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Gorenstein in codimension 4: 
the general structure theory 

Miles Reid 

Abstract. 

I describe the projective resolution of a codimension 4 Gorenstein 
ideal, aiming to extend Buchsbaum and Eisenbud's famous result in 
codimension 3. The main result is a structure theorem stating that the 
ideal is determined by its (k + 1) x 2k matrix of first syzygies, viewed 
as a morphism from the ambient regular space to the Spin-Hom variety 
SpHk C Mat(k + 1, 2k). This is a general result encapsulating some 
theoretical aspects of the problem, but, as it stands, is still some way 
from tractable applications. 

This paper introduces the Spin-Hom varieties SpHk c Mat(k+ 1, 2k) 
for k ;::: 3, that I define as almost homogeneous spaces under the group 
GL(k+ 1) x 0(2k) (see 2.4). These serve as key varieties for the (k+ 1) x2k 
first syzygy matrixes of codimension 4 Gorenstein ideals I in a polyno­
mial ring S plus appropriate presentation data; the correspondence takes 
I to its matrix of first syzygies. Such ideals I are parametrised by an 
open subscheme of SpHk(S) = Mor(Spec S, SpHk). The open condition 
comes from the Buchsbaum-Eisenbud exactness criterion "What makes 
a complex exact?" [BEl]: the classifying map o:: SpecS -+ SpHk must 
hit the degeneracy locus of SpHk in codimension ;::: 4. 

The map o: has Cramer-spinor coordinates Li and a J in standard 
representations kk+1 and k 2k-l of GL(k + 1) and Pin(2k) (see 3.3), and 
the k x k minors of M 1 (I) are in the product ideal I · Sym2 ( {a J}). The 
spinors themselves should also be in I, so that the k x k minors of M 1 (I) 
are in I 3 ; this goes some way towards explaining the mechanism that 
makes the syzygy matrix M 1 (I) "drop rank by 3 at one go" -it has rank 
k outside V(I) = Spec(S/J) and :S k- 3 on V(I). 
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Website See www.warwick.ac.ukjstaff/Miles.Reid/codim4 for material 
accompanying this paper. 

The results here are not yet applicable in any satisfactory way, and 
raise almost as many questions as they answer. While Gorenstein codi­
mension 4 ideals are subject to a structure theorem, that I believe to 
be the correct codimension 4 generalisation of the famous Buchsbaum­
Eisenbud theorem in co dimension 3 [BE2], I do not say that this makes 
them tractable. 

§1. Introduction 

Gorenstein rings are important, appearing throughout algebra, al­
gebraic geometry and singularity theory. A common source is Zariski's 
standard construction of graded ring over a polarised variety X, L: the 
graded ring R(X, L) = EBn>O H 0 (X, nL) is a Gorenstein ring under nat­
ural and fairly mild conditiOns (cohomology vanishing plus Kx = kxL 
for some kx E Z, see for example [GW]). Knowing how to construct 
R(X, L) by generators and relations gives precise answer to questions 
on embedding X '-+ ]pm and determining the equations of the image. 

1.1. Background and the Buchsbaum-Eisenbud result 

I work over a field k containing ~ (such as k = C, but see 4.5 for 
the more general case). Let S = k[x1 , ... , Xn] be a positively graded 
polynomial ring with wt Xi = ai, and R = S/ IR a quotient of S that 
is a Gorenstein ring. Equivalently, Spec R C SpecS = Ak is a Goren­
stein graded scheme. By the Auslander-Buchsbaum form of the Hilbert 
syzygies theorem, R has a minimal free graded resolution P. of the form 

(1.1) 

