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On (4, 3) line degenerated torus curves and torus 
decompositions 

Masayuki Kawashima 

Abstract. 

Let C = {f = 0} be an affine plane curve. In this paper, we study 
( 4, 3) line degenerations of torus curves. Line degenerations of torus 
curves are divided into two types which are called visible or invisible 
degenerations. We will show that there does not exist a ( 4, 3) line 
degenerated torus curve which has two types decompositions. 

§1. Introduction 

Let IP'2 be a complex projective plane with homogeneous coordinates 
[X, Y, Z] and let C 2 = IP'2 \ { Z = 0} be the affine space with affine 
coordinates ( x, y) = (X I Z, Y I Z). We study plane curves in IP'2 and C2 . 

Let M(d) (resp. Ma(d)) be the set of projective (resp. affine) plane 
curves of degree d. 

For a given curve C E M(d) or Ma(d), we are interested in the 
topological invariant which is called the Alexander polynomial of C and 
torus decompositions. To explain this, we recall several curves which 
are called torus curves, quasi torus curves and line degeneration of torus 
curves. Let p and q be positive integers such that p > q :::=: 2. 

Definition 1.1. We say that C = {j = 0} E Ma(d) torus curve 
of type (p, q) if f is written as f = ff + g where fJ is a polynomial 
in C[x, y] of degree j. Put T(p, q; d) as the set of (p, q) torus curves of 
degree d. · 

Definition 1.2. We say that C = {f = 0} E Ma(d) quasi torus 
curve of type (p, q) if there exist three polynomials fa, fb and fc such that 
they do not have a common component and they satisfy the following 
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relation: 

ffq f = f~ + f~ in C[x, y], deg fi = j. 

Put QT(p, q; d) as the set of (p, q) quasi torus curves of degree d. 

For a given curve C E Ma(d), we say that C has a torus decom
position (resp. quasi torus decomposition) if C is in T(p, q; d) (resp. 
QT(p, q; d)) for some (p, q). 

Example 1.1. There is an interesting phenomenon. Let Q = {! = 
0} E Ma(4) be a three cuspidal quartic. Then Q has two torus and one 
quasi torus decompositions ([3]): 

(1.1) f=!f+f~, f=g~+g~, hU=h~+h~ 

where deg fi = i, deg 9i = i and deg hi = i. Furthermore its tangential 
Alexander polynomial is (t2 -t+ 1)2 ([5]). For other quartics, if there exist 
a torus decomposition, then it is unique and its tangential Alexander 
polynomial is t 2 - t + 1. 

We will want to consider the relation between the number of torus 
decompositions and the degree of its Alexander polynomial. To study 
this, we consider whether there exist a plane curve which has several 
torus decompositions. 

To construct two torus decompositions in Example 1.1, we used line 
degenerations of torus curves. Now we recall line degenerations of torus 
curves which are defined by M. Oka in [5]. 

Let C = {F = F: + FJ = 0} E M(pq) be a projective (p, q) torus 
curve. Suppose that F has the following form: 

(1.2) F(X, Y, Z) = zi G(X, Y, Z) 

where G(X, Y, Z) is a reduced homogeneous polynomial of degree pq- j. 
We call a curveD = { G = 0} a line degenerated torus curve of type (p, q) 
of order j and the line L 00 = { Z = 0} the limit line of the degeneration. 
Put .CTj (p, q; d) as the set of line degenerated torus curves of type (p, q) 
of order j and .CT(p, q) is the union of .CTj (p, q; d) with respect to j. 

To state our theorem, we divide the situation (1.2) into two cases 
which are called visible degenerations and invisible degenerations. Put 
the integer rk := max{r E z I zr divides Fk} fork= p, q. 

Visible case. Suppose that r P • r q =f. 0 and qr P =f. pr q. Then Fq and 
Fp are written as Fq(X, Y, Z) = F~-rq (X, Y, Z)zro and Fp(X, Y, Z) = 
F;_rp(X,Y,Z)zrP. Putting j := min{qrp,prq}, we can factor F as 
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F(X, Y, Z) = ZJG(X, Y, Z). Then G is written using F;_rv and F~-rq 
as 
(1.3) 

G(X, Y, Z) = {F~-rq (X, Y, Z)P + F;_rv (X, Y, Z)qzqrv-prq ~f ~ = prq, 
F' (X Y Z)P zprq-qrv + F' (X Y Z)q 1f J = qr 

q-rq ' ' p-rp ' ' p· 

We call such a factorization visible factorization and D is called a visible 
degeneration of (p, q) torus curve. We denote the set of visible degener
ations of order j by £Tj (p, q; pq- j) and the union Uj£Tj (p, q; pq- j) 
by £Tv (p, q). 

Example 1.2. We give an example of a visible degeneration. We 
take (p,q) = (4,3), (r4 ,r3 ) = 1, F3(X,Y,Z) = (X2 + Y2 + Z 2 )Z and 
F4 (X, Y, Z) = (X3 + Y3 + Z 3)Z. Then the order is 3 and F(X, Y, Z) = 
Z 3 G(X, Y, Z) where 

G(X, Y, Z) = (X2 + Y2 + Z2 ) 4 Z + (X3 + y 3 + z 3 ) 3 . 

Thus we have D = {G = 0} E £/r(4,3;9) and SingD = {6E6 }. 

