}-F_{3}^{4}$. In this section, we study singularities of D. By the argument in $\S 2.3$, there is a linear form ℓ such that C_{4} and C_{3} intersect with L_{∞} at $\{\ell=0\} \cap L_{\infty}$. We denote the intersection point by R and the intersection multiplicity $I\left(C_{3}, C_{4} ; R\right)$ by ι.
3.1.1. Order is 3 Suppose that $D=\{G=0\}$ is in $\mathcal{L T}_{3}^{I}(4,3 ; 9)$. First we consider possibilities of singularity of D on L_{∞}. By the argument in $\S 2.3, F_{3}$ and F_{4} are written as

$$
\begin{aligned}
F_{3}(X, Y, Z)= & \ell(X, Y)^{3}+\ell(X, Y) \ell_{1}(X, Y) Z+\ell_{2}(X, Y) Z^{2}+b Z^{3} \\
F_{4}(X, Y, Z)= & \ell(X, Y)^{4}+\frac{4}{3} \ell(X, Y)^{2} \ell_{1}(X, Y) Z \\
& +\left(\frac{2}{9} \ell_{1}(X, Y)^{2}+\frac{4}{3} \ell(X, Y) \ell_{2}(X, Y)\right) Z^{2} \\
& \quad+\ell_{3}(X, Y) Z^{3}+a Z^{4}
\end{aligned}
$$

where ℓ_{1}, ℓ_{2} and ℓ_{3} are suitable linear forms. We showed in $\S 2.3$ the following:

- $C_{3} \cap L_{\infty}=C_{4} \cap L_{\infty}=\{R\}$.
- $\left(C_{3}, R\right) \sim A_{1}$ and $\left(C_{4}, R\right) \sim A_{3}$.
- If coefficients of F_{3} and F_{4} are generic, then $\iota=6$ and $(D, R) \sim$ $B_{6,3}$.
Now we consider degenerations of the singularity of D at R.
Assume that the Newton boundary of D at R is degenerate. Then doing similar arguments in $\S 2.3$, we can show that $\left(C_{3}, R\right) \sim A_{2},\left(C_{4}, R\right)$ $\sim B_{3,2} \circ B_{1,1}$ and

$$
(D, R) \sim B_{2,1} \circ B_{6,4}, \quad \iota=8
$$

Moreover we assume that its second face which corresponds to $B_{6,4}$ is degenerate, then C_{3} consists of three lines and $\left(C_{4}, R\right) \sim B_{4,3}$ and

$$
(D, R) \sim B_{8,6}, \quad \iota=9
$$

Finally assume that the face of its Newton boundary is degenerate. Then C_{4} also consists of four lines and D consists of nine lines. Hence we have

$$
(D, R) \sim B_{9,9}, \quad \iota=12
$$

Lemma 3.1. Under the above notations, configurations of singularities of D is one of the following.
(1) If $\iota=6$, then we have

$$
\left\{B_{4 n, 3},(6-n) B_{4,3}, B_{6,3}^{\infty}\right\} \quad(n=1,2,3,4), \quad\left\{B_{6,4}, 4 B_{4,3}, B_{6,3}^{\infty}\right\} .
$$

(2) If $\iota=8$, then we have

$$
\left\{B_{4 n, 3},(4-n) B_{4,3},\left(B_{2,1} \circ B_{6,4}\right)^{\infty}\right\}(n=1,2,3)
$$

$$
\begin{equation*}
\text { If } \iota=9, \text { then we have } \tag{3}
\end{equation*}
$$

$$
\left\{B_{4 n, 3},(3-n) B_{4,3}, B_{8,6}^{\infty}\right\}(n=1,2,3),\left\{B_{6,4}, 2 B_{4,3}, B_{8,6}^{\infty}\right\}
$$

(4) If $\iota=12$, then we have $\left\{B_{9,9}^{\infty}\right\}$.

Proof. First we note that if P is an inner singularity of D, then either C_{3} or C_{4} is smooth at P. Indeed, if both curves are singular at P and we may assume that $P=O$, then, by the form of the defining polynomials, we have $a=b=\ell_{2}=\ell_{3}=0$ and hence ℓ_{1}^{3} divides G. Thus G is a non-reducible curve. As we consider only reducible curves, this is a contradiction. Therefore we consider only the cases either C_{3} or C_{4} is smooth in the affine space $\mathbb{C}^{2}=\mathbb{P}^{2} \backslash L_{\infty}$.