0 +- Po +- P1 +- · · · +- Pc +- 0 

+ 
R 

where P0 = S --+ R = S/ IR is the quotient map, and P1 --+ S gives 
a minimum set of generators of the ideal IR- Here the length c of the 
resolution equals n-depth R, and each Pi is a graded free module of rank 
bi. I write Pi = biS (as an abbreviation for SE!lbi ), or Pi = EB~~ 1 S( -dij) 
if I need to keep track of the gradings. The condition depth R = dim R 
that the depth is maximal characterises the Cohen-Macaulay case, and 
then c = codimR = codim(SpecR c SpecS). If in addition Pc is a free 
module of rank 1, so that Pc ~ S( -a) with a the adjunction number, 
then R is a Gorenstein ring of canonical weight K,R = a- 2::: ai; for my 
purposes, one can take this to be the definition of Gorenstein. 
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Duality makes the resolution (1.1) symmetric: the dual complex 
(P.)v = Hom8 (P., Fe) resolves the dualising module WR = Ext8(R, ws), 
which is isomorphic toR (or, as a graded module, to R("'R) with "'R = 
a - 2: ai), so that P. ~ ( P.) v. In particular the Betti numbers bi satisfy 
the symmetry be-i = bi, or 

bi 

Pe-i = Homs(Pi,Pe) ~ E9S(-a+dij), 
j=l 

bi 

where Pi= EBs(-dij)· 
j=l 

The Buchsbaum-Eisenbud symmetriser trick [BE2] adds precision 
to this (this is where the assumption ~ E S comes into play): 

There is a symmetric perfect pairing S2 ( P.) -+ Fe 
inducing the duality P. ~ (P.) v. 

The idea is to pass from P. as a resolution of R to the complex P. Q9 P. 
(the total complex of the double complex) as a resolution of R 0s R 
(left derived tensor product), then to replace P. Q9P. by its symmetrised 
version S 2 (P.). In the double complex P. Q9P., one decorates the arrows 
by signs ±1 to make each rectangle anticommute (to get d2 = 0). The 
symmetrised complex S 2 (P.) then involves replacing the arrows by half 
the sum or differences of symmetrically placed arrows. (This provides 
lots of opportunities for confusion about signs!) 

For details, see [BE2]. The conclusion is that P. has a ±-symmetric 
bilinear form that induces perfect pairings Pi Q9 Pe-i -+ Fe = S for each 
i, compatible with the differentials. 

The Buchsbaum-Eisenbud structure theorem in codimension 3 is a 
simple consequence of this symmetry, and a model for what I try to do 
in this paper. Namely, in codimension 3 we have 

(1.2) 

with P0 = S, P3 ~ S, P 2 = Hom(P1,P3 ) ~ P'(, and the matrix M 
defining the map P 1 +-- P2 is skew (that is, antisymmetric). If I set 
P 1 = nS then the respective ranks of the differentials in (1.2) are 1, 
n -1 and 1; since M is skew, his rank must be even, so that n = 2v + 1. 
Moreover, the kernel and cokernel are given by the Pfaffians of M, by 
the skew version of Cramer's rule. 

Generalising the Buchsbaum-Eisenbud Theorem to codimension 4 
has been a notoriously elusive problem since the 1970s. 

1.2. Main aim 

This paper starts by describing the shape of the resolution of a 
codimension 4 Gorenstein ring by analogy with (1.2). The first syzygy 
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matrix M 1 : P 1 +-- P2 is a ( k + 1) x 2k matrix whose k + 1 rows generically 
span a maximal isotropic space of the symmetric quadratic form on P2. 
The ideal IRis generated by the entries of the map L: P0 +-- P 1 , which is 
determined by the linear algebra of quadratic forms as the linear relation 
that must hold between the k + 1 rows of M 1 . 

This is all uncomplicated stuff, deduced directly from the symme­
try trick of [BE2]. It leads to the definition of the Spin-Hom varieties 
SpHk in the space of (k + 1) x 2k matrixes (see Section 2.4). The first 
syzygy matrix M1 is then an S-valued point of SpHk, or a morphism 
a: SpecS--+ SpHk. 

The converse is more subtle, and is the main point of the paper. 
By construction, SpHk supports a short complex P 1 +-- P2 +-- P3 of free 
modules with a certain universal property. If we were allowed to restrict 
to a smooth open subscheme S0 of SpHk meeting the degeneracy locus 
SpH%gn in codimension 4, the reflexive hull of the cokernel of M 1 and 
the kernel of M 2 would provide a complex P. that resolves a sheaf of 
Gorenstein codimension 4 ideals in S 0 . (This follows by the main proof 
below). 