Invisible case. Either r P = 0 or r q = 0 but F can be written as 
(1.2). Then D is called an invisible degeneration of (p, q) torus curve. 
In this case, write FJ + F: = I:f!o Ci(X, Y)zi. Then Ci(X, Y) = 0 
for i is less than j - 1 and therefore ZJ divides F. We denote the set 
of invisible degenerations of order j by £/§ (p, q; pq - j) and the union 

Uj£/§ (p, q; pq- j) by £/I (p, q). 

Example 1.3. We give an example of an invisible degeneration. 
We take (p, q) = (4, 3), F3 (X, Y, Z) = 3YZ2 + L 3 and F4 (X, Y,Z) = 
z4 +4YZ2L+L4 where L = x+y. Then the order is 3 and F(X, Y, Z) = 
F3(X, Y, Z) 4 - F4 (X, Y, Z) 3 = Z 3G(X, Y, Z) where 

G(X, Y, Z) = -Z8 - 12YLZ6 + <,01(X, Y)Z4 + <,02(X, Y)z2 + <,03(X, Y), 

<,01(X, Y) = 81y4 - 3L4 - 48y2 L 2 , 

<,02(X, Y) = 4yL3(lly2 - 6L2), 

<,03(X, Y) = 3L6 (2y2 - L2 ). 

Thus we have D = {G = 0} E £/~(4,3;8) and SingD = {4E6 ,B4 ,6 }. 

where B4,6 is defined as u4 + v6 = 0. 

Using these terminologies, two torus decompositions of 3-cuspidal 
quartic in Example 1.1 are written as 

fr + f] E £/~ (3, 2; 4), g~ + g§ E £/~(3, 2; 4). 
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This shows that Q is in the both space err (3, 2; 4) n £7~(3, 2; 4). 
In this paper, we consider whether such a phenomenon occur for the 

case (p, q) = (4, 3). By the definitions and simple calculations, £Tv (4, 3) 
and £71 (4, 3) have following decompositions: 

£Tv (4, 3) =err (4, 3; 9) u .err (4, 3; 8) u .err (4, 3; 6) u .crn4, 3;4). 
6 

£71 (4, 3) = U £7[ (4, 3; 12- j). 
j=l 

Hence we consider only the cases order 3, 4 and 6. 

Theorem 1. Suppose that D E £7( 4, 3) does not consist of lines. 

(1) There exist C E .err (4, 3; 9) and DE £7~(4, 3; 9) such that 

Sing C =Sing D = {6B4,3, B6,3}· 

(2) However it is not possible to find such C, D with C = D that 
is to say 

£Tv (4, 3) n £71 (4, 3) = 0. 

To express singularities, we use the same notations as in [7], [2]. 
In particular, we use important class of singularities which is called 
Brieskorn-Pham singularities Bn,m which is defied by un +tm = 0 where 
n, m ;:=: 2. We also use the notations: 

Bn,m oBr,s mjn < sjr 

and *00 which express singularities on the limit line L 00 • 

§2. Preliminaries 

2.1. Line degenerations 

Let U be an open neighborhood of 0 in C and let { C8 I s E U} be an 
analytic family of irreducible curves of degree d which degenerates into 
Co := D + j L 00 (1 :::; j < d) where Dis an irreducible curve of degree 
d- j and L 00 is a line. We assume that there is a point B E L 00 \ L 00 n D 
such that B E C8 and the multiplicity of C8 at P is j for any non-zero 
s E U. We call such a degeneration a line degeneration of order j and we 
call L00 the limit line of the degeneration and B is called the base point 
of the degeneration. In [5], M. Oka showed that there exists a canonical 
surjection: 

cp : 1r1 (C2 \D) --+ 1r1 (C2 \ C8 ), s : sufficiently small, 
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where C2 = lP'2 \ L 00 and as a corollary he showed the divisibility among 
the Alexander polynomials of a line degeneration family: 

~c.(t) I ~D0 (t). 

He also showed that a visible type of torus curve of type (p, q) can be 
expressed as a line degeneration of irreducible torus curves of degree pq. 
Hence the Alexander polynomial of visible degenerations are not trivial. 

2.2. Local singularities of visible degenerations 

Let D be a visible degeneration of type (p, q) which is defined as 
(1.3). We put two polynomials Fa := F~~ro and Fb := F;_rp and two 
plane curves Ca :={Fa= 0} and Cb := {Fb = 0}. Using these notations, 
equations (1.3) is written as 

(1.3') G(X y Z) = {Fa(X, Y, Z)P + Fb(X, Y, Z)qzap-bq if j = prq, 
' ' Fa(X, Y, Z)P zbq-ap + Fb(X, Y, Z)q if j = qrp. 

A singular point P E DnC2 is called inner if P E CanCb. Otherwise 
P E D is called outer. 

It is known that the topological type of the non-degenerate germ 
(C, P) is determined by its Newton principal part and does not depend 
on the terms with higher degree ([4], [1]). Moreover inner singularities 
depend on the intersection multiplicity of Ca and Cb at P and topological 
types Ca and Cb at P. 

In this section, we consider possibilities of local singularities of D. 
If P E D is an· inner singularity, we denote the intersection multiplicity 
of Ca and Cb at P by "· If P E Ci n L 00 , then we denote the intersection 
multiplicity of Ci and Loo by "i for i = a, b. By the same argument with 
Lemma 1 in [1] and Lemma 3 in [2], we have following. 