We assume that both curves C_{3} and C_{4} are smooth at P with the intersection multiplicity 1 . Then D has $B_{4,3}$ singularity at P. If $\iota=k$, then C_{3} generically intersects with C_{4} at distinct $12-k$ points in \mathbb{C}^{2}
since $C_{3} \cap C_{4} \cap L_{\infty}=\{R\}$. Hence generic configurations of singularities are as follows:

$$
\text { Sing } D= \begin{cases}\left\{6 B_{4,3}, B_{6,3}^{\infty}\right\} & \text { if } \iota=6 \\ \left\{4 B_{4,3},\left(B_{2,1} \circ B_{6,4}\right)^{\infty}\right\} & \text { if } \iota=8 \\ \left\{3 B_{4,3}, B_{8,6}^{\infty}\right\} & \text { if } \iota=9 \\ \left\{B_{9,9}^{\infty}\right\} & \text { if } \iota=12\end{cases}
$$

Existence of other configurations of singularities is shown by simple computations. Suppose $\iota=6$. Singularity $B_{4 n, 3}$ appear as an inner singularity with intersection multiplicity n and both curves are smooth at the intersection point. If $n \geq 5$, then we can show that ℓ divide F_{4} and F_{3}. Then G is non-reduced and hence the cases $n \geq 5$ do not occur. Singularity $B_{6,4}$ also appear as an inner singularity under the assumptions C_{3} is smooth, C_{4} has A_{1} or A_{2} singularity at the intersection point with the intersection multiplicity is 2 . We can also show that the case its intersection multiplicity is greater than 2 do not occur. Doing the same arguments for other cases, we have the assertions. Q.E.D.
3.1.2. Order is 4 Suppose that $D=\{G=0\}$ is in $\mathcal{L} \mathcal{T}_{4}^{I}(4,3 ; 8)$. By the same argument in $\S 2.4, F_{3}$ and F_{4} are written as

$$
\begin{aligned}
F_{3}(X, Y, Z)=\ell(X, Y)^{3} & +\frac{1}{2} \ell(X, Y)^{2} Z+\ell_{1}(X, Y) Z^{2}+b Z^{3} \\
F_{4}(X, Y, Z)=\ell(X, Y)^{4} & +\frac{2}{3} \ell(X, Y)^{3} Z+\left(\frac{1}{18} \ell(X, Y)+\frac{4}{3} \ell_{1}(X, Y)\right) \ell Z^{2} \\
& +\left(\left(\frac{4}{3} b-\frac{1}{162}\right) \ell(X, Y)+\frac{2}{9} \ell_{1}(X, Y)\right) Z^{3}+a Z^{4}
\end{aligned}
$$

where ℓ_{1} is a linear form. Under this situation, they satisfy the following:

- $C_{3} \cap L_{\infty}=C_{4} \cap L_{\infty}=\{R\}$.
- $\left(C_{3}, R\right) \sim A_{2}$ and $\left(C_{4}, R\right) \sim B_{3,2} \circ B_{1,1}$.
- If coefficients of F_{3} and F_{4} are generic, then $\iota=8$ and $(D, R) \sim$ $B_{6,4}$.

By the same argument of the case order 3, we have two configurations global singularities of D :

$$
\left\{4 B_{4,3}, B_{6,4}^{\infty}\right\}, \quad\left\{B_{8,8}^{\infty}\right\}
$$

3.1.3. Order is 6 Suppose that $D=\{G=0\}$ is in $\mathcal{L} \mathcal{T}_{6}^{I}(4,3 ; 6)$. By the same argument in $\S 2.3, F_{3}$ and F_{4} are written as

$$
\left.\left.\begin{array}{rl}
F_{3}(X, Y, Z)=\ell(X, Y)^{3}+ & \frac{1}{2} \ell(X, Y)^{2} Z
\end{array}\right)+\frac{1}{12} \ell(X, Y) Z^{2}+b Z^{3}\right) ~ \begin{aligned}
F_{4}(X, Y, Z)=\ell(X, Y)^{4}+\frac{2}{3} \ell(X, Y)^{3} Z & +\frac{1}{6} \ell(X, Y)^{2} Z^{2} \\
& +\left(\frac{4}{3} b+\frac{1}{81}\right) \ell(X, Y) Z^{3}+a Z^{4}
\end{aligned}
$$

where $a=-\frac{1}{3888}+\frac{2}{9} b$. Thus C_{3} consists of three lines and C_{4} consists of four lines. They intersect at R with intersection multiplicity 12 . Hence D has one singularity at R and $(D, R) \sim B_{6,6}$.

3.2. Singularities of visible degenerations of order 3,4 and 6

Let $D=\{G=0\}$ be a $(4,3)$ visible degeneration of order j for $j=3,4,6$. Then the defining polynomial G has one of the following form:
(1) If the order is 3 :

$$
\text { (1) } G=F_{3}^{3}+G_{2}^{4} Z, \quad \text { (2) } G=F_{3}^{3}+G_{1}^{4} Z^{5} \text {. }
$$

(2) If the order is 4 :

$$
\text { (3) } G=F_{2}^{3} Z^{2}+G_{2}^{4}, \quad \text { (4) } G=F_{1}^{3} Z^{5}+G_{2}^{4}
$$