Unfortunately, this is only an adequate description of codimen­
sion 4 Gorenstein ideals in the uninteresting case of complete intersection 
ideals. Any other case necessarily involves smaller strata of SpHk, where 
SpHk is singular. Thus to cover every codimension 4 Gorenstein ring, I 
am forced into the logically subtle situation of a universal construction 
whose universal space does not itself support the type of object I am 
trying to classify, namely a Gorenstein codimension 4 ideal. See 4.3 for 
further discussion of this point. 

Main Theorem 2.5 gives the universal construction. To paraphrase: 
for a polynomial ring S graded in positive degrees, there is a 1-to-1 
correspondence between: 

(1) Gorenstein codimension 4 graded ideals I c Sand 
(2) graded morphisms a: SpecS--+ SpHk for which a- 1 (SpH%gn) 

has codimension ?: 4 in Spec S. 

I should say at once that this is intended as a theoretical structure result. 
It has the glaring weakness that it does not so far make any tractable 
predictions even in model cases (see 4.7 for a discussion). But it is 
possibly better than no structure result at all. 

1.3. Contents of the paper 

Section 2.1 describes the shape of the free resolution and its sym­
metry, following the above introductory discussion. Section 2.4 defines 
the Spin-Hom variety SpHk c Mat(k + 1, 2k), to serve as my universal 
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space. The definition takes the form of a quasihomogeneous space for 
the complex Lie group G = GL(k + 1) x 0(2k) or its spin double cover 
GL(k + 1) x Pin(2k). More explicitly, define SpHk as the closure of the 
G-orbit SpHZ = G · M 0 of the typical matrix M 0 = ( I6 g) under the 
given action of G = GL(k + 1) x 0(2k) on Mat(k + 1, 2k). 

The degeneracy locus SpH~gn is the complement SpHk \ SpHZ. Once 
these definitions are in place, Section 2.5 states the main theorem, and 
proves it based on the exactness criterion of [BEl]. 

The Spin-Hom varieties SpHk have a rich structure arising from rep­
resentation theory. A matrix M 1 E SpHZ can be viewed as an isomor­
phism between a k-dimensional space in kk+l and a maximal isotropic 
space for 'P in k 2k. This displays SpHZ as a principal G L( k) bundle 
over J!Dk x OGr(k, 2k). Section 3 discusses the properties of the SpHk in 
more detail, notably their symmetry under the maximal torus and Weyl 
group. The spinor and nonspinor sets correspond to the two different 
spinor components OGr(k, 2k) and OGr'(k, 2k) of the maximal isotropic 
Grassmannian. 

I introduce the Cramer-spinor coordinates a J in 3.3; the main point 
is that, for a spinor subset JuJc, the (k+l) x k submatrix of M 1 E SpHk 
formed by those columns has top wedge factoring as (L1 , ... , Lk+I) ·a} 
where L: P0 +--- P1 is the vector of equations (see Lemma 3.3.2). Ensur­
ing that the appropriate square root a J is defined as an element a J E S 
involves the point that, whereas the spinor bundle defines a 2-torsion 
Weil divisor on the affine orthogonal Grassmannian a OGr(k, 2k) c 
1\ k k 2 k (the affine cone over OGr( k, 2k) in Plucker space) and on SpHk, 
its birational transform under the classifying maps a: SpecS ---+ SpHk 
of Theorem 2.5 is the trivial bundle on SpecS. 

The spinor coordinates vanish on the degeneracy locus SpH~gn and 

define an equivariant morphism SpHZ ---+ kk+l ® k 2k-l. At the same 
time, they vanish on the nonspin variety SpH~, corresponding to the 
other component OGr'(k, 2k) of the Grassmannian of maximal isotropic 
subspaces; this has nonspinor coordinates, that vanish on SpHk. Be­
tween them, these give set theoretic equations for SpHk and its degen­
eracy locus. 

The final Section 4 discusses a number of issues with my construction 
and some open problems and challenges for the future. 