Lemma 2.1. Let D = { G = 0} be a (p, q) visible degenerations 
which is defined as 

D : G = Fg + F: zk = 0, k := ap - bq > 0. 

Let P be a singular point of D. Assume that both curves Ca and Cb are 
smooth at P if P is on Cj for j = a, b. Then a singularity of D at P is 
as the following: 

(1) If P is an inner singularity, then (D, P),...., Bp•,q· 
(2) If PECan Loo \ Cb, then (D, P),...., B.ak,p if p ~ k and B•aP, k 

ifp > k. 
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(3) If P E Ca nCb n Loo and p < q + k, then 

(k- p)La + QLb = 0, 

(k- p)La + QLb > 0, 

(k-p)La+QLb<O. 

Proof. We prove only for the case (3). If (k - p)La + QLb = 0, 
then the assertion is clear. We assume (k- p)La + QLb > 0. The Newton 
boundary of G ( x, z) is given as the left side of Fig. 1. Then we can take a 
suitable local coordinates ( u, v) so that G is defined as vP + c ( v-u") q ( v
u"a )k = 0 where cis a non-zero constant. Then the Newton boundary 
of G(u, v) has non-degenerate one face and hence (D, P),....., B"q+Lak,p· If 
(k-p)La +LbQ < 0, then we have two non-degenerate faces in the Newton 
boundary (see the right side of Fig. 1). Hence we have the assertion. 

q+k 

p 

k 

Fig. 1 

2.3. Invisible degenerations 

q+k 

p 

k 

Q.E.D. 

In this section, we consider invisible degenerations of order 1, 2 
and 3 under assumptions p and q are relatively prime such that 2q > 
p. Let Cp,q be a (p, q) torus curve which is defined as F(X, Y, Z) 
Fq(X, Y, Z)P- Fp(X, Y, Z)q where 

q 

Fq(X, Y, Z) = Lji(X, Y)Zi, 
i=O 

p 

Fp(X, Y, Z) = L kj (X, Y)Zj. 
j=O 

Here ]i(X, Y) and kj(X, Y) are homogeneous polynomials in qx, Y] of 
degree q- i and p- j respectively. Let K(Z) = 2:::':0 aizi be an one 
variable polynomial. Using binomial theorem, we have 

Coeff (Kn, 1) =a~, Coeff (Kn, Z) = na~- 1 a1, 

( n-1 ) Coeff (Kn, Z 2 ) = na~-2 - 2-ai + aoa2 
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where Coeff (Kn, *) is the coefficient of * in the polynomial Kn. We 
regard F as a Z-variable polynomial and then we have 

Coeff (F, 1) = jb- kg, Coeff (F, Z) = pjg-1j 1 - qkg- 1k1 , 

C ff (F Z 2) ·p-2 (p- 1 ·2 .. ) kq-2 (q- 1 k2 k k ) oe , =PJo - 2-JI +JoJ2 -q o - 2- 1 + o 2 · 

First we consider the case that the order is 1, that is Z divide F: -
FJ, then we have jb = k6. As we assumed that p and q are relatively 
prime, there exist a linear form R E qx, Y] such that j 0 = gq and 
k0 = fP. Put R := { R = 0} n Loo. If coefficients of ji and k1 are generic 
fori, j ~ 1, then, by simple calculations, CP and Cq are smooth at R, 
the intersection multiplicity of CP and Cq is q and the singularity of D 
at R is given by 

(D,R) ""'Bp(q-1),q-1· 

Next we consider the case that the order is 2, that is Z 2 I F: - FJ, 
then we have £P(q-1l(qk1 - pj1R_P-q) = 0. As R # 0, k1 is written as 

k1 = Ej1£P-q. If coefficients of ji and kj are generic fori, j ~ 1, then 
q 

Cq is smooth at R and Cq has Bp, 2 singularity at R. Their intersection 
multiplicities at R is p and we have 

(D, R) ""'Bq(p-2),p-2· 

Finally assume that Z 3 divides F:- FJ. Then Coeff (F:, Z 2 ) must 
be equal to Coeff (FJ, Z 2 ) where 

Coeff (F:, Z 2) = pR(X, Y)q(p-2) (p; 1 j 1(X, Y) 2 + R(X, Y)qj2(X, Y)) 

Coeff (F%, Z 2) = qR(X, Y)q(p-2) (p2 (~q~ 1) j 1(X, Y)2+ 

R(X, Y) 2q-pk2(X, Y)). 

We solve the equation Coeff (F:, Z 2 ) = Coeff (FJ, Z 2 ). Then we have 

p(p- q) j1(X, Y) 2 + pR(X, Y)qj2(X, Y)- qR(X, Y) 2q-pk2(X, Y) = 0. 
2q 

This implies j 1 must be divided by gs where s = q- [~] and we put 

j1(X, Y) = R8 J1(X, Y). Hence we have 

kp_2(X, Y) = p(p-; q) R(X, Y)sJ1(X, Y? + !!_R(X, Y)P-qj2(X, Y) 
2q q 
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where E is 0 if p is even and 1 if p is odd. If p is even, then E is 0 and 
(Cq,R) "'Bq-1,1oB1,1 and (Cp,R) "'Bp,2· The intersection multiplicity 
is p + 2 and 

§3. Proof of Theorem 1 

To prove Theorem 1, we take following steps: 

• Classify possibilities of singularities of invisible degenerations 
of order 3, 4 and 6. 

• Classify possibilities of singularities of visible degenerations of 
order 3, 4 and 6. 