(3) If the order is 6 :

$$
\text { (5) } G=F_{2}^{3}+G_{1}^{4} Z^{2}
$$

We will classify local singularities for above 5 cases. To classify, we refer to the method of Pho and Oka in [7], [6]. We omit the proof of Lemma $4, \ldots, 9$ as our proof are mainly computational and they are done by a computer program "Maple". Let P be a singularity of D and put $C_{i}:=\left\{F_{i}=0\right\} D_{j}:=\left\{G_{j}=0\right\}$.
3.2.1. Local singularities of the case (1). We divide our considerations as follows:
(i) C_{3} is smooth at P.
(ii) C_{3} has A_{1} singularity at P.
(iii) C_{3} has A_{2} singularity at P.
(iv) C_{3} consists of a smooth conic and a line such that the line is tangent to the conic at P. That is C_{3} has A_{3} singularity at P.
(v) C_{3} has multiplicity 3 at P.

Moreover each case has 3 subcases:
(1) C_{2} is smooth at P.
(2) C_{2} consists of distinct two lines and they intersect at P. That is C_{2} has A_{1} singularity at P.
(3) C_{2} is a line with multiplicity 2 .

First assume that P is in affine space \mathbb{C}^{2}. Put $\iota^{a}:=I\left(D_{2}, C_{3} ; P\right)$.
Lemma 3.2. Under the above notations, we have the following.
(i) If C_{3} is smooth at P, then $(D, P) \sim B_{4 \iota^{a}, 3}$ for $\iota^{a}=1, \ldots, 6$.
(ii) Assume that C_{3} has A_{1} singularity at P.
(ii-1) If D_{2} is smooth at P, then

$$
(D, P) \sim \begin{cases}B_{3 \iota^{a}, 4} & \iota^{a}=2,3,4 \\ B_{3,1} \circ B_{4 \iota^{a}-7,3} & \iota^{a}=5,6 .\end{cases}
$$

(ii-2) If D_{2} has A_{1} singularity at P, then $(D, P) \sim B_{4 \iota^{a}-11,3}$ - $B_{3,5}$ for $\iota^{a}=4,5$.
(ii-3) If D_{2} is a line with multiplicity 2 , then $(D, P) \sim B_{4 \iota^{a}-11,3}$ $\circ B_{3,5}$ for $\iota^{a}=4,6$.
(iii) Assume that C_{3} has A_{2} singularity at P.
(iii-1) If D_{2} is smooth at P, then $B_{3 \iota, 4}$ for $\iota^{a}=2,3$.
(iii-2) If D_{2} has A_{1} singularity at P, then

$$
(D, P) \sim \begin{cases}B_{8,6} & \iota^{a}=4 \\ \left(B_{3,2}^{3}\right)^{B_{3,2}} & \iota^{a}=5\end{cases}
$$

(iii-3) If D_{2} is a line with multiplicity 2 , then

- If $\iota^{a}=4$, then $(D, P) \sim B_{8,6}$.
- If $\iota^{a}=6$, then $(D, P) \sim\left(B_{3,2}^{3}\right)^{B_{3,6}}$.
(iv) Assume that C_{3} has A_{3} singularity at P.
(iv-1) If D_{2} is smooth at P, then $(D, P) \sim B_{3 \iota^{a}, 4}$ for $\iota^{a}=$ $2, \ldots, 6$.
(iv-2) If D_{2} has A_{1} singularity at P, then $(D, P) \sim B_{8,6}$ for $\iota^{a}=4$.
(iv-3) If D_{2} is a line with multiplicity 2 , then $(D, P) \sim B_{8,6}$ for $\iota^{a}=4$.
(v) Assume that C_{3} has multiplicity 3 at P.
(v-1) If D_{2} is smooth at P, then $(D, P) \sim B_{3 \iota^{a}, 4}$ for $\iota^{a}=$ $3, \ldots, 6$.
(v-2) If D_{2} has A_{1} singularity at P, then $(D, P) \sim B_{5,4} \circ B_{4,5}$ for $\iota^{a}=6$.
(v-3) If D_{2} is a line with multiplicity 2 , then $(D, P) \sim B_{9,8}$ for $\iota^{a}=6$.

Next we assume that P is in $C_{3} \cap L_{\infty} \backslash D_{2}$. By the form of the defining polynomial of D, D is smooth at P and intersects L_{∞} with intersection multiplicity $3 \iota_{3}$ where $\iota_{3}=I\left(C_{3}, L_{\infty} ; P\right)$. Hence P is a flex point of D.