§2. The main result 

For a codimension 4 Gorenstein ideal I with k + 1 generators, the 
module P2 of first syzygies is a 2k dimensional orthogonal space with a 
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nondegenerate (symmetric) quadratic form cp. The k + 1 rows of the first 
syzygy matrix M1 (R) span an isotropic subspace in P2 with respect to cp. 
Since the maximal isotropic subspaces are k-dimensional, this implies a 
linear dependence relation (£1, ... , Lk+I) that bases coker M1 and thus 
provides the generators of I. A first draft of this idea was sketched in 
[Ki], 10.2. 

2.1. The free resolution 

LetS= k[x1, ... ,xN] be the polynomial ring over an algebraically 
closed field k of characteristic -f. 2, graded in positive degrees. Let IR 
be a homogeneous ideal with quotient R = S j I R that is Gorenstein 
of codimension 4; equivalently, IR defines a codimension 4 Gorenstein 
graded subscheme 

V(IR) =SpeeR cA.{:= SpecS. 

Suppose that IR has k + 1 generators £ 1, ... , Lk+l· It follows from the 
Auslander-Buchsbaum form of the Hilbert syzygies theorem and the 
symmetriser trick of Buchsbaum-Eisenbud [BE2] that the free resolution 
of R is 

(2.1) 

where Po = S, P4 ~ S, P3 = Hom(P1,P4) ~ P 1v; and moreover, P2 
has a non degenerate symmetric bilinear form cp: 8 2 P2 -+ P4 compatible 
with the complex P., so that P2 -+ P 1 is dual to P3 -+ P2 under cp. The 
simple cases of 2.3, Examples 2.1-2.3 give a sanity check (just in case 
you are sceptical about the symmetry of cp). 

A choice of basis of P2 gives cp the standard block form 1 ( ~ b). Then 
the first syzygy matrix in (2.1) is M 1(R) = (AB), where the two blocks 
are ( k + 1) x k matrixes satisfying 

(2.2) (AB) (~ 6) t(AB) = 0, 

that is, A tB + B tA = 0, or A tB is skew. I call this a ( k+ 1) x 2k resolution 
(meaning that the defining ideal IR has k + 1 generators yoked by 2k 
first syzygies). 

The number of equations in (2.2) is (k~2). For example, in the 

typical case k = 8, the variety defined by (2.2) involves (k~2 ) = 45 

1In the graded case this is trivial because cp is homogeneous of degree 0, so is 
basically a nondegenerate quadratic form on a vector space v2 with p2 = v2 ® s. 
See the discussion in 4.5 for the more general case. 
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quadratic equations in 2k(k+1) = 144 variables. The scheme Vk defined 
by (2.2) appears in the literature as the variety of complexes. However 
it is not really the right object - it breaks into 2 irreducible components 
for spinor reasons, and it is better to study just one, which is my SpHk. 

2.2. The general fibre 

Let ~ E SpecS = _A.N be a point outside V(IR) = SpeeR with 
residue field K = k(~) (for example, a k-valued point, with K = k, or 
the generic point, with K = FracS). Evaluating (2.1) at~ gives the 
exact sequence of vector spaces 

(2.3) 

over K, where Vo = K, V4 ~ K, V1 = (k+1)K, V3 = Hom(V1, V4) ~ V1v, 
and V2 = 2kK with the nondegenerate quadratic form rp = (~b). Over 
K, the maps in (2.3) can be written as the matrixes 

(2.4) (o 0 1) c~ ~) (~ ~) m. 
This data determines a fibre bundle over _A.N \ V(IR) with the exact 
complex (2.3) as fibre, and structure group the orthogonal group of the 
complex, which I take to be GL(k + 1) x 0(2k) or its double cover 
GL(k + 1) x Pin(2k). 

2.3. Simple examples 

Example 2.1. A codimension 4 complete intersection R has L = 
(x1, x2, x3, x4) and Koszul syzygy matrix 

(2.5) (

-X4 

(AB) = : 

Xl 

In this choice, A= M 1,2,3 has rank 3 and /\3 A= x~ · (x1, ... ,x4 ). See 
3.3 for spinors. A spinor subset J U Jc has an odd number i of columns 
from A and the complementary 3 - i columns from B. For example, 
columns 1,5,6 give a 4 x 3 matrix with /\3 M1,5,6 =xi· (xl,x2,x3,x4). 