• Compare with singularities which are classified by the above 2 
steps. 

• If there is a pair such that they have the same configurations 
of singularities, then we consider that whether these curves are 
the same or not. 

3.1. Singularities of invisible degenerations of order 3, 4 
and 6 

Let D = {G = 0} be a (4, 3) invisible degenerations of order j. The 
defining polynomial G satisfies the relation z1 G = Ff - Fi. In this 
section, we study singularities of D. By the argument in §2.3, there is a 
linear form C such that C4 and C3 intersect with £ 00 at {£ = 0} n £ 00 . 

We denote the intersection point by R and the intersection multiplicity 
I(C3,C4;R) by L 

3.1.1. Orderis3 SupposethatD={G=O}isin£T~(4,3;9). First 
we consider possibilities of singularity of D on Loo. By the argument in 
§2.3, F3 and F4 are written as 

F3(X, Y, Z) = C(X, Y) 3 + C(X, Y)£1(X, Y)Z + £2 (X, Y)Z2 + bZ3 

4 4 2 F4 (X, Y, Z) = C(X, Y) + 3c(X, Y) £1 (X, Y)Z 

+ (~£1(X, Y) 2 + ~C(X, Y)£2(X, Y)) Z 2 

+ C3 (X, Y) Z 3 +a Z 4 

where £1, £2 and £3 are suitable linear forms. We showed in §2.3 the 
following: 

• C3 n Loo = C4 n Loo = {R}. 
• ( C3, R) "'A1 and ( C4, R) "'A3. 
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• If coefficients of F3 and F4 are generic, then L = 6 and (D, R) rv 

B6,3· 
Now we consider degenerations of the singularity of D at R. 

Assume that the Newton boundary of D at R is degenerate. Then 
doing similar arguments in §2.3, we can show that ( C3 , R) "'A2 , ( C4 , R) 
"'B3 ,2 o B 1,1 and 

(D, R) rv B2,1 0 B6,4 1 L = 8. 

Moreover we assume that its second face which corresponds to B 6 ,4 

is degenerate, then C3 consists of three lines and ( C4 , R) "' B4 ,3 and 

(D, R) rv Bs,6, L = 9. 

Finally assume that the face of its Newton boundary is degenerate. Then 
C4 also consists of four lines and D consists of nine lines. Hence we have 

(D, R) rv Bg,g 1 L = 12. 

Lemma 3.1. Under the above notations, configurations of singu
larities of D is one of the following. 

(1) If L = 6, then we have 

{ B4n,3, (6- n)B4,3, Bg:o3} (n = 1, 2, 3, 4), { B6,4, 4B4,3, Bg:o3}. 

(2) If L = 8, then we have 

{B4n,3, (4- n)B4,3, (B2,1 o B6,4)=} (n = 1, 2, 3). 

(3) If L = 9, then we have 

{B4n,3, (3- n)B4,3, Br6} (n = 1, 2, 3), {B6,4, 2B4,3, Br6}. 

(4) If L = 12, then we have {B9,9 }. 

Proof. First we note that if P is an inner singularity of D, then 
either C3 or C4 is smooth at P. Indeed, if both curves are singular at 
P and we may assume that P = 0, then, by the form of the defining 
polynomials, we have a = b = £2 = £3 = 0 and hence R.f divides G. Thus 
G is a non-reducible curve. As we consider only reducible curves, this is 
a contradiction. Therefore we consider only the cases either C3 or C4 is 
smooth in the affine space <C2 = lP'2 \ L=. 

We assume that both curves C3 and C4 are smooth at P with the 
intersection multiplicity 1. Then D has B4 ,3 singularity at P. If L = k, 
then c3 generically intersects with c4 at distinct 12 - k points in <C2 
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since C3 n C4 n L= = { R}. Hence generic configurations of singularities 
are as follows: 

if L = 6, 

if L = 8, 

if L = 9, 

if L = 12. 

Existence of other configurations of singularities is shown by simple 
computations. Suppose L = 6. Singularity B4n,3 appear as an inner 
singularity with intersection multiplicity n and both curves are smooth 
at the intersection point. If n ~ 5, then we can show that £ divide 
F4 and F3 . Then G is non-reduced and hence the cases n ~ 5 do not 
occur. Singularity B6 ,4 also appear as an inner singularity under the 
assumptions C3 is smooth, C4 has A1 or A2 singularity at the intersection 
point with the intersection multiplicity is 2. We can also show that the 
case its intersection multiplicity is greater than 2 do not occur. Doing 
the same arguments for other cases, we have the assertions. Q.E.D. 

3.1.2. Order is 4 Suppose that D = {G = 0} is in .C/~(4,3;8). By 
the same argument in §2.4, F3 and F4 are written as 

F3(X, Y, Z) =£(X, Y)3 +~£(X, Y)2 Z + £1 (X, Y)Z2 + b Z 3 

F4(X, Y, Z) =£(X, Y)4 + ~£(X, Y)3 Z + ( :8 £(X, Y) + ~£1 (X, Y)) £Z2 

+ ( ( ~b- 1~2 ) £(X, Y) + ~£1 (X, Y)) Z 3 +a Z4 

where £1 is a linear form. Under this situation, they satisfy the following: 

• C3 n L= = c4 n L= = {R}. 
• ( C3, R) "' Az and ( C4, R) "'B3,2 o B1,1· 
• If coefficients of F3 and F4 are generic, then L = 8 and (D, R) "' 