Next we assume that P is in $D_{2} \cap C_{3} \cap L_{\infty}$. We may assume that P is $[0: 1: 0]$. We consider combinations of the intersection multiplicities $\left(\iota_{2}, \iota_{3}, \iota\right)$ where $\iota_{2}=I\left(D_{2}, L_{\infty} ; P\right)$ and $\iota=I\left(D_{2}, C_{3} ; P\right)$. For example, we consider the case that C_{3} has A_{1} singularity at P, D_{2} is smooth at P and $\left(\iota_{2}, \iota_{3}, \iota\right)=(1,2,2)$. Let (x, z) be local coordinates at P which are obtained as $(x, z)=(X / Y, Z / Y)$ and let $g_{2}(x, z)$ and $f_{3}(x, z)$ be defining polynomials of D_{2} and C_{3} :

$$
\begin{aligned}
& g_{2}(x, z)=a_{10} x+a_{01} z+a_{20} x^{2}+a_{11} x z+a_{02} z^{2} \\
& f_{3}(x, z)=(z-a x)(z-b x)+b_{30} x^{3}+b_{21} x^{2} z+b_{12} x z^{2}+b_{03} z^{3}
\end{aligned}
$$

where $a \neq b$ as $\left(C_{3}, P\right) \sim A_{1}$. In this coordinate, the limit line L_{∞} is defined as $\{z=0\}$. The condition $\left(\iota_{2}, \iota_{3}, \iota\right)=(1,2,2)$ is equivalent to $a_{10} \neq 0, a b \neq 0$ and $\left(a_{10}+a a_{01}\right)\left(a_{10}+b a_{01}\right) \neq 0$. Under these conditions, the Newton boundary of $g(x, z)$ consists of two faces Δ_{1} and Δ_{2}. Each face function is defined as

$$
g_{\Delta_{1}}(x, z)=\left(a_{10} x+a_{01} z\right)^{4} z, \quad g_{\Delta_{2}}(x, z)=\left(a_{10}^{4} z+(a b)^{3} x^{2}\right) x^{4} .
$$

As the first face is degenerate, we take new local coordinates $\left(x, z_{1}\right)=$ $\left(x, a_{10} x+a_{01} z\right)$. Then the Newton principal part of $g\left(x, z_{1}\right)$ is given as

$$
a_{01}^{4} z_{1}^{5}-a_{01}^{3} a_{10} x z_{1}^{4}+\frac{\left(a_{10}+a a_{01}\right)^{3}\left(a_{10}+b a_{01}\right)^{3}}{a_{01}^{6}} x^{6}
$$

Hence we have a non-degenerate singularity of type $B_{5,4} \circ B_{1,1}$.
Thus to obtain singularities, we consider local geometries of D_{2} and C_{3} at P and all combinations of intersection multiplicities $\left(\iota_{2}, \iota_{3}, \iota\right)$. There are 36 combinations but all combinations do not exist. For example, if both curves are smooth at P and $\iota_{3}, \iota>1$, then the case $\left(1, \iota_{3}, \iota\right)$ does not exist. Assumption $\iota_{3}>1$ means that L_{∞} is the tangent line of C_{3} at P and assumption $\iota>1$ means that C_{3} is tangent to C_{2} at P. This is a contradiction to $\iota_{2}=1$.

Lemma 3.3. Under the above notations, we have the following.
(1) Suppose that D_{2} is smooth at P and intersects transversely. That is $\iota_{2}=1$.
(a) Assume that C_{3} is smooth at P.

- If $\left(\iota_{3}, \iota\right)=(1, \iota)$, then $(D, P) \sim B_{4 \iota+1,3}$ for $\iota=$ $2, \ldots, 6$.
- If $\left(\iota_{3}, \iota\right)=(2,1)$, then $(D, P) \sim B_{6,3}$.
- If $\left(\iota_{3}, \iota\right)=(3,1)$, then $(D, P) \sim B_{5,1} \circ B_{4,2}$.
(b) Assume that C_{3} has A_{1} singularity at P. Then $\iota_{3}=2$ or 3.
- For $\iota=2,3,(D, P) \sim B_{3 \iota-1,4} \circ B_{1,1}$.
- For $\iota=4,5,6,(D, P) \sim B_{4 \iota-6,3} \circ B_{2,1}$.
(c) Assume that C_{3} has A_{2} singularity at P.
- If $\left(\iota_{3}, \iota\right)=(2, \iota)$, then $\iota=2,3$ and $(D, P) \sim B_{3 \iota-1,4}$ - $B_{1,1}$.
- If $\left(\iota_{3}, \iota\right)=(1, \iota)$, then $\iota=2$ and $(D, P) \sim B_{5,4} \circ$ $B_{1,1}$.
(d) If C_{3} has A_{3} singularity at P, then $(D, P) \sim B_{3 \iota-1,4} \circ B_{1,1}$ for $\iota=2,4,5,6$ and $\iota_{3}=2$. The case $\iota_{3}=3$ does not occur.
(e) If C_{3} is three lines, then $\iota_{3}=3$ and $(D, P) \sim B_{3 \iota-1,4} \circ$ $B_{1,1}$.
(2) Suppose that D_{2} is smooth at P and tangent to L_{∞}. In this case, $\iota_{2}=2$.
(a) Assume that C_{3} is smooth at P.
- If $\iota_{3}=1$, then $\iota=1$ and $(D, P) \sim B_{5,3}$.
- If $\iota_{3}=2$, then $(D, P) \sim B_{4 \iota+2,3}$ for $\iota=2, \ldots, 6$.
- If $\iota_{3}=3$, then $\iota=1$ and $(D, P) \sim B_{7,3}$.
(b) Assume that C_{3} has A_{1} singularity at P.
- If $\iota_{3}=2$, then $\iota=2$ and $(D, P) \sim B_{6,5}$.
- If $\iota_{3}=3$, then $(D, P) \sim B_{4 \iota-5,3} \circ B_{3,2}$ for $\iota=$ $3, \ldots, 6$.
(c) Assume that C_{3} has A_{2} singularity at P, then
- If $\iota_{3}=2$, then $\iota=2$ and $(D, P) \sim B_{6,5}$.
- If $\iota_{3}=3$, then $\iota=3$ and $(D, P) \sim B_{9,5}$.
(d) If C_{3} has A_{3} singularity at R, then $\iota_{3}=\iota=2$ and $(D, P) \sim B_{6,5}$.
(e) If C_{3} consists of three lines, then $(D, P) \sim B_{9,5}$.
(3) Suppose that D_{2} is distinct two lines at P. In this case, ι_{2} is also 2.
(a) Assume that C_{3} is smooth at P.
- If $\left(\iota_{3}, \iota\right)=(1, \iota)$, then $(D, P) \sim B_{4 \iota+1,3}$ for $\iota=$ $2, \ldots, 4$.
- If $\iota_{3}=2$, then $\iota=2$ and $(D, P) \sim B_{10,3}$.
- If $\iota_{3}=2$, then $\iota=2$, then $(D, P) \sim B_{11,3}$.
(b) Assume that C_{3} has A_{1} singularity at P.
- If $\iota_{3}=2$, then $\iota=4,5,6$ and

