On classes in the classification of curves on rational surfaces with respect to logarithmic plurigenera

Hirotaka Ishida
Dedicated to Professor Shigeru Iitaka
on his seventieth birthday

Abstract

. Let C be a nonsingular curve on a rational surface S. In the case when the logarithmic 2 genus of C is equal to two, Iitaka proved that the geometric genus of C is either zero or one and classified such pairs (S, C). In this article, we prove the existence of these classes with geometric genus one in Iitaka's classification. The curve in the class is a singular curve on \mathbb{P}^{2} or the Hirzebruch surface Σ_{d} and its singularities are not in general position. For this purpose, we provide the arrangement of singular points by considering invariant curves under a certain automorphism of Σ_{d}.

§1. Introduction

In this article, we study the existence of curves on rational surfaces which appear in the classification of curves with respect to logarithmic plurigenera. Here, we use the word curves and surfaces to mean irreducible varieties of dimension one and two, respectively. First, we recall basic notions of birational geometry of plane curves (see [5], [6] and [7]).

Let S be a complex surface and C a curve on S. A pair (S, C) is birationally equivalent to another pair (W, D) if there exists a birational map $h: S \rightarrow W$ such that the proper image of C by h coincides with D. A pair (S, C) is called a nonsingular pair if S and C are nonsingular. Let K_{S} be the canonical divisor of S. For a nonsingular pair (S, C) and a positive integer m, we denote the dimension of $H^{0}\left(S, \mathcal{O}_{S}\left(m\left(K_{S}+C\right)\right)\right.$) by $P_{m}[C]$ and call it the logarithmic m genus of (S, C). It is easy to see

Received May 23, 2012.
Revised September 28, 2012.
2010 Mathematics Subject Classification. 14H45, 14J26, 14E20.
Key words and phrases. Plane curve, rational surface, double cover.
that $P_{m}[C]$ is birational invariant of a pair (S, C). Given a pair (W, D), there exists a nonsingular pair (S, C) which is birationally equivalent to (W, D). We define $P_{m}[D]$ to be $P_{m}[C]$. If we assume that S is rational, then $P_{1}[C]$ coincides with the geometric genus $g(C)$ of C.

By using the value of $P_{1}[C]=g(C)$, we obtain the classification of curves with respect to the topological type of C. We infer that the invariant $P_{m}[C]$ is useful to characterize algebraic curves on rational surfaces. For example, we know the following:

Theorem 1. (Coolidge [1] (cf. Iitaka [7, Theorem 1])) Let S be a complex rational surface and C a curve on S. If $P_{2}[C]=0$, then (S, C) is birationally equivalent to $\left(\mathbb{P}^{2}, L\right)$, where L is a projective line.

A singular point of multiplicity m is called a m-ple point.
Theorem 2. (Coolidge [1] (cf. Iitaka [7, Theorem 1])) Let S be a complex rational surface and C a curve on S. If $P_{2}[C]=1$, then (S, C) is birationally equivalent to one of the following pairs:
(i) $\left(\mathbb{P}^{2}, C_{1}\right)$, and
(ii) $\left(\mathbb{P}^{2}, C_{m}^{\prime}\right)(m \geq 2)$,
where C_{1} is an elliptic curve and C_{m}^{\prime} is a plane curve of degree $3 m$ with nine m-ple points and one double point. (These points may be infinitely near points.)

From the above theorems, we see that pairs (S, C) with $P_{2}[C] \leq 1$ are classified into three types.

Let $p r_{d}: \Sigma_{d} \rightarrow \mathbb{P}^{1}$ be the d-th Hirzebruch surface, Δ_{∞} the minimal section of Σ_{d} and F a fiber of $p r_{d}$. The symbol \sim means the linear equivalence between divisors.

Iitaka classified pairs (S, C) with $P_{2}[C]=2$ into ten classes.
Theorem 3. (Iitaka [8, Theorems 4 and 10], [7, pp. 290-291]) Let S be a complex rational surface and C a curve on S. If $P_{2}[C]=2$, then $g(C)$ is either 0 or 1 . Moreover,
(a) if $g(C)=1$, then C is birationally equivalent to one of the following curves:
(i) a plane curve $C_{m}(m \geq 2)$ of degree $3 m$ with nine m-ple points,
(ii) $D_{8} \sim 8 \Delta_{\infty}+(8+4 d) F(d=0,1,2)$ on Σ_{d}, where D_{8} has seven quadruple points and two triple points,
(iii) $D_{6} \sim 6 \Delta_{\infty}+(6+3 d) F(d=0,1,2)$ on Σ_{d}, where D_{6} has seven triple points and three double points, and
(iv) $D_{4} \sim 4 \Delta_{\infty}+(5+2 d) F(d=0,1,2)$ on Σ_{d}, where D_{4} has eleven double points,
(b) if $g(C)=0, C$ is birationally equivalent to one of the following curves:
(i) $E_{12} \sim 12 \Delta_{\infty}+(12+6 d) F(d=0,1,2)$ on Σ_{d}, where E_{12} has seven sextuple points, a quintuple point and a quadruple point,
(ii) $E_{10} \sim 10 \Delta_{\infty}+(11+5 d) F(d=0,1,2)$ on Σ_{d}, where E_{10} has nine quintuple points,
(iii) $D_{8}^{\prime} \sim 8 \Delta_{\infty}+(8+4 d) F(d=0,1,2)$ on Σ_{d}, where D_{8}^{\prime} has seven quadruple points, two triple points and a double point,
(iv) $E_{6} \sim 6 \Delta_{\infty}+(7+3 d) F(d=0,1,2)$ on Σ_{d}, where E_{6} has ten triple points,
(v) $D_{6}^{\prime} \sim 6 \Delta_{\infty}+(6+3 d) F(d=0,1,2)$ on Σ_{d}, where D_{6}^{\prime} has seven triple points and four double points, and
(vi) $D_{4}^{\prime} \sim 4 \Delta_{\infty}+(5+2 d) F(d=0,1,2)$ on Σ_{d}, where D_{4}^{\prime} has twelve double points,
where these singular points may be infinitely near singular points.
By [2, Proposition 1], a plane curve of degree $3 m$ with nine m-ple points for integer $m \geq 2$ is realized as a general member of a Halphen pencil (see also [3, Theorem 2.1, Remark 2.6]). On the other hand, it is unknown that there exist the other pairs in Theorem 3. The aim of this article is to prove the existence of classes in the case that the geometric genus of C is equal to one, i.e., we show the following:

Theorem 4. Under the same notation as in Theorem 3, there exist curves D_{8}, D_{6} and D_{4}, i.e., there exist all classes in Iitaka's classification of pairs (S, C) with $P_{2}[C]=2$ and $g(C)=1$.