B6,4· 

By the same argument of the case order 3, we have two configurations 
global singularities of D: 
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3.1.3. Order is 6 Suppose that D = {G = 0} is in £7~(4, 3; 6). By 
the same argument in §2.3, F3 and F4 are written as 

F3 (X, Y, Z) = f(X, Y) 3 + ~f(X, Y) 2 Z + 1
1
2 f(X, Y)Z2 + b Z 3 

F4(X, Y, Z) =£(X, Y) 4 +~£(X, Y)3 Z + ~f(X, Y) 2 Z2 

+ ( ~b + 811 ) f(X, Y) Z 3 +a Z 4 

where a= - 38188 +~b. Thus 03 consists of three lines and 0 4 consists of 
four lines. They intersect at R with intersection multiplicity 12. Hence 
D has one singularity at Rand (D, R) "'B6 ,6· 

3.2. Singularities of visible degenerations of order 3, 4 and 
6 

Let D = { G = 0} be a ( 4, 3) visible degeneration of order j for 
j = 3, 4, 6. Then the defining polynomial G has one of the following 
form: 

(1) If the order is 3: 

Q) G = Fi + G~Z, ~ G = Fi + Gi Z5 . 

(2) If the order is 4: 

@ G = Fi Z2 + G~, @ G = Ff Z5 + G~. 

(3) If the order is 6: 

We will classify local singularities for above 5 cases. To classify, we refer 
to the method of Pho and Oka in [7], [6]. We omit the proof of Lemma 
4, ... , 9 as our proof are mainly computational and they are done by 
a computer program "Maple". Let P be a singularity of D and put 
Oi := {Fi = 0} Dj := {Gj = 0}. 

3.2.1. Local singularities of the case Q). We divide our considera-
tions as follows: 

(i) 0 3 is smooth at P. 
(ii) 0 3 has A1 singularity at P. 

(iii) 0 3 has A2 singularity at P. 
(iv) 0 3 consists of a smooth conic and a line such that the line is 

tangent to the conic at P. That is 0 3 has A3 singularity at P. 
(v) 03 has multiplicity 3 at P. 



134 M. Kawashima 

Moreover each case has 3 subcases: 

(1) C2 is smooth at P. 
(2) C2 consists of distinct two lines and they intersect at P. That 

is C2 has A 1 singularity at P. 
(3) c2 is a line with multiplicity 2. 

First assume that Pis in affine space C2 • Put La:= I(D2 , C3 ; P). 

Lemma 3.2. Under the above notations, we have the following. 

(i) If c3 is smooth at P, then (D, P) rv B4La,3 for La = 1, ... '6. 
(ii) Assume that C3 has A 1 singularity at P. 

(ii-1) If D2 is smooth at P, then 

La= 2,3,4 

La= 5,6. 

(ii-2) If Dz has A1 singularity at P, then (D, P) rv B4La-ll,3 

oB3,5 for La = 4, 5. 
(ii-3) If Dz is a line with multiplicity 2, then (D, P) rv B4La-ll,3 

oB3,5 for La = 4, 6. 
(iii) Assume that C3 has A2 singularity at P. 

(iii-1) If Dz is smooth at P, then B3La,4 for La= 2, 3. 
(iii-2) If D 2 has A1 singularity at P, then 

(iii-3) If D2 is a line with multiplicity 2, then 
• If La= 4, then (D,P) rv Bs,6· 
• If La = 6 then (D P) rv (B3 )B3,6 

' ' 3,2 . 
(iv) Assume that C3 has A 3 singularity at P. 

(iv-1) If Dz is smooth at P, then (D, P) rv B3La,4 for La = 

2, ... '6. 
(iv-2) If Dz has A1 singularity at P, then (D, P) rv Bs,6 for 

La= 4. 
(iv-3) If D2 is a line with multiplicity 2, then (D, P) rv B 8 ,6 for 

La= 4. 
(v) Assume that C3 has multiplicity 3 at P. 

(v-1) If D2 is smooth at P, then (D, P) rv B3La,4 for La = 

3, ... ,6. 
(v-2) If Dz has A1 singularity at P, then (D, P) rv B 5 ,4 o B 4 ,5 

for La= 6. 



On (4, 3) line degenerated torus curves 135 

(v-3) If D2 is a line with multiplicity 2, then (D, P) "'B9 ,8 for 
ta = 6. 

Next we assume that P is in 0 3 n L00 \ D2 . By the form of the 
defining polynomial of D, D is smooth at P and intersects L 00 with 
intersection multiplicity 3t3 where t3 = I(03, Lao; P). Hence Pis a flex 
point of D. 