Example 2.2. Another easy case is that of a hypersurface section 
h = 0 in a codimension 3 ideal given by the Pfaffians Pfi of a (2l + 1) x 
(2l + 1) skew matrix M. The syzygy matrix is 

(2.6) (AB) = ( 
-hi2l+l 

Pf1 ... Pf2z+1 
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One sees that a spinor a J corresponding to 2l + 1 - 2i columns from 
A and a complementary 2i from B is of the form hl-i times a diagonal 
2i x 2i Pfaffian of M. Thus the top wedge of the left-hand block A of 
(2.6) equals a 2 · (h, Pf1 , ... , Pf2Z+l) where a= h1• 

Example 2.3. The extrasymmetric matrix 

a b d e f 
c e g h 

(2.7) M= f h i 

-.Xa -.Xb 
-.Xc 

with a single multiplier .X is the simplest case of a Tom unprojection (see 
[T J], Section 9 for details). Let I be the ideal generated by the 4 x 4 
Pfaffians of M. The diagonal entries d, g, i of the 3 x 3 symmetric top 
right block are all unprojection variables; thus i appears linearly in 4 
equations of the form i · (a, d, e, g) = · · · , and eliminating it projects to 
the codimension 3 Gorenstein ring defined by the Pfaffians of the top 
left 5 x 5 block. 

If .X E S is a perfect square, I is the ideal of Segre(JID2 x JID2) c JID8 up 
to a coordinate change, but the Galois symmetry VJ:. r--+ -VJ:. swaps the 
two factors. See [T J], Section 9 for more details, and for several more 
families of examples; in any of these cases, writing out the resolution 
matrixes (A B) with the stated isotropy property makes a demanding 
but rewarding exercise for the dedicated student. 

By extrasymmetry, out of the 15 entries of M, 9 are independent 
and 6 repeats. His 4 x 4 Pfaffians follow a similar pattern. I write the 9 
generators of the ideal I of Pfaffians as the vector L = 

[.Xac + eh- Jg, -.Xab- dh + ef, .Xa2 + dg- e2, 

ah - bg + ce, -af + be - cd, .Xb2 + di - P, 
.Abc+ ei- fh, .Xc2 + gi- h2 , ai- bh + cf] 
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Its matrix of first syzygies M 1 is the transpose of 

a b d e 
-a c e g 
-b -c f h 
-d -e -! -A.a 
-e -g -h A. a 

-h A.c g -e 

f -h -A.b A.c -g d 
f -A.b e -d 

(2.8) 
-h f -A.c 

h -! A.b 
h i -A.c e -d -A.a 

-c b -h 
c -b f 

-b f -a d 
-c h -a e 

c -h -a g 

M 1 is of block form (AB) with two 9 x 8 blocks, and one checks that 
LM1 = 0, and M1 is isotropic for the standard quadratic form J = 
( ~ 6 ), so its kernel is M 2 = ( :~). The focus in (2.8) is on i as an 

unprojection variable, multiplying d, e, g, a. One recognises its Tom3 

matrix as the top 5 x 5 block, and the Koszul syzygy matrix of d, e, g, a 
as Submatrix([6, 7, 8, 14, 15, 16], [6, 7, 8, 9]); compare [KM]. 

For some ofthe spinors (see Section 3), consider the 8x9 submatrixes 
formed by 4 out of the first 5 rows of (2.8), and the complementary 4 
rows from the last 8. One calculates their maximal minors with a mild 
effort: 

/\ 8 M 1,2,3,4, 13, 14, 15,16 

/\8 M 1 ,2,3,5, 12, 14, 15,16 

(2.9) /\8 M 
1 ,2,4,5, 11' 14, 15,16 

/\8 M 
1 ,3,4,5, 10, 14, 15,16 

/\8 M 2,3,4,5,9, 14, 15,16 

a2(af- be+ cd) 2 · L, 

a2 (ah- bg + ce? · L, 

a 2 ( -A.a2 - dg + e2? · L, 

a2 ( -A.ab- dh + ef) 2 · L, 

a 2 ( -A.ac- eh + Jg? · L. 