It may be well-known that there exists a plane curve of degree $3 m$ with nine m-ple points and one double point. However, for lack of a suitable reference, we prove its existence.

Theorem 5. Under the same notation as in Theorem 2, there exists a curve C_{m}^{\prime} for $m \geq 2$, i.e., there exist all classes in Coolidge's classification of pairs (S, C) with $P_{2}[C]=0,1$.

For simplicity, we use the notation of types of curves. Let C be a curve on \mathbb{P}^{2} or Σ_{d} and ν a succession of r blowing-ups which resolves the singularity of C. Let m_{i} be the the multiplicity of i-th center of the blowing-up appeared in ν. We can assume that $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$ by rearranging in a suitable order of these blowing-ups.

Definition 1.1. (Iitaka [7, p. 291]) For an above plane curve C, if the degree of C is equal to α, then we say C is of type $\left[\alpha ; m_{1}, m_{2}, \ldots, m_{r}\right]$. In the case that C is nonsingular, we put $r=1$ and $m_{r}=1$.

Definition 1.2. (Iitaka [7, p. 294]) For an above curve C on Σ_{d}, if C is linearly equivalent to $\alpha \Delta_{\infty}+\beta F$, then we say C is of type
$\left[\alpha * \beta, d ; m_{1}, m_{2}, \ldots, m_{r}\right]$. In the case that C is nonsingular, we put $r=1$ and $m_{r}=1$.

Whenever $m_{i}=m_{i+1}=\cdots=m_{i+k-1}$, for simplicity, we denote $\left[\alpha, d ; m_{1}, m_{2}, \ldots, m_{r}\right]$ by $\left[\alpha, d ; m_{1}, \ldots, m_{i-1}, m_{i}^{k}, m_{i+k} \ldots, m_{r}\right]$ and denote $\left[\alpha * \beta, d ; m_{1}, m_{2}, \ldots, m_{r}\right]$ by $\left[\alpha * \beta, d ; m_{1}, \ldots, m_{i-1}, m_{i}^{k}, m_{i+k} \ldots\right.$, $\left.m_{r}\right]$. With this notation, $C_{1}, C_{m}, C_{m}^{\prime}, D_{8}, D_{6}$ and D_{4} are of types [3;1], $\left[3 m ; m^{9}\right],\left[3 m ; m^{9}, 2\right],\left[8 *(8+4 d), d ; 4^{7}, 3^{2}\right],\left[6 *(6+3 d), d ; 3^{7}, 2^{3}\right]$ and $\left[4 *(5+2 d), d ; 2^{11}\right]$, respectively.

Curves as in Theorem 3 have many singular points. In order to construct desired curves, we provide the arrangement of singularities.

In Section 2, we recall Iitaka's classification of nonsingular pairs (S, C) with $P_{2}[C]=2$.

In Sections 3 and 4, we give a curve of type $\left[6 *(6+3 d), d ; 3^{7}, 2^{3}\right]$ for $d=0,1,2$. Let $f: \Sigma_{d} \rightarrow \Sigma_{2 d}$ be the double cover branched along $\Delta_{\infty}+\Delta$, where Δ is a section of $\Sigma_{2 d}$ such that $\Delta_{\infty} \cdot \Delta=0$. We construct desired curves C which are inverse images of certain curves on $\Sigma_{2 d}$ by f. In other words, our curves are invariant under the automorphism with order two induced by f, which implies that singular points are in special position. To complete the proof, we shall give the defining polynomials of these quotient curves.

The similar technique used in this section is applied in [11, Proposition 3.1] and [9, Section 2]. This method is also applied in the later section.

In Sections 5 and 6, we show the existence of curves of types $[8 *$ $\left.(8+4 d), d ; 4^{7}, 3^{2}\right]$ and $\left[4 *(5+2 d), d ; 2^{11}\right]$ for $d=0,1,2$.

In Section 7, we show that there exists a curve of type $\left[3 m ; m^{9}, 2\right]$, which may be well-known. We choose nine points $a_{1}, a_{2}, \ldots, a_{8}$ and a_{9} on \mathbb{P}^{2} such that $m\left(a_{1}+a_{2}+\cdots+a_{9}\right)=0_{E}$, where 0_{E} is the zero element with respect to the group operation + on an elliptic curve E. Then the surface obtained by the succession of blowing ups at all the a_{i} 's has the structure of an elliptic surface with one multiple fiber of multiplicity m (see [3, Theorem 2.1]). By imposing another condition for a_{i} 's, we shall prove the existence of a plane curve with degree $3 m$ which has m-ple points at a_{i} 's and a double point.

§2. Classification of pairs with logarithmic 2 genus two

In this section, we recall the classification of pairs with logarithmic 2 genus two due to Iitaka.

Let (S, C) be a pair of a complex rational surface S and a curve C on S. Denote the degree of the Hilberto polynomial of $\bigoplus_{m \geq 0} H^{0}(S$,
$\left.\mathcal{O}_{S}\left(m\left(K_{S}+C\right)\right)\right)$ by $\kappa[C]$ and call it the Kodaira dimension of (S, C). If $P_{m}[C]=0$ for any $m>0$, then we put $\kappa[C]=-\infty$.

In the case that $\kappa[C]=0,1$, then a pair (S, C) is classified as in the following:

Proposition 6. (Iitaka [7, pp. 290-291]) Let S be a complex rational surface and C a curve on S with $g(C)>0$.
(i) If $\kappa[C]=0$, then (S, C) is birationally equivalent to $\left(\mathbb{P}^{2}, C_{1}\right)$, where C_{1} is of type $[3 ; 1]$.
(ii) If $\kappa[C]=1$, then (S, C) is birationally equivalent to one of the following pairs:
(a) $\left(\mathbb{P}^{2}, B_{m}\right)(m \geq 2)$, and
(b) $\left(\mathbb{P}^{2}, C_{m}\right)(m \geq 4)$,
where B_{m} is of type $[m ; m-2]$ and C_{m} is of type $\left[3 m ; m^{9}\right]$.
Proposition 7. (Iitaka [6, Proposition 2]) Let S be a complex rational surface and C a curve on S with $g(C)=0$.
(i) If $\kappa[C]=0$, then (S, C) is birationally equivalent to $\left(\mathbb{P}^{2}, C_{2}^{\prime}\right)$, where C_{2}^{\prime} is of type $\left[6 ; 2^{10}\right]$.
(ii) If $\kappa[C]=1$, then (S, C) is birationally equivalent to $\left(\mathbb{P}^{2}, C_{m}^{\prime}\right)(m \geq$ $3)$, where C_{m}^{\prime} is of type $\left[3 m ; m^{9}, 2\right]$.