$$
(D, P) \sim \begin{cases}\left(B_{2,2}^{3}\right)^{2 B_{3,3}} & (\iota=4) \\ \left(B_{2,2}^{3}\right)^{B_{7,3}+B_{3,3}} & (\iota=5) \\ \left(B_{2,2}^{3}\right)^{2 B_{7,3}} & (\iota=6)\end{cases}
$$

- If $\iota_{3}=3$, then $(D, P) \sim B_{7,3} \circ B_{3,4 \iota-10}$ for $\iota=4,5$.
(c) Assume that C_{3} has A_{2} singularity at P.
- If $\iota_{3}=2$, then $\iota=4$ or 5 and $(D, P) \sim B_{9,6}$ or $\left(B_{2,3}^{3}\right)^{B_{4,3}}$ respectively.
- If $\iota_{3}=3$, then $\iota=4$ and $\left(B_{3,2}^{3}\right)^{B_{3,1}}$.
(d) If C_{3} has A_{3} singularity at R, then $(D, P) \sim B_{9,6}$ for $\iota_{3}=2$ and $\iota=4$.
(e) If C_{3} consists of three lines, then $(D, P) \sim B_{9,9}$.
(4) Suppose that D_{2} consists of a line with multiplicity $2\left(\iota_{2}=2\right)$.
(a) Assume that C_{3} is smooth at P.
- If $\iota_{3}=1$, then $(D, R) \sim B_{4 \iota+1,3}$ for $\iota=2,4,6$.
- If $\iota_{3}=2,3$, then $\iota=2$ and $(D, R) \sim B_{10,3}\left(\iota_{3}=2\right)$ or $B_{11,3}\left(\iota_{3}=3\right)$ respectively.
(b) Assume that C_{3} has A_{1} singularity at P.
- If $\iota_{3}=2$, then $\iota=4$ or 6 and $(D, P) \sim B_{6,3} \circ B_{3,6}$ or $B_{14,3} \circ B_{3,6}$ respectively.
- If $\iota_{3}=3$, then $\iota=4$ or 6 and $(D, P) \sim B_{7,3} \circ B_{3,6}$ or $B_{7,3} \circ B_{3,14}$ respectively.
(c) Assume that C_{3} has A_{2} singularity at P.
- If $\iota_{3}=2$, then $\iota=4$ or 6 and $(D, P) \sim B_{9,6}$ or $\left(B_{2,3}^{3}\right)^{B_{8,3}}$ respectively.
- If $\iota_{3}=3$, then $\iota=4$ and $(D, P) \sim\left(B_{3,2}^{3}\right)^{B_{3,1}}$.
(d) If C_{3} is a line and conic and has A_{3} singularity at R, then $(D, P) \sim B_{9,6}$ for $\iota_{3}=2$ and $\iota=4$.
(e) If C_{3} consists of distinct three lines, then $\iota=6$ and $(D, P) \sim B_{9,9}$.
3.2.2. Local singularities of the case (2) First assume that P is in affine space \mathbb{C}^{2}. By the same argument in the case (1), we have the following local singularities.