The factor a comes from the 3 x 3 diagonal block at the bottom right, 
and the varying factors are the 4 x 4 Pfaffians of the first 5 x 5 block. 
Compare 4.4 for a sample Koszul syzygy. 
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Exercise 2.4. Apply column and isotropic row operations to put 
the variable f down a main diagonal of B; check that this puts the 
complementary A in the form of a skew 8 x 8 matrix and a row of zeros. 
Hint: order the rows as 15, 16, 12, 11, 6, 2, 1, 5, 7, 8, 4, 3, 14, 10, 9, 13 and 
the columns as 1, 2, -3, 4, 5, -7, 8, 9, 6. (See the website for the easy 
code.) Do the same for either variable e, h, and the same for any of 
a, b, c (involving the multiplier .\). 

Thus the isotropy condition tM J M can be thought of as many skew 
symmetries. 

These examples provide useful sanity checks, with everything given 
by transparent calculations; it is reassuring to be able to verify the 
symmetry of the bilinear form on P2 asserted in Proposition 1, the shape 
of A tB in (2.2), which parity of J gives nonzero spinors UJ, and other 
minor issues of this nature. 

I have written out the matrixes, spinors, Koszul syzygies etc. in a 
small number of more complicated explicit examples (see the website). 
It should be possible to treat fairly general Tom and Jerry constructions 
in the same style, although so far I do not know how to use this to predict 
anything useful. The motivation for this paper came in large part from 
continuing attempts to understand Horikawa surfaces and Duncan Dicks' 
1988 thesis [Di], [R1]. 

2.4. Definition of the Spin-Hom variety SpHk 

Define the Spin-Hom variety SpHk C Mat(k + 1, 2k) as the closure 
under G = GL(k + 1) x 0(2k) of the orbit of M 0 = ( 1<f g), the second 
matrix in (2.4). It consists of isotropic homomorphisms V1 t- V2 , in 
other words matrixes M1 whose k + 1 rows are isotropic and mutually 
orthogonal vectors in V2 w.r.t. the quadratic form cp, and span a subspace 
that is in the given component of maximal isotropic subspaces if it is 
k-dimensional. 

In more detail, write SpHg = G · M° C Mat(k + 1, 2k) for the orbit, 
SpHk for its closure, and SpH%gn = SpHk \ SpHg for the degeneracy 
locus, consisting of matrixes of rank < k. Section 3 discusses several 
further properties of SpHk and its degeneracy locus SpH%gn. 

2.5. The Main Theorem 

Assume that S is a polynomial ring graded in positive degrees. Let I 
be a homogeneous ideal defining a codimension 4 Gorenstein subscheme 
X= V(I) C SpecS. Then a choice of minimal generators of I {made 
up of k + 1 elements, say) and of the first syzygies between these defines 
a morphism a: SpecS-+ SpHk such that a-1 (SpHdgn) has the same 
support as X, and hence codimension 4 in SpecS. 
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Conversely, let a: SpecS---+ SpHk C Mat(k + 1, 2k) be a morphism 
for which a-1 (SpHdgn) has codimension 2 4 in SpecS. Assume that 
a is graded, that is, equivariant for a positively graded action of Gm 
on SpHk C Mat(k + 1, 2k). Let M1 = (A B) be the matrix image of a 
(the matrix entries of M 1 or the coordinates of a are elements of S). 
Then by construction M1 and J tM1 define the two middle morphisms 
of a complex. I assert that this extends to a complex 

(2.10) 

in which P0 , P4 ~ S, the complex is exact except at P0 , and the image 
of L = (L1 , ... , Lk+I) generates the ideal of a Gorenstein codimension 4 
subscheme X c SpecS. 

2.6. Proof 

The first part follows from what I have already said. The converse 
follows by a straightforward application of the exactness criterion of 
[BEl]. 