By an easy calculation, we obtain $P_{2}\left[C_{1}\right]=1, P_{2}\left[B_{m}\right]=2 m-$ $5, P_{2}\left[C_{m}\right]=2$ and $P_{2}\left[C_{m}^{\prime}\right]=1$. Thus, if $P_{2}[C]=2$ and $\kappa[C] \leq 1$ then (S, C) is birationally equivalent to $\left(\mathbb{P}^{2}, C_{m}\right)$. In particular, we obtain $g(C)=1$.

Next; we consider the case that $\kappa[C]=2$. Then, we have $P_{2}[C]=$ $\left(C+K_{S}\right)^{2}+2 g(C)-1$ (see [8, Proposition 2]). By [7, Proposition 3], if $g(C) \geq 2$, then we obtain $P_{2}[C] \geq 3$. In particular, $g(C)$ is either 0 or 1. In the case that $P_{2}[C]=2$ and $g(C)=0,1$, by [8, Theorems 4 and 10], pairs (S, C) are classified into nine types. By the above argument, we obtain Theorem 3.

\S 3. Construction of a curve of type $\left[6 * 6,0 ; 3^{7}, 2^{3}\right]$

Let $p r_{d}: \Sigma_{d} \rightarrow \mathbb{P}^{1}$ be the d-th Hirzebruch surface, Δ_{∞} the minimal section of Σ_{d} and F a fiber of $p r_{d}$. Now we recall the elementary transformation. Let p be a point on Σ_{d}. By blowing up at p, we obtain the birational morphism $\sigma: S_{1} \rightarrow \Sigma_{d}$. Then the self-intersection number of the proper transform of the fiber contained p is equal to -1 . By contracting this (-1)-curve into nonsingular point, we obtain the birational morphism $\sigma^{\prime}: S_{1} \rightarrow S_{2}$. We call $\sigma \circ \sigma^{\prime-1}$ the elementary transformation centered at p. If $p \in \Delta_{\infty}$, then $S_{2}=\Sigma_{d+1}$ and we denote $\sigma \circ \sigma^{\prime-1}$ by
$I_{+}(p)$. If $p \notin \Delta_{\infty}$, then $S_{2}=\Sigma_{d-1}$ and we denote $\sigma \circ \sigma^{-1}$ by $I_{-}(p)$. We denote the intersection multiplicity of divisors D_{1} and D_{2} at p by $m_{p}\left(D_{1}, D_{2}\right)$.

In this section, we construct a curve of type $\left[6 * 6,0 ; 3^{7}, 2^{3}\right]$. By considering elementary transformations and a certain double cover of Σ_{0}, we show the following:

Lemma 8. Let $a_{1}, a_{2}, \ldots, a_{4}$ and a_{5} be points on Σ_{0} such that $p r_{0}\left(a_{1}\right)=p r_{0}\left(a_{3}\right)$. If there exist three curves D, Q and R on Σ_{0} satisfying the following conditions:
(i) $D \sim 3 \Delta_{\infty}+F, Q \sim \Delta_{\infty}+F$ and $R \sim \Delta_{\infty}+2 F$,
(ii) $m_{a_{1}}(D, Q)=1$ and $m_{a_{2}}(D, Q)=2$,
(iii) $m_{a_{3}}(D, R)=1$ and $m_{a_{4}}(D, R)=m_{a_{5}}(D, R)=2$,
(iv) D meets Q and R transversally except for $a_{1}, a_{2}, \ldots, a_{4}$ and a_{5}, and
(v) $D \cap Q \cap R=\emptyset$,
then there exist a curve of type $\left[6 * 6,0 ; 3^{7}, 2^{3}\right]$.
Proof. From $Q \cdot R=3$, we assume that Q meets R at b_{1}, b_{2} and b_{3}. Note that these points may be infinitely near points. By abuse of notations a_{i} and b_{j}, we use the same notations to describe the images of points by birational maps. Let $\nu=I_{-}\left(a_{3}\right) \circ I_{+}\left(b_{3}\right) \circ I_{-}\left(b_{2}\right) \circ I_{+}\left(b_{1}\right)$. Note that ν is the birational map from Σ_{0} to Σ_{0}. Let D_{1}, Q_{1} and R_{1} be the proper transforms of D, Q and R by ν, respectively.

Since $b_{i} \notin D$, it follows that D_{1} has three triple points, which may be infinitely near points. Furthermore, since $a_{3} \in D$, there exists a node on D_{1}, say c. Then, from $p r_{0}\left(a_{1}\right)=p r_{0}\left(a_{3}\right)$, we obtain $m_{c}\left(D_{1}, Q_{1}\right)=3$. By hypothesis $Q^{2}=2$ and $R^{2}=4$, we derive $Q_{1}{ }^{2}=R_{1}{ }^{2}=0$, which implies that $Q_{1} \sim R_{1} \sim \Delta_{\infty}$. From $D_{1} \cdot Q_{1}=6$, we obtain $D_{1} \sim 3 \Delta_{\infty}+6 F$ (see Fig. 1).

In Fig. 1 , thin curves denote Q, R, Q_{1} and R_{1}. Broken lines denote fibers of $p r_{d}$ and thick curves denote D and D_{1}. (In Figs. 3, 5 and 9, curves are represented in a similar manner as Fig. 1.)

Let $f: \Sigma_{0} \rightarrow \Sigma_{0}$ be the double cover of Σ_{0} branched along $Q_{1}+R_{1}$ and C the inverse image of D by f. Since one of analytic branches of D_{1} at c meets Q_{1} tangentially, the singular point of C induced by c is an ordinary triple point. Therefore, C has seven triple points, which may be infinitely near points. Moreover, D_{1} meets $Q_{1}+R_{1}$ tangentially at a_{2}, a_{4} and a_{5}, which implies that singular point of C induced by these points are nodes (see Fig. 2). In Fig. 2, thin curves denote Q_{1}, R_{1} and these inverse image by f. Broken lines denote fibers of $p r_{d}$ and thick curves denote D_{1} and C. (In Figs. 4, 7 and 10, curves are represented in a similar manner as Fig. 2.)

Fig. 1. The arrangement of D_{1}, Q_{1} and R_{1}

Fig. 2. Singular points of C

Since D is irreducible and there exist points at which D_{1} meets $Q_{1}+R_{1}$ transversally, C is irreducible. Thus, C is of type $\left[6 * 6,0 ; 3^{7}, 2^{3}\right]$.
Q.E.D.