Next we assume that Pis in D 2 n 0 3 n Lao. We may assume that P 
is [0 : 1 : 0]. We consider combinations of the intersection multiplicities 
(t2, t3, t) where t2 = I(D2, Lao; P) and t = I(D2, 0 3 ; P). For example, 
we consider the case that C3 has A1 singularity at P, D 2 is smooth at P 
and (t2, t3, t) = (1, 2, 2). Let (x, z) be local coordinates at P which are 
obtained as (x, z) = (X/Y, Z/Y) and let g2(x, z) and fa(x, z) be defining 
polynomials of D2 and 03: 

92(x, z) = a10x + ao1z + a2ox2 + auxz + ao2z2, 

fa(x, z) = (z- ax)(z- bx) + b3ox3 + b21x2z + b12xz2 + bo3z3 

where a -/=- b as ( 0 3 , P) "' A1 . In this coordinate, the limit line Lao is 
defined as {z = 0}. The condition (t2 , t3 , t) = (1, 2, 2) is equivalent to 
a10-/=- 0, ab-/=- 0 and (a10+aao1)(a10+baol)-/=- 0. Under these conditions, 
the Newton boundary of g(x, z) consists of two faces b.. 1 and b..2 . Each 
face function is defined as 

As the first face is degenerate, we take new local coordinates (x, zl) = 
(x, a10x + a01 z). Then the Newton principal part of g(x, zl) is given as 

4 5 3 4 (a10 + aam)3(a10 + baol)3 6 a01 z1 - a01 a10xz1 + 6 x . 
aol 

Hence we have a non-degenerate singularity of type B5,4 o B 1,1 . 

Thus to obtain singularities, we consider local geometries of D 2 

and 0 3 at P and all combinations of intersection multiplicities (t2 , t3, t). 
There are 36 combinations but all combinations do not exist. For exam
ple, if both curves are smooth at P and t3, t > 1, then the case (1, t3, t) 
does not exist. Assumption t 3 > 1 means that Lao is the tangent line 
of C3 at P and assumption t > 1 means that C3 is tangent to C2 at P. 
This is a contradiction to t 2 = 1. 

Lemma 3.3. Under the above notations, we have the following. 

(1) Suppose that D2 is smooth at P and intersects transversely. 
That is t2 = 1. 
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(a) Assume that C3 is smooth at P. 
• If (L3, L) = (1, &), then (D, P) ~ B4,+1,3 for L 

2, ... '6. 
• If (L3, &) = (2, 1), then (D, P) ~ B6,3· 
• If (L3, &) = (3, 1), then (D, P) ~ Bs,l o B4,2· 

(b) Assume that c3 has Al singularity at P. Then L3 = 2 or 
3. 

• For L = 2, 3, (D, P) rv B3L-1,4 0 Bl,l· 

• For L = 4, 5, 6, (D, P) ~ B4,-6,3 o B2,1· 

(c) Assume that C3 has A2 singularity at P. 
• If (L3, L) = (2, &), then L = 2, 3 and (D, P) rv B3L-1,4 

oBl,l· 

• If (&3, L) = (1, &), then L = 2 and (D, P) rv Bs,4 0 
B1,1· 

(d) IfC3 has A3 singularity at P, then (D, P) "'B3,-1,4oB1,1 
for L = 2, 4, 5, 6 and &3 = 2. The case &3 = 3 does not 
occur. 

(e) If c3 is three lines, then L3 = 3 and (D,P) rv B3L-1,4 0 

B1,1· 
(2) Suppose that D2 is smooth at P and tangent to L 00 • In this 

case, &2 = 2. 
(a) Assume that C3 is smooth at P. 

• If L3 = 1, then L = 1 and (D, P) rv Bs,3· 
• If L3 = 2, then (D, P) rv B4L+2,3 for L = 2, ... '6. 
• If L3 = 3, then L = 1 and (D, P) rv B7,3· 

(b) Assume that C3 has A 1 singularity at P. 
• If L3 = 2, then L = 2 and (D, P) rv B6,5· 
• If L3 = 3, then (D, P) rv B4L-5,3 0 B3,2 for L 

3, ... '6. 
(c) Assume that C3 has A2 singularity at P, then 

• If L3 = 2, then L = 2 and (D,P) rv B6,5· 
• If L3 = 3, then L = 3 and (D, P) rv B9,5· 

(d) If c3 has A3 singularity at R, then L3 = L 2 and 
(D, P) "'B6,5· 

(e) If C3 consists of three lines, then (D, P) "'B9,5. 
(3) Suppose that D2 is distinct two lines at P. In this case, t 2 is 

also 2. 
(a) Assume that C3 is smooth at P. 

• If (L3, L) = (1, L), then (D, P) rv B4,+1,3 for L 
2, ... ,4. 

• If L3 = 2, then L = 2 and (D, P) rv B10,3· 
• If L3 = 2, then L = 2, then (D, P) rv Bn,3· 
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(b) Assume that C3 has A 1 singularity at P. 
• If ~3 = 2, then ~ = 4, 5, 6 and 

(~ = 4) 
(~ = 5) 
(~ = 6). 
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• If ~3 = 3, then (D, P) "'B7,3 o B3,4,-lo for~= 4, 5. 
(c) Assume that C3 has A2 singularity at P. 

• If ~3 = 2, then~= 4 or 5 and (D,P) "'B9 ,6 or 
(B~,3 )B4 • 3 respectively. 

• If ~3 = 3, then ~ = 4 and (B~ 2 )B3,1. 

(d) If C3 has A3 singularity at R, th'en (D,P) "' B 9 ,6 for 
~3 = 2 and~= 4. 

(e) If C3 consists of three lines, then ( D, P) "' Bg,g. 

(4) Suppose that D2 consists of a line with multiplicity 2 (~2 = 2). 
(a) Assume that C3 is smooth at P. 

• If ~3 = 1, then (D, R) "'B4,+1,3 for~= 2, 4, 6. 
• If ~3 = 2, 3, then~= 2 and (D, R) "'Bl0,3 (~3 = 2) 

or Bn,3 (~3 = 3) respectively. 
(b) Assume that C3 has A 1 singularity at P. 