	C_{3} is smooth	A_{1}	A_{2}	A_{3}	3 lines
$\iota=1$	$B_{4,3}$	-	-	-	-
$\iota=2$	$B_{8,3}$	$B_{6,4}$	$B_{6,4}$	$B_{6,4}$	-
$\iota=3$	$B_{12,3}$	$B_{9,4}$	$B_{9,4}$	-	$B_{9,4}$

Next we consider the case $P \in L_{\infty}$. We divided this situation into 2 cases:

$$
P \in C_{3} \cap L_{\infty} \backslash D_{1} \quad \text { or } \quad C_{3} \cap D_{1} \cap L_{\infty}
$$

For the later case, ι_{1} is always 1 and we consider geometry of C_{3} at P and all combinations of intersection multiplicities $\left(\iota_{1}, \iota_{3}, \iota\right)=\left(1, \iota_{3}, \iota\right)$.

Lemma 3.4. Under the above notations, we have the following singularities.
(1) Suppose that $P \in C_{3} \cap L_{\infty} \backslash D_{1}$.
(a) If C_{3} is smooth at P, then $(D, P) \sim B_{5 \iota, 3}$ for $\iota_{3}=1,2,3$.
(b) Assume that C_{3} has A_{1} singularity at P.
(i) If $\iota_{3}=2$, then $(D, P) \sim B_{6,5}$.
(ii) If $\iota_{3}=3$, then $(D, P) \sim B_{7,3} \circ B_{3,2}$.
(c) Assume that C_{3} has A_{2} singularity at P.
(i) If $\iota_{3}=2$, then $(D, P) \sim B_{6,5}$.
(ii) If $\iota_{3}=3$, then $(D, P) \sim B_{9,5}$.
(d) If C_{3} has A_{3} singularity at P, then $(D, P) \sim B_{6,5}$.
(e) If C_{3} consists of three lines, then $(D, P) \sim B_{9,9}$.
(2) Suppose that $P \in C_{3} \cap D_{1} \cap L_{\infty}$.
(a) Assume that C_{3} is smooth at P.
(i) If $\iota=1$, then $(D, P) \sim B_{3,5 \iota_{3}+4}$.
(ii) If $\iota_{3}=1$, then $(D, P) \sim B_{3,4 \iota+5}$.
(b) Assume that C_{3} has A_{1} singularity at P.
(i) If $\iota=\iota_{3}=2$, then $(D, P) \sim\left(B_{2,2}^{3}\right)^{2 B_{3,3}}$.
(ii) If $\iota=2$ and $\iota_{\infty}=3$, then $(D, P) \sim B_{11,2} \circ B_{3,6}$.
(iii) If $\iota=3$ and $\iota_{\infty}=2$, then $(D, P) \sim B_{6,3} \circ B_{3,10}$.
(c) Assume that C_{3} has A_{2} singularity at P.
(i) If $\iota=\iota_{3}=2$, then $(D, P) \sim B_{9,6}$.
(ii) If $\iota=2$ and $\iota_{\infty}=3$, then $(D, P) \sim\left(B_{3,2}^{3}\right)^{B_{5,3}}$.
(iii) If $\iota=3$ and $\iota_{\infty}=2$, then $(D, P) \sim\left(B_{3,2}^{3}\right)^{B_{4,3}}$.
(d) If C_{3} has A_{3} singularity at P, then $(D, P) \sim B_{9,6}$.
(e) If C_{3} consists of three lines, then $(D, P) \sim B_{9,9}$.
3.2.3. Local singularities of the case (3) For the case that C_{2} and D_{2} are smooth is already classified by Lemma 1 and 2. Hence we assume that C_{2} or D_{2} consists of two lines at P.