By the above lemma, it suffices to construct curves D, Q and R on Σ_{0} satisfying conditions (i), (ii), (iii), (iv) and (v). Let (x, y) be the affine coordinate of $\mathbb{P}^{1} \backslash\{\infty\} \times \mathbb{P}^{1} \backslash\{\infty\} \subset \Sigma_{0}$. By giving the defining equations in x and y, we show the following:

Proposition 9. For $d=0,1$, there exist a curve of type $[6 * 6+$ $\left.3 d, d ; 3^{7}, 2^{3}\right]$.

Proof. We give divisors D, Q and R by the following equations:

$$
\begin{aligned}
& D: x^{3}-x^{2} y-x-2 y=0 \\
& Q: 8 x y+75 x-122 y=0 \\
& R: 8 x y^{2}+35 x y-50 y^{2}+20 x-56 y-20=0
\end{aligned}
$$

It is clear that D, Q and R satisfy the condition (i) in Lemma 8. Put $a_{1}=(0,0), a_{2}=(4,10 / 3), a_{3}=(1,0), a_{4}=(2,1)$ and $a_{5}=(-2,-1)$. Then, by calculating of partial derivatives of variables x and y of these defining polynomials, we can verify that conditions (ii), (iii), (iv) and (v) in Lemma 8 are satisfied.

Suppose that D is not irreducible. Since $D \sim 3 \Delta_{\infty}+F$, one of irreducible components of D is linearly equivalent to F or Δ_{∞}. But the defining polynomial of D can not be divided by a polynomial in a variable x or y. Therefore, we see that D is irreducible. By the similar argument, Q and R are irreducible. Hence, there exists a curve C of type $\left[6 * 6,0 ; 3^{7}, 2^{3}\right]$.

Let p be one of triple points of C. Then the proper transform of C by $I_{+}(p)$ is of type $\left[6 * 9,1 ; 3^{7}, 2^{3}\right]$.
Q.E.D.

Remark 10. Let Q and R be curves as in the proof of Proposition 9. Then, Q meets R transversally.

$\S 4$. Construction of a curve of type $\left[6 * 12,2 ; 3^{7}, 2^{3}\right]$

In the previous section, we construct curves of types $[6 *(6+3 d), d$; $\left.3^{7}, 2^{3}\right](d=0,1)$. In this section, we construct a curve of type $[6 *$ 12,$\left.2 ; 3^{7}, 2^{3}\right]$ by a similar method as in the previous section.

Lemma 11. Let $a_{1}, a_{2}, \ldots, a_{4}$ and a_{5} be points on Σ_{0} such that $p r_{0}\left(a_{1}\right)=p r_{0}\left(a_{2}\right)$. If there exist three curves D, Q and R on Σ_{0} satisfying the following conditions:
(i) $D \sim 3 \Delta_{\infty}+F, Q \sim \Delta_{\infty}$ and $R \sim \Delta_{\infty}+3 F$,
(ii) $m_{a_{1}}(D, Q)=1$,
(iii) $m_{a_{2}}(D, R)=1$ and $m_{a_{3}}(D, R)=m_{a_{4}}(D, R)=m_{a_{5}}(D, R)=2$,
(iv) D meets R transversally except for a_{3}, a_{4} and a_{5}, and
(v) $D \cap Q \cap R=\emptyset$,
then there exists a curve of type $\left[6 * 12,2 ; 3^{7}, 2^{3}\right]$.
Proof. From $Q \cdot R=3$, we assume that Q meets R at b_{1}, b_{2} and b_{3}, which may be infinitely near points. To simplify the notation, we use the same notations to describe the images of points by birational maps.

Since $a_{1}, b_{1}, b_{2}, b_{3} \in Q$ and $Q \sim \Delta_{\infty}$, the self-intersection number of the proper transform of Q by a succession of elementary transformations centered at some points of a_{1}, b_{1}, b_{2} and b_{3} is negative. Hence, this proper transform of Q coincides with Δ_{∞}. This implies that the succession of elementary transformations centered at a_{1}, b_{1}, b_{2} and b_{3} is the birational map from Σ_{4} to Σ_{0}. Let $\nu=I_{+}\left(a_{1}\right) \circ I_{+}\left(b_{3}\right) \circ I_{+}\left(b_{2}\right) \circ I_{+}\left(b_{1}\right)$. Let D_{1}, Q_{1} and R_{1} be the proper transforms of D, Q and R by ν, respectively.

Since $b_{i} \notin D$, it follows that D_{1} has three triple points, which may be infinitely near points. Furthermore, since $a_{1} \in D$ and $p r_{0}\left(a_{1}\right)=p r_{0}\left(a_{2}\right)$, we see that D_{1} has a node c with $m_{c}\left(D_{1}, Q_{1}\right)=3$. From $Q^{2}=0$ and $R^{2}=6$, we derive $Q_{1}{ }^{2}=-4$ and $R_{1}{ }^{2}=4$, which imply that $Q_{1}=\Delta_{\infty}$ and $R_{1} \sim \Delta_{\infty}+4 F$. Since $D_{1} \cdot Q_{1}=12$, we have $D_{1} \sim 3 \Delta_{\infty}+12 F$ (see Fig. 3).

Fig. 3. The arrangement of D_{1}, Q_{1} and R_{1}

Fig. 4. Singular points of C

Let $f: \Sigma_{2} \rightarrow \Sigma_{4}$ be the double cover of Σ_{4} branched along $Q_{1}+R_{1}$ and C the inverse image of D by f.

By the same argument as in the proof of Lemma 8, C is of type $\left[6 * 12,2 ; 3^{7}, 2^{3}\right]$ (see Fig. 4). Q.E.D.

By the above lemma, it suffices to construct curves D, Q and R on Σ_{0} satisfying conditions (i), (ii), (iii), (iv) and (v). We construct required curves by giving the defining equations.

Proposition 12. There exists a curve of type $\left[6 * 12,2 ; 3^{7}, 2^{3}\right]$.
Proof. Let ζ be a real number satisfying $5 \sqrt{21} \zeta^{2}+91 \zeta-210=$ 0. Put $a_{1}=(\zeta, 2+\sqrt{21} / 15), a_{2}=(2+\sqrt{21} / 15,2+\sqrt{21} / 15), a_{3}=$
$(0,0), a_{4}=(2,3)$ and $a_{5}=(3,2)$. For these points, it is easy to see that the divisors defined by the following equations satisfy conditions in Lemma 11:

$$
\begin{aligned}
& D:-210 x+384 x^{2}-150 x^{3}+\left(210-91 x-150 x^{2}+75 x^{3}\right) y=0 \\
& Q: x=\zeta \\
& R:-210 y+384 y^{2}-150 y^{3}+\left(210-91 y-150 y^{2}+75 y^{3}\right) x=0
\end{aligned}
$$

Since the defining polynomial of D can not be divided by a polynomial in a variable x or y, we see that D is irreducible. Furthermore, since the defining polynomial of R translate into the defining polynomial of D by transposing variables x and y, R is also irreducible. Thus, we have a curve C of type $\left[6 * 12,2 ; 3^{7}, 2^{3}\right]$.
Q.E.D.