• If ~3 = 2, then~= 4 or 6 and (D, P) "'B6 ,3 o B 3 ,6 

or B14,3 o B 3 ,6 respectively. 
• If ~3 = 3, then~= 4 or 6 and (D, P) "'B7,3 o B3,6 

or B7,3 o B3,14 respectively. 
(c) Assume that C3 has A2 singularity at P. 

• If ~3 = 2, then~= 4 or 6 and (D,P) "'B9 ,6 or 
(B~ 3)B8 •3 respectively. 

• If~~ = 3, then ~ = 4 and (D, P) "' (Bl2)B3 •1 • 

(d) If C3 is a line and conic and has A 3 singularity at R, then 
(D, P) "'B9,6 for ~3 = 2 and~= 4. 

(e) If C3 consists of distinct three lines, then ~ = 6 and 
(D, P) "'Bg,g. 

3.2.2. Local singularities of the case @ First assume that P is in 
affine space C2 . By the same argument in the case (!), we have the 
following local singularities. 

c3 is smooth A1 A2 A3 3 lines 

~=1 B4,3 - - - -

~=2 Bs,3 B6,4 B6,4 B6,4 -

~=3 B12,3 B9,4 B9,4 - B9,4 
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Next we consider the case P E L00 • We divided this situation into 2 
cases: 

P E C3 n Loo \ D1 or C3 n D1 n Loo 

For the later case, t 1 is always 1 and we consider geometry of C3 at P 
and all combinations of intersection multiplicities (t1, L3, t) = (1, L3, t). 

Lemma 3.4. Under the above notations, we have the following sin
gularities. 

(1) Suppose that P E C3 n Loo \ D1. 
(a) If c3 is smooth at P, then (D, P) rv B5",3 for L3 = 1, 2, 3. 
(b) Assume that C3 has A 1 singularity at P. 

(i) If L3 = 2, then (D, P) rv B6,5· 

(ii) If L3 = 3, then (D, P) rv B7,3 o B3,2· 

(c) Assume that C3 has A2 singularity at P. 
(i) If L3 = 2, then (D, P) rv B6,5· 

(ii) If L3 = 3, then (D, P) "'B9,5· 

(d) If C3 has A3 singularity at P, then (D, P) "'B6,5· 

(e) If C3 consists of three lines, then (D, P) "'Bg,g. 
(2) Suppose that P E C3 n D1 n L00 • 

(a) Assume that C3 is smooth at P. 
(i) If L = 1, then (D, P) rv B3,5"3+4' 

(ii) If L3 = 1, then (D, P) "'B3,4"+5· 

(b) Assume that C3 has A 1 singularity at P. 
(i) If L = L3 = 2, then (D, P) rv (B~ 2)2B3,3. 

(ii) If L = 2 and Loo = 3, then (D, P) rv Bu,2 0 B3,6· 

(iii) If L = 3 and Loo = 2, then (D,P) rv B6,3 0 B3,10· 

(c) Assume that C3 has A2 singularity at P. 
(i) If L = L3 = 2, then (D, P) rv B9,6· 

(ii) If L = 2 and Loo = 3, then (D, P) rv (B~ 2)B5 •3 • 

(iii) If L = 3 and Loo = 2, then (D, P) rv (Bi2)B4 •3 • 

(d) If C3 has A 3 singularity at P, then (D, P) "',B9,6· 

(e) If C3 consists of three lines, then (D, P) "'Bg,g. 

3.2.3. Local singularities of the case @ For the case that C2 and D2 
are smooth is already classified by Lemma 1 and 2. Hence we assume 
that C2 or D 2 consists of two lines at P. 

Lemma 3.5. Under the above assumptions, we have the following. 

(1) Suppose that P E C2 n D2 \ L00 • 

(a) Assume that D2 is smooth at P and C2 consists of two 
lines £1 and £2 such that P E £1 n £2. 
(i) If el -1- e2, then (D, P) rv B3"4 for L = 2, 3. 

(ii) If el = e2, then (D, P) rv B3"4 for L = 2, 4. 
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(b) Assume that C2 is smooth at P and D2 consists of two 
lines L1 and L2 such that P E L1 n L2. 
(i) If L1 #- L2, then (D, P) "' B4<3 for~= 2, 3. 

(ii) If L1 = L2, then (D, P) "'B4<3 for~= 2, 4. 
(c) If C2, D2 consist of two lines, then ( D, P) "' ( B~ 2 )283,2. 

(2) Suppose that P E D2 n Loo \ C2 and D2 consists of t'wo lines 
L1 and L2 such that P E L1 n L2. Then (D, P) "'B8 ,2. 

(3) Suppose that P E C2 n D2 n L 00 • 

(a) Assume that D2 is smooth at P and C2 consists of two 
lines £1 and £2 such that P E £1 n £2. 
(i) If £1 #- £2, then (D, P) "'B3<+2,4 for~= 2, 3. 

(ii) If £1 = £2, then (D, P) "' B3<+2,4 for~= 2, 4. 
(b) Assume that C2 is smooth at P and D 2 consists of two 

lines L1 and L 2 such that P E L1 n L2. 
(i) If L1 #- L2, then (D, P) "' Bs,4 o (Bf,d84'- 1 •3 for 

~ = 2,3. 
(ii) If L1 = L2, then (D, P) "' B 8 ,4 o (BL) 84'- 1 •3 for 

~ = 2,4. 
(c) If C2 and D2 consist of two lines, then (D, P) "'Bs,s· 

3.2.4. Local singularities of the case @ For the case that D 2 are 
smooth is already classified by Lemma 1 and 2. Hence we assume that 
D 2 consists of two lines. 