Lemma 3.5. Under the above assumptions, we have the following.
(1) Suppose that $P \in C_{2} \cap D_{2} \backslash L_{\infty}$.
(a) Assume that D_{2} is smooth at P and C_{2} consists of two lines ℓ_{1} and ℓ_{2} such that $P \in \ell_{1} \cap \ell_{2}$.
(i) If $\ell_{1} \neq \ell_{2}$, then $(D, P) \sim B_{3 \iota 4}$ for $\iota=2,3$.
(ii) If $\ell_{1}=\ell_{2}$, then $(D, P) \sim B_{3 \iota 4}$ for $\iota=2,4$.
(b) Assume that C_{2} is smooth at P and D_{2} consists of two lines L_{1} and L_{2} such that $P \in L_{1} \cap L_{2}$.
(i) If $L_{1} \neq L_{2}$, then $(D, P) \sim B_{4 \iota 3}$ for $\iota=2,3$.
(ii) If $L_{1}=L_{2}$, then $(D, P) \sim B_{4 \iota 3}$ for $\iota=2,4$.
(c) If C_{2}, D_{2} consist of two lines, then $(D, P) \sim\left(B_{2,2}^{3}\right)^{2 B_{3,2}}$.
(2) Suppose that $P \in D_{2} \cap L_{\infty} \backslash C_{2}$ and D_{2} consists of two lines L_{1} and L_{2} such that $P \in L_{1} \cap L_{2}$. Then $(D, P) \sim B_{8,2}$.
(3) Suppose that $P \in C_{2} \cap D_{2} \cap L_{\infty}$.
(a) Assume that D_{2} is smooth at P and C_{2} consists of two lines ℓ_{1} and ℓ_{2} such that $P \in \ell_{1} \cap \ell_{2}$.
(i) If $\ell_{1} \neq \ell_{2}$, then $(D, P) \sim B_{3 \iota+2,4}$ for $\iota=2,3$.
(ii) If $\ell_{1}=\ell_{2}$, then $(D, P) \sim B_{3 \iota+2,4}$ for $\iota=2,4$.
(b) Assume that C_{2} is smooth at P and D_{2} consists of two lines L_{1} and L_{2} such that $P \in L_{1} \cap L_{2}$.
(i) If $L_{1} \neq L_{2}$, then $(D, P) \sim B_{8,4} \circ\left(B_{1,1}^{3}\right)^{B_{4 \iota-1,3}}$ for $\iota=2,3$.
(ii) If $L_{1}=L_{2}$, then $(D, P) \sim B_{8,4} \circ\left(B_{1,1}^{3}\right)^{B_{4 \iota-1,3}}$ for $\iota=2,4$.
(c) If C_{2} and D_{2} consist of two lines, then $(D, P) \sim B_{8,8}$.
3.2.4. Local singularities of the case (4) For the case that D_{2} are smooth is already classified by Lemma 1 and 2 . Hence we assume that D_{2} consists of two lines.

Lemma 3.6. Under the above assumptions, we have the following.
(1) If $P \in C_{1} \cap D_{2} \backslash L_{\infty}$, then $(D, P) \sim B_{8,3}$.
(2) If $P \in D_{2} \cap L_{\infty} \backslash C_{1}$, then $(D, P) \sim B_{8,5}$.
(3) If $P \in D_{2} \cap C_{1} \cap L_{\infty}$, then $(D, P) \sim B_{8,8}$.
3.2.5. Local singularities of the case (5) For the case that C_{2} are smooth is already classified by Lemma 1 and 2. Hence we assume that C_{2} consists of two lines.

Lemma 3.7. Under the above assumptions,
(1) If $P \in C_{2} \cap D_{1} \backslash L_{\infty}$, then $(D, P) \sim B_{6,4}$.
(2) If $P \in C_{2} \cap L_{\infty} \backslash D_{1}$, then $(D, P) \sim B_{6,2}$.
(3) If $P \in C_{2} \cap D_{1} \cap L_{\infty}$, then $(D, P) \sim B_{6,6}$.

3.3. Compare with classified singularities

By the argument in $\S 3.1$, the singularity of $(4,3)$ invisible degenerations on L_{∞} is one of the following:
(1) Order is 3: $B_{6,3}, B_{2,1} \circ B_{6,4}, B_{8,6}, B_{9,9}$.
(2) Order is 4: $B_{6,4}, B_{8,8}$.
(3) Order is 6: $B_{6,6}$.

For $j=3,4$ and 6 , we consider that whether there is a pair $(C, D) \in$ $\mathcal{L T}_{j}^{V}(4,3 ; d) \times \mathcal{L T}_{j}^{I}(4,3 ; d)$ such that $\operatorname{Sing} C=\operatorname{Sing} D$ for some d. As we assumed that D does not consist of lines in Theorem 1, we exclude singularities $B_{9,9}, B_{8,8}$ and $B_{6,6}$.

By local classifications of visible degenerations of order 3, there is a visible degeneration $C \in \mathcal{L} \mathcal{T}_{3}^{V}(4,3 ; 9)$ such that $\operatorname{Sing} C$ contains either $B_{6,3}$ or $B_{8,6}$ singularity.

Let $C=\left\{F_{3}^{3}+G_{2}^{4} Z=0\right\}$ be a $(4,3)$ visible degeneration of order 3 which has $B_{6,3}$ singularity at P. Then the corresponding curves $C_{3}=$ $\left\{F_{3}=0\right\}$ and $D_{2}=\left\{G_{2}=0\right\}$ satisfy the following conditions:

- P is in L_{∞}.
- D_{2} is smooth at P and intersects transversely with L_{∞}.
- C_{3} is smooth at P and tangent to L_{∞}.

Under these conditions, the intersection multiplicity $I\left(D_{2}, C_{3} ; P\right)$ is 1 . Hence Sing C is $\left\{5 B_{4,3}, B_{6,3}^{\infty}\right\}$ generically. On the other hand, there is a $(4,3)$ invisible degeneration D such that its configurations of singularities is $\left\{6 B_{4,3}, B_{6,3}^{\infty}\right\}$ by the argument in $\S 3.1$. Comparing with above 2 singularities, one $B_{4,3}$ singularity is shortage. To cover this shortage, we consider outer singularities of C.