Remark 13. Let Q and R be curves as in the proof of Proposition 12 . Then, Q meets R transversally.

$\S 5$. Construction of a curve of type $\left[8 *(8+4 d), d ; 4^{7}, 3^{2}\right]$

In this section, we construct a curve of type $\left[8 * 8,0 ; 4^{7}, 3^{2}\right]$ similarly as in Section 3. We call a point $p \in C$ a 2 -fold m-ple point if it turns into an ordinary m-ple point after blowing up at p.

Lemma 14. Let $a_{1}, a_{2}, \ldots, a_{6}$ and a_{7} be points on Σ_{0} such that $p r_{0}\left(a_{i}\right)=p r_{0}\left(a_{i+3}\right)(i=1,2,3)$. If there exist three curves D, Q and R on Σ_{0} satisfying the following conditions:
(i) $D \sim 4 \Delta_{\infty}+3 F, Q \sim \Delta_{\infty}+F$ and $R \sim \Delta_{\infty}+2 F$,
(ii) a_{1}, \ldots, a_{5} and a_{6} are nodes of D,
(iii) $m_{a_{2}}(D, Q)=m_{a_{3}}(D, Q)=m_{a_{4}}(D, Q)=2$ and $m_{a_{7}}(D, Q)=1$,
(iv) $m_{a_{1}}(D, R)=m_{a_{5}}(D, R)=m_{a_{6}}(D, R)=2$ and $m_{a_{7}}(D, R)=1$,
(v) D meets R transversally except for a_{1}, a_{5} and a_{6}, and
(vi) $D \cap Q \cap R=\left\{a_{7}\right\}$,
then there exists a curve of type $\left[8 * 8,0 ; 4^{7}, 3^{2}\right]$.
Proof. Under the assumption, since $Q \cdot R=3$, we assume that Q meets R at b_{1} and b_{2} except for a_{7}. Note that b_{2} may be an infinitely near point of b_{1}. To simplify the notation, we use the same notations to describe the images of points by birational maps. First, we consider $\nu=I_{+}\left(a_{7}\right) \circ I_{-}\left(b_{2}\right) \circ I_{+}\left(b_{1}\right)$. Note that ν is the birational map from Σ_{1} to Σ_{0}. Let D_{1}, Q_{1} and R_{1} be the proper transforms of D, Q and R by ν, respectively.

Since $a_{7} \in D$ and $b_{1}, b_{2} \notin D$, it follows that D_{1} has a triple point and two quadruple points, which may be infinitely near points. By
hypothesis $Q^{2}=2$ and $R^{2}=4$, we obtain $Q_{1}{ }^{2}=-1$ and $R_{1}{ }^{2}=1$. Therefore, $Q_{1}=\Delta_{\infty}$ and $R_{1} \sim \Delta_{\infty}+F$. From $Q_{1} \cdot R_{1}=10$, we obtain $D_{1} \sim 4 \Delta_{\infty}+10 F$ (see Fig. 5).

Fig. 5. The arrangement of D_{1}, Q_{1} and R_{1}

Next, we consider $\mu=I_{-}\left(a_{4}\right) \circ I_{+}\left(a_{5}\right) \circ I_{-}\left(a_{6}\right)$, which is a birational map from Σ_{0} to Σ_{1}. Let D_{2}, Q_{2} and R_{2} be the proper transforms of D_{1}, Q_{1} and R_{1} by μ, respectively.

For $i=1,2,3$, since a_{i} and a_{i+3} are double points of D_{1} with $p r_{1}\left(a_{i}\right)=p r_{1}\left(a_{i+3}\right)$, the elementary transformation centered at a_{i+3} gives a 2 -fold double point c_{i} of D_{2} such that $m_{c_{i}}\left(D_{2}, Q_{2}+R_{2}\right)=4$.

Moreover, ${Q_{1}}^{2}=-1$ and ${R_{1}}^{2}=1$ imply that ${Q_{2}}^{2}=0$ and $R_{2}{ }^{2}=0$, i.e., $Q_{2} \sim R_{2} \sim \Delta_{\infty}$. Hence, we obtain $D_{2} \sim 4 \Delta_{\infty}+8 F$ (see Fig. 6).

In Fig. 6, thin curves denote Q_{i} and R_{i}. Broken lines denote fibers of $p r_{d}$ and thick curves denote D_{i}.

Fig. 6. The arrangement of D_{2}, Q_{2} and R_{2}

Let $f: \Sigma_{0} \rightarrow \Sigma_{0}$ be the double cover of Σ_{0} branched along $Q_{2}+R_{2}$ and C the inverse image of D_{2} by f. Since the analytic branches of D_{2} at c_{i} is tangent to the branch divisor of f for each i, there exist three ordinary quadruple points on C. Moreover, since D_{2} has two quadruple
points and a triple point which are not contained in $Q_{2}+R_{2}$, it follows that C has seven quadruple points and two triple points (see Fig. 7).

Fig. 7. Singular points of C

Since D is irreducible and there exist points at which D meets $Q_{2}+$ R_{2} transversally, C is irreducible. Thus, C is of type $\left[8 * 8,0 ; 4^{7}, 3^{2}\right]$.
Q.E.D.

To prove the existence of a curve of type $\left[8 * 8,0 ; 4^{7}, 3^{2}\right]$, it suffices to construct curves on Σ_{0} satisfying conditions (i), (ii), (iii), (iv), (v) and (vi) in Lemma 14. By giving these defining polynomials, we show the following:

Proposition 15. There exists a curve of type $\left[8 *(8+4 d), d ; 4^{7}, 3^{2}\right]$.
Proof. Required curves D, Q and R are given by the following equations:

$$
\begin{aligned}
D: & (-76+12 \sqrt{2}) x^{2}+(186-50 \sqrt{2}) y^{2}+(300-68 \sqrt{2}) x^{2} y+(-38+6 \sqrt{2}) y^{3} \\
& +(-393+93 \sqrt{2}) x^{2} y^{2}+(21+7 \sqrt{2}) x^{2} y^{3}+(-36+16 \sqrt{2}) x^{4} y^{2} \\
& +(73-27 \sqrt{2}) x^{4} y^{3}=0, \\
Q: & -(2+2 \sqrt{2}) x+\sqrt{2} y+(1+2 \sqrt{2}) x y=0, \\
R: & 200-6 \sqrt{2}+(-267+6 \sqrt{2}) y+(-45+27 \sqrt{2}) x y+(31+30 \sqrt{2}) y^{2} \\
& +(75-45 \sqrt{2}) x y^{2}=0 .
\end{aligned}
$$

$$
\text { Put } a_{1}=(\infty, 0), a_{2}=(\sqrt{2}, 1), a_{3}=(-1,2), a_{4}=(0,0), a_{5}=
$$

$$
(-\sqrt{2}, 1), a_{6}=(1,2) \text { and } a_{7}=(-2 / 3,2 \sqrt{2}) . \text { For these points, it is easy }
$$ to check that divisors defined by above equations satisfy conditions (i), (ii), (iii), (iv), (v) and (vi) in Lemma 14. Furthermore, since the defining polynomials of Q and R can not be divided by a polynomial in a variable x or y, we see that Q and R are irreducible.