Lemma 3.6. Under the above assumptions, we have the following. 

(1) If P E C1 n D2 \ L00 , then (D, P) "'Bs,3· 
(2) If P E D2 n Loo \ C1, then (D, P) "'Bs,5· 
(3) If P E D2 n C1 n L 00 , then (D, P) "'Bs,s. 

3.2.5. Local singularities of the case @ For the case that C2 are 
smooth is already classified by Lemma 1 and 2. Hence we assume that 
c2 consists of two lines. 

Lemma 3. 7. Under the above assumptions, 

(1) If P E C2 n D1 \ L 00 , then (D, P) "'B6,4· 
(2) If P E C2 n Loo \ D1, then (D, P) "'B6,2· 
(3) If P E C2 n D1 n L00 , then (D, P) "'B6,6· 

3.3. Compare with classified singularities 

By the argument in §3.1, the singularity of ( 4, 3) invisible degener-
ations on L 00 is one of the following: 

(1) Order is 3: B6,3, B2,1 o B6,4, Bs,6, Bg,g. 
(2) Order is 4: B6,4, Bs,8· 
(3) Order is 6: B6,6· 
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For j = 3, 4 and 6, we consider that whether there is a pair (C, D) E 

L'Tj ( 4, 3; d) x L'Tf ( 4, 3; d) such that Sing C = Sing D for some d. As 
we assumed that D does not consist of lines in Theorem 1, we exclude 
singularities B 9 ,9 , Bs,s and B6,6· 

By local classifications of visible degenerations of order 3, there is a 
visible degeneration C E £7r(4,3;9) such that SingC contains either 
B6,3 or Bs,6 singularity. 

Let C = {Fff + G~Z = 0} be a (4, 3) visible degeneration of order 3 
which has B 6 ,3 singularity at P. Then the corresponding curves C3 = 
{F3 = 0} and D2 = {G2 = 0} satisfy the following conditions: 

• Pis in L 00 • 

• D 2 is smooth at P and intersects transversely with L 00 • 

• C3 is smooth at P and tangent to L 00 • 

Under these conditions, the intersection multiplicity I(D2 , C3; P) is 1. 
Hence Sing C is {5B4,3, B6,"3} generically. On the other hand, there is a 
(4, 3) invisible degeneration D such that its configurations of singulari
ties is {6B4,3, B6,"3} by the argument in §3.1. Comparing with above 2 
singularities, one B4,3 singularity is shortage. To cover this shortage, we 
consider outer singularities of C. 

Lemm:a 3.8. Under the above notations, we assume that C has B 6 ,3 

singularity at P. Then outer singularities of C of multiplicity 3 is one 
of the following: 

We omit the proof as it is parallel to that of the proof of Proposition 1 
in [6]. 

Using Lemma 3.8, we have a pair (C, D) E £/r (4, 3; 9) x£7~(4, 3; 9) 
such that Sing C = Sing D = { 6B4,3, Bt3}. 

Let C = {Fff + G~Z = 0} be a (4, 3) visible degeneration of order 3 
which has Bs,6 singularity at P. Then the corresponding curves C3 and 
D 2 satisfy the following conditions: 

• P is an inner singularity. 
• D2 consists of two lines such that they intersect at P. 
• C3 has A2 singularity at P. 
• The intersection multiplicity I(C3 , D 2 ; P) is 4. 

By the above conditions, Sing C is { 2B4,3, B8,"6 } generically. On the 
other hand, there is a ( 4, 3) invisible degenerations D such that its con
figurations of singularities is {3B4,3, B8,"6 } by the argument in §3.1. In 
this case, C cannot have outer singularities of order 3 by simple calcu
lations. Therefore there is not a pair which have B 8 ,6 singularity. 
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For order 4 and 6, there is not such a pair by local classifications. 

3.4. Proof of Theorem 

Let C E £/r ( 4, 3; 9) and D E .C'Ti ( 4, 3; 9) be line degenerations 
such that Sing C = Sing D = { 6B4,3 , Bf;:3 }. Now we will show that such 
curves C and D never coincide. Let F = Fl + Fi Z and G = G§ - G~ 
be the defining polynomials of C and D respectively. 

Suppose that C = D and we put the singular locus L;(C) = L;(D) = 
{P1, ... , P5, Q, R} such that 

(C,Pi) rv (C,Q) rv B4,3, (C,R) rv B6,3 

where Pi are inner singularities of C, Q is an outer singular point of C 
andRE L=. By previous arguments, C2 = {F2 = 0} and D 3 = {G3 = 
0} satisfy as the following: 

(1) C2 intersects transversely with L=. 
(2) D 3 has A1 singularity at Rand J(D3 , L=; R) = 3. 
(3) C2 and D3 pass through P 1 , ... , P5 and R. 
(4) Q E D3 \ C2. 

By these conditions, we have I ( C2 , D3 ) :2: 5 · 1 + 2 = 7. This is a 
contraction to Bezout Theorem if D 3 is irreducible. Hence D 3 is a 
union C2 and L where L is the line pass through R and Q. Such a 
decomposition of D3 is impossible since I(D3 , L=; R) = 3. Q.E.D. 
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