Lemma 3.8. Under the above notations, we assume that C has $B_{6,3}$ singularity at P. Then outer singularities of C of multiplicity 3 is one of the following:

$$
B_{3,3}, \quad B_{4,3}, \quad B_{2,1} \circ B_{3,2}, \quad B_{5,3} .
$$

We omit the proof as it is parallel to that of the proof of Proposition 1 in [6].

Using Lemma 3.8, we have a pair $(C, D) \in \mathcal{L} \mathcal{T}_{3}^{V}(4,3 ; 9) \times \mathcal{L T}_{3}^{I}(4,3 ; 9)$ such that $\operatorname{Sing} C=\operatorname{Sing} D=\left\{6 B_{4,3}, B_{6,3}^{\infty}\right\}$.

Let $C=\left\{F_{3}^{3}+G_{2}^{4} Z=0\right\}$ be a $(4,3)$ visible degeneration of order 3 which has $B_{8,6}$ singularity at P. Then the corresponding curves C_{3} and D_{2} satisfy the following conditions:

- P is an inner singularity.
- D_{2} consists of two lines such that they intersect at P.
- C_{3} has A_{2} singularity at P.
- The intersection multiplicity $I\left(C_{3}, D_{2} ; P\right)$ is 4 .

By the above conditions, Sing C is $\left\{2 B_{4,3}, B_{8,6}^{\infty}\right\}$ generically. On the other hand, there is a $(4,3)$ invisible degenerations D such that its configurations of singularities is $\left\{3 B_{4,3}, B_{8,6}^{\infty}\right\}$ by the argument in $\S 3.1$. In this case, C cannot have outer singularities of order 3 by simple calculations. Therefore there is not a pair which have $B_{8,6}$ singularity.

For order 4 and 6 , there is not such a pair by local classifications.

3.4. Proof of Theorem

Let $C \in \mathcal{L T}_{3}^{V}(4,3 ; 9)$ and $D \in \mathcal{L T}_{3}^{I}(4,3 ; 9)$ be line degenerations such that $\operatorname{Sing} C=\operatorname{Sing} D=\left\{6 B_{4,3}, B_{6,3}^{\infty}\right\}$. Now we will show that such curves C and D never coincide. Let $F=F_{3}^{3}+F_{2}^{4} Z$ and $G=G_{3}^{4}-G_{4}^{3}$ be the defining polynomials of C and D respectively.

Suppose that $C=D$ and we put the singular locus $\Sigma(C)=\Sigma(D)=$ $\left\{P_{1}, \ldots, P_{5}, Q, R\right\}$ such that

$$
\left(C, P_{i}\right) \sim(C, Q) \sim B_{4,3}, \quad(C, R) \sim B_{6,3}
$$

where P_{i} are inner singularities of C, Q is an outer singular point of C and $R \in L_{\infty}$. By previous arguments, $C_{2}=\left\{F_{2}=0\right\}$ and $D_{3}=\left\{G_{3}=\right.$ $0\}$ satisfy as the following:
(1) C_{2} intersects transversely with L_{∞}.
(2) D_{3} has A_{1} singularity at R and $I\left(D_{3}, L_{\infty} ; R\right)=3$.
(3) C_{2} and D_{3} pass through P_{1}, \ldots, P_{5} and R.
(4) $Q \in D_{3} \backslash C_{2}$.

By these conditions, we have $I\left(C_{2}, D_{3}\right) \geq 5 \cdot 1+2=7$. This is a contraction to Bézout Theorem if D_{3} is irreducible. Hence D_{3} is a union C_{2} and L where L is the line pass through R and Q. Such a decomposition of D_{3} is impossible since $I\left(D_{3}, L_{\infty} ; R\right)=3$. Q.E.D.

References

[1] B. Audoubert, T. C. Nguyen and M. Oka, On Alexander polynomials of torus curves, J. Math. Soc. Japan, 57 (2005), 935-957.
[2] M. Kawashima, Classification of local singularities on torus curves of type (2, 5), Tokyo J. Math., 32 (2009), 313-348.
[3] M. Kawashima and K. Yoshizaki, On $(2,3)$ torus of decompositions of $Q L$ configurations, SUT J. Math., 46 (2010), 93-117.
[4] M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31 (1979), 435-450.
[5] M. Oka, Tangential Alexander polynomials and non-reduced degeneration, In: Singularities in Geometry and Topology, World Sci. Publ., Hackensack, NJ, 2007, pp. 669-704.
[6] M. Oka and D. T. Pho, Classification of sextics of torus type, Tokyo J. Math., 25 (2002), 399-433.
[7] D. T. Pho, Classification of singularities on torus curves of type (2,3), Kodai Math. J., 24 (2001), 259-284.

Department of Mathematics
Tokyo University of Science
1-3 Kagurazaka
Shinjuku-ku, Tokyo 162-8601
Japan
E-mail address: kawashima@ma.kagu.tus.ac.jp