We shall verify that D is irreducible. Let $\Delta_{0}=\{0\} \times \mathbb{P}^{1} \subset \Sigma_{0}$ and suppose that $\Delta_{\infty}=\{\infty\} \times \mathbb{P}^{1}$. Let $g: \Sigma_{0} \rightarrow \Sigma_{0}$ be the double cover of Σ_{0} branched along $\Delta_{0}+\Delta_{\infty}$. Then D coincides with $g^{-1}\left(D^{\prime}\right)$, where D^{\prime} is the divisor defined by the following:

$$
\begin{aligned}
& (-76+12 \sqrt{2}) x+(186-50 \sqrt{2}) y^{2}+(300-68 \sqrt{2}) x y+(-38+6 \sqrt{2}) y^{3} \\
& +(-393+93 \sqrt{2}) x y^{2}+(21+7 \sqrt{2}) x y^{3}+(-36+16 \sqrt{2}) x^{2} y^{2} \\
& +(73-27 \sqrt{2}) x^{2} y^{3}=0
\end{aligned}
$$

We see that $g\left(a_{2}\right)$ and $g\left(a_{3}\right)$ are double points of D^{\prime} and that $m_{g\left(a_{1}\right)}\left(D^{\prime}\right.$, $\left.\Delta_{\infty}\right)=m_{g\left(a_{4}\right)}\left(D^{\prime}, \Delta_{0}\right)=2$ (see Fig. 8). Note that $g\left(a_{1}\right)=(\infty, 0)$, $g\left(a_{2}\right)=g\left(a_{5}\right)=(2,1), g\left(a_{3}\right)=g\left(a_{6}\right)=(1,2), g\left(a_{4}\right)=(0,0)$ and $g\left(a_{7}\right)=(4 / 9,2 \sqrt{2})$.

In Fig. 8, thin curves denote Δ_{0} and Δ_{∞}. Broken lines denote fibers of $p r_{0}$ and thick curves denote D and D^{\prime}.

fibers of $p r_{0}$

$$
\Sigma_{0} \supset D^{\prime} \sim 2 \Delta_{\infty}+3 F
$$

$$
\Sigma_{0} \supset D \sim 4 \Delta_{\infty}+3 F
$$

Fig. 8. The arrangement of $\Delta_{0}, \Delta_{\infty}$ and D^{\prime}

In order to complete the proof, it suffices to show that D^{\prime} is irreducible and that there exists a point at which D^{\prime} meets $\Delta_{0}+\Delta_{\infty}$ transversally.

Suppose that D^{\prime} is not irreducible, i.e., there exist two divisors D_{1}^{\prime} and D_{2}^{\prime} such that $D^{\prime}=D_{1}^{\prime}+D_{2}^{\prime}$. Then one of the following case occurs: (1) $D_{1}^{\prime} \sim \Delta_{\infty}, D_{2}^{\prime} \sim \Delta_{\infty}+3 F$, or (2) $D_{1}^{\prime} \sim \Delta_{\infty}+F, D_{2}^{\prime} \sim \Delta_{\infty}+2 F$, or (3) $D_{1}^{\prime} \sim F, D_{2}^{\prime} \sim 2 \Delta_{\infty}+2 F$.

In the cases (1) and (2), since we have $D_{1}^{\prime} \cdot \Delta_{\infty}<2$, the divisor D_{1}^{\prime} does not pass through $g\left(a_{1}\right)$ and $g\left(a_{4}\right)$. Hence, it follows that D_{2}^{\prime} passes through both $g\left(a_{1}\right)$ and $g\left(a_{4}\right)$. This contradicts to the fact that $D_{2}^{\prime} \cdot F=1$. In the case (3), by an easy calculation, the coefficients of the defining polynomial of D^{\prime} with respect to $1, x$ and x^{2} have no common divisor. Therefore, we see that D^{\prime} is irreducible.

Moreover, D^{\prime} meets Δ_{0} transversally at $(0,(33-4 \sqrt{2}) / 7)$. Thus, D is irreducible, i.e., there exists a curve C of type $\left[8 * 8,0 ; 4^{7}, 3^{2}\right]$.

We use the same notation as in the proof of Lemma 14. The constructed curve C has two quadruple points on $f^{-1}\left(Q_{2}\right)$, say p_{1} and p_{2}. The proper transform of C by $I_{+}\left(p_{1}\right)$ is of type $\left[8 * 12,1 ; 4^{7}, 3^{2}\right]$ and the proper transform of C by $I_{+}\left(p_{2}\right) \circ I_{+}\left(p_{1}\right)$ is of type $\left[8 * 16,2 ; 4^{7}, 3^{2}\right]$.
Q.E.D.

Remark 16. Let Q and R be curves as in the proof of Proposition 15. Then, Q meets R transversally.

§6. Construction of a curve of type $\left[4 *(5+2 d), d ; 2^{11}\right]$

In this section, we construct a curve of type $\left[4 *(5+2 d), d ; 2^{11}\right]$ by a similar method in Section 3.

Lemma 17. Let a_{1}, a_{2} and a_{3} be points on Σ_{0}. If there exist three curves D, Q and R on Σ_{0} satisfying the following conditions:
(i) $D \sim 2 \Delta_{\infty}+F$ and $Q \sim R \sim \Delta_{\infty}+2 F$,
(ii) $m_{a_{1}}(D, Q)=2$ and $m_{a_{2}}(D, Q)=3$,
(iii) $m_{a_{3}}(D, R)=2$,
(iv) D meets R transversally except for a_{3}, and
(v) $D \cap Q \cap R=\emptyset$,
then there exists a curve of type $\left[4 * 5,0 ; 2^{11}\right]$.
Proof. From $Q \cdot R=4$, we assume that Q meets R at b_{1}, b_{2}, b_{3} and b_{4}, which may be infinitely near points. To simplify the notation, we use the same notations to describe the images by birational maps. Let $\nu=I_{-}\left(b_{4}\right) \circ I_{+}\left(b_{3}\right) \circ I_{-}\left(b_{2}\right) \circ I_{+}\left(b_{1}\right)$. Note that ν is the birational map from Σ_{0} to Σ_{0}. Let D_{1}, Q_{1} and R_{1} be the proper transforms of D, Q and R by ν, respectively.

Since $b_{i} \notin D$, it follows that D_{1} has four double points, which may be infinitely near points. From $Q^{2}=4$ and $R^{2}=4$, we derive $Q_{1}{ }^{2}=$ $R_{1}^{2}=0$, which imply that $Q_{1} \sim R_{1} \sim \Delta_{\infty}$. By $D_{1} \cdot Q_{1}=5$, we see that $D_{1} \sim 2 \Delta_{\infty}+5 F$ (see Fig. 9).

Let $f: \Sigma_{0} \rightarrow \Sigma_{0}$ be the double cover of Σ_{0} branched along $Q_{1}+R_{1}$ and C the inverse image of D_{1} by f. The singularities induced by a_{1}, a_{3} and a_{2} are nodes and a cusp, respectively. Moreover, since D_{1} has four double points which are not contained in $Q_{1}+R_{1}$, it follows that C has eleven double points (see Fig. 10).

Since D is irreducible and there exist points at which D_{1} meets $Q_{1}+R_{1}$ transversally, C is irreducible. Thus, C is of type $\left[4 * 5,0 ; 2^{11}\right]$.
Q.E.D.

Fig. 9. The arrangement of D_{1}, Q_{1} and R_{1}

Fig. 10. Singular points of C

In order to prove the existence of a curve of type $\left[4 * 5,0 ; 2^{11}\right]$, it suffices to construct curves on Σ_{0} satisfying conditions (i), (ii), (iii), (iv) and (v) in Lemma 17. We also obtain desired curves by giving defining polynomials as in the following:

Proposition 18. For $d=0,1,2$, there exists a curve of type $[4 *$ $\left.(5+2 d), d ; 2^{11}\right]$.

Proof. Put $a_{1}=(0,0), a_{2}=(1,1)$ and $a_{3}=(3,-1)$. For these points, we see that the divisors defined by the following equations satisfy conditions (i), (ii), (iii), (iv) and (v) in Lemma 17:

$$
\begin{aligned}
& D: 3 x-2 x^{2}-3 y+4 x y-2 x^{2} y=0, \\
& Q: 3 y-2 y^{2}-3 x+4 x y-2 x y^{2}=0, \\
& R: 2+4 x+y+3 x y-7 y^{2}+x y^{2}=0 .
\end{aligned}
$$

Since $D \sim 2 \Delta_{\infty}+F$ and $Q \sim R \sim \Delta_{\infty}+2 F$, the irreducibilities of D, Q and R are verified by the similar argument as in the proof of Proposition 9. Note that the defining polynomial of Q translate into the
defining polynomial of D by transposing variables x and y. Therefore, we have a curve C of type $\left[4 * 5,0 ; 2^{11}\right]$.

We use the same notation as in the proof of Lemma 17. The constructed curve C has two quadruple points on $f^{-1}\left(Q_{1}\right)$, say p_{1} and p_{2}. The proper transform of C by $I_{+}\left(p_{1}\right)$ is of type $\left[4 * 7,1 ; 2^{11}\right]$ and the proper transform of C by $I_{+}\left(p_{2}\right) \circ I_{+}\left(p_{1}\right)$ is of type [$4 * 9,2 ; 2^{11}$]. Q.E.D.

Remark 19. Let Q and R be curves as in the proof of Proposition 18. Then, Q meets R transversally.

\S 7. Construction of a curve of type [$\left.3 m ; m^{9}, 2\right]$

In this section, we shall show that there exists a curve of type $\left[3 m ; m^{9}, 2\right]$. Let E be an elliptic curve and 0_{E} the zero element with respect to a group law of E. Let $\iota: E \rightarrow \mathbb{P}^{2}$ be the embedding by $\left|30_{E}\right|$.

First, we determine the arrangement of singular points of a required curve. It is well-known that E is isomorphic to $(\mathbb{R} / \mathbb{Z})^{2}$ as a group. When points on E are regarded as elements on $(\mathbb{R} / \mathbb{Z})^{2}$, we take $a_{1}, a_{2}, \ldots, a_{8} \in E$ which are linearly independent over \mathbb{Q}. Let a_{9} be a point of E such that the order of the sum of $a_{1}, a_{2}, \ldots, a_{9}$ with respect to the group law of E is equal to m. Then it is clear that $m\left(a_{1}+a_{2}+\cdots+a_{9}\right)$ is linearly equivalent to $9 m 0_{E}$. Suppose that we have $\sum_{j} m_{j} a_{j} \sim \sum_{j} m_{j} 0_{E}$ such that $\sum_{j} m_{j} a_{j}$ is not multiples of $m\left(a_{1}+a_{2}+\cdots+a_{9}\right)$. Since we have $m\left(a_{1}+a_{2}+\cdots+a_{9}\right) \sim 9 m 0_{E}$, we can eliminate the term of a_{9}. This contradicts to the choice of a_{i} 's. Therefore, all divisors of E supported in $\left\{a_{1}, a_{2}, \ldots, a_{9}\right\}$ except for multiples of $m\left(a_{1}+a_{2}+\cdots+a_{9}\right)$ are not linearly equivalent to multiples of 0_{E}. In particular, $a_{1}, a_{2}, \ldots, a_{9}$ satisfy the following properties:
(i) $m\left(a_{1}+a_{2}+\cdots+a_{9}\right) \sim 9 m 0_{E}$, and
(ii) there exist no plane curves such that $E \cap C \subset\left\{a_{1}, a_{2}, \ldots, a_{9}\right\}$ except for curves whose degrees are multiples of 3 m .

Remark 20. The condition (i) is necessary for the existence of a plane curve of degree $3 m$ which has m-ple points at a_{i} 's. In the later argument, we use the condition (ii) to prove the irreducibility of a required curve.

We prove the existence of a plane curve of degree $3 m$ which has m-ple points at a_{i} 's and a double point.

Proposition 21. For integer $m \geq 2$, there exist a curves of type $\left[3 m ; m^{9}, 2\right]$.

Proof. Take distinct points $a_{1}, a_{2}, \ldots, a_{8}$ and a_{9} on E as above. Let $\nu: S \rightarrow \mathbb{P}^{2}$ be the succession of blowing-ups at a_{i} 's and ϵ_{i} the pullbak to S of a_{i}. Let H be the projective line. The proper transform of E by ν is linearly equivalent to $-K_{S}$ and we denote it by \bar{E}. We consider the cohomology long exact sequence for

$$
0 \rightarrow \mathcal{O}_{S}\left(-m K_{S}-\bar{E}\right) \rightarrow \mathcal{O}_{S}\left(-m K_{S}\right) \rightarrow \mathcal{O}_{\bar{E}}\left(-m K_{S}\right) \rightarrow 0
$$

By the condition (ii) and $(m-1) \bar{E} \in\left|-(m-1) K_{S}\right|$, we see that $h^{0}\left(S, \mathcal{O}_{S}\left(-m K_{S}-\bar{E}\right)\right)=h^{0}\left(S, \mathcal{O}_{S}\left(-(m-1) K_{S}\right)\right)=1$. Since the negative divisor $-\bar{E}$ is linearly equivalent to K_{S}, we have $h^{2}\left(S, \mathcal{O}_{S}\left(-m K_{S}-\right.\right.$ $\bar{E}))=h^{0}\left(S, \mathcal{O}_{S}\left(m K_{S}\right)\right)=0$. Thus, the Riemann-Roch theorem gives us $h^{1}\left(S, \mathcal{O}_{S}\left(-m K_{S}-\bar{E}\right)\right)=0$, i.e., we obtain

$$
h^{0}\left(S, \mathcal{O}_{S}\left(-m K_{S}\right)\right)=h^{0}\left(S, \mathcal{O}_{S}\left(-m K_{S}-\bar{E}\right)\right)+h^{0}\left(\bar{E}, \mathcal{O}_{\bar{E}}\left(-m K_{S}\right)\right)
$$

Moreover, $h^{0}\left(\bar{E}, \mathcal{O}_{\bar{E}}\left(-m K_{S}\right)\right)=h^{0}\left(\bar{E}, \mathcal{O}_{\bar{E}}\right)=1$. Therefore, we obtain $h^{0}\left(S, \mathcal{O}_{S}\left(-m K_{S}\right)\right)=2$ (see also [2, Proposition 1.(1)]). From $K_{S}^{2}=0$, the complete linear system $\left|-m K_{S}\right|=\left|3 m \nu^{*} H-\sum_{i=1}^{9} m \epsilon_{i}\right|$ is base point free, i.e., the anti-pluricanonical map $\Phi_{\left|-m K_{S}\right|}$ gives the structure of an elliptic surface over \mathbb{P}^{1} with multiple fiber $m \bar{E}$ (see [3, Theorem 2.1]).

Let D be a fiber of $\Phi_{\left|-m K_{S}\right|}$ which is not $m \bar{E}$. We shall show that D are irreducible. It suffices to show that $\nu(D)$ is irreducible. Since D is a member of $\left|3 m \nu^{*} H-\sum_{i=1}^{9} m \epsilon_{i}\right|, \nu(D)$ is a divisor of degree $3 m$ such that a_{i} 's are m-ple points of $\nu(D)$. In particular, we have $\iota^{*} \nu(D)=\sum_{i=1}^{9} m a_{i}$. Suppose that $\nu(D)=D_{1}+D_{2}$, where D_{1} and D_{2} are divisors in \mathbb{P}^{2}. Then $\iota^{*}\left(D_{1}\right) \sim 3\left(\operatorname{deg} D_{1}\right) 0_{E}$ and $\operatorname{Supp}\left(\iota^{*}\left(D_{1}\right)\right) \subset$ $\left\{a_{1}, a_{2}, \ldots, a_{9}\right\}$, which contradicts to the condition (ii).

The Euler characteristic of S is equal to 12 . The sum of the Euler characteristics of singular fibers is equal to the Euler characteristic of an elliptic surface. Since the unique multiple fiber is equal to $m \bar{E}$, its Euler characteristic is equal to zero. It implies that there exist other singular fibers which are not multiple fibers. Since all fibers of $\Phi_{\left|-m K_{S}\right|}$ are irreducible, the image of a singular fiber of $\Phi_{\left|-m K_{S}\right|}$ by ν is of type I_{1} or II (see [10, Theorem 6.2]). Hence, this image has nine m-ple poitns $a_{1}, a_{2}, \ldots, a_{9}$ and one double point, i.e., it follows that there exists a curve of type $\left[3 m ; m^{9}, 2\right]$.
Q.E.D.

From Propositions 9, 12, 15, 18 and 21, we obtain Theorem 4. From Proposition 21, we obtain Theorem 5.

Acknowledgements. The author expresses his thanks to Professor Shigeru Iitaka for valuable discussions and advice. Thanks are also due to Professors Tadashi Ashikaga and Mizuho Ishizaka for encouragements and advice. The author is also grateful to the referee for suggesting improvements to this paper.

References

[1] J. L. Coolidge, A Treatise of Algebraic Plane Curve, Oxford Univ. Press, 1928.
[2] I. Dolgachev, Rational surfaces with a pencil of elliptic curves, Izv. Acad. Nauk SSSR Ser. Math., 30 (1966), 1073-1100.
[3] Y. Fujimoto, On rational elliptic surfaces with multiple fibers, Publ. Res. Inst. Math. Sci., 26 (1990), 1-13.
[4] W. Fulton, Intersection Theory. Second ed., Ergeb. Math. Grenzgeb.(3), 2, Springer-Verlag, 1998.
[5] S. Iitaka, Basic structure of algebraic varieties, In: Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, pp. 303-316.
[6] S. Iitaka, On irreducible plane curves, Saitama Math. J., 1 (1983) , 47-63.
[7] S. Iitaka, Birational geometry of plane curves, Tokyo J. Math., 22 (1999), 289-321.
[8] S. Iitaka, On logarithmic plurigenera of algebraic plane curves (the fourth version), in Iitaka's web page.
[9] H. Ishida, The existence of hyperelliptic fibrations with slope four and high relative Euler-Poincaré characteristic, Proc. Amer. Math. Soc., 139 (2011), 1221-1235.
[10] K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2), 71 (1960), 111-152. On compact analytic surfaces. II, Ann. of Math. (2), 77 (1963), 563-626. On compact analytic surfaces. III, Ann. of Math. (2), 78 (1963), 1-40.
[11] U. Persson, Chern invariants of surfaces of general type, Compositio Math., 43 (1981), 3-58.

General Education

Ube National College of Technology Tokiwadai
Ube 755-8555
Japan
E-mail address: ishida@ube-k.ac.jp