The complex P. of (2.10) comes directly from M 1 . Namely, define 
P0 as the reflexive hull of coker{ M 1 : P1 +- P2 } (that is, double dual); it 
has rank 1 because M 1 has generic rank k. A graded reflexive module of 
rank 1 over a graded regular ring is free (this is the same as saying that 
a Weil divisor on a nonsingular variety is Cartier), so Po ~ S. Given 
P3 ~ Pi, the generically surjective map S ~ P0 +- P1 is dual to an 
inclusion S '-+ P 3 that maps to the kernel of P2 +- P3. 

The key point is to prove exactness of the complex 

where I write <p1 = (L1 , ... , Lk+I), <p2 = M1 , etc. to agree with [BEl]. 
The modules and homomorphisms Po, <p1, P 1 , <p2, P2, <p3, P3, <p4, P4 of this 
complex have respective ranks 1, 1, k + 1, k, 2k, k, k + 1, 1, 1, which ac­
cords with an exact sequence of vector spaces, as in (2.3-2.4); this is 
Part (1) of the criterion of [BEl], Theorem 1. 

The second condition Part (2) requires the matrixes of <pi to have 
maximal nonzero minors generating an ideal I( <pi) that contains a reg­
ular sequence of length i. However, P. is exact outside the degeneracy 
locus, that is, at any point ~ E SpecS for which a(~) t/:. SpH%gn, and 
by assumption, the locus of such points has codimension 2 4. Thus 
the maximal minors of each <pi generate an ideal defining a subscheme 
of codimension 2 4. In a Cohen-Macaulay ring, an ideal defining a 
subscheme of codimension 2 i has height 2 i. Q.E.D. 
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§3. Properties of SpHk and its spinors 

This section introduces the spinors as sections of the spinor line 
bundle S on SpHk. The nonspinors vanish on SpHk and cut it out in Vk 
set theoretically. The spinors vanish on the other component SpH~ and 
cut out set theoretically the degeneracy locus SpH%gn in SpHk. 

The easy bit is to say that a spinor is the square root of a determi­
nant on Vk c Mat(k + 1, 2k) that vanishes to even order on a divisor 
of SpHk because it is locally the square of a Pfaffian. The ratio of two 
spinors is a rational function on SpHk. 

The tricky point is that the spinors are sections of the spinor bun­
dle S on SpHk that is defined as a Pin(2k) equivariant bundle, so not 
described by any particularly straightforward linear or multilinear alge­
bra. As everyone knows, the spinor bundleS on OGr(k, 2k) is the ample 
generator of Pic(OGr(k, 2k)), with the property that S 02 is the restric­
tion of the Plucker bundle 0(1) on Gr(k, 2k). On the affine orthogonal 
Grassmannian in Plucker space a Gr(k, 2k) c 1\ k k 2k, it corresponds to 
a 2-torsion Weil divisor class. I write out a transparent treatment of the 
first example in 3.2. 

I need to argue that the spinors pulled back to my regular ambient 
SpecS by the appropriate birational transform are elements of S (that 
is, polynomials), rather than just sections of a spinor line bundle. The 
reason that I expect to be able to do this is because I have done many 
calculations like the Tom unprojection of 2.3, Example 2.3, and it always 
works. In the final analysis, I win for the banal reason that the ambient 
space SpecS has no 2-torsion Weil divisors in its class group (because 
S is factorial), so that the birational transform of the spinor bundle S 
to SpecS= A_N is trivial. 

The Cramer-spinor coordinates of the syzygy matrix M 1 = (A B) 
have the potential to clarify many points about Gorenstein codimen­
sion 4: the generic rank of M 1 is k, but it drops to k - 3 on Spec R; its 
k x k minors are in Ik. There also seems to be a possible explanation of 
the difference seen in examples between k even and odd in terms of the 
well known differences between the Weyl groups Dk (compare 3.1.3). 

3.1. Symmetry 

View GL(k + 1) as acting on the first syzygy matrix M 1 (R) by row 
operations, and 0(2k) as column operations preserving the orthogonal 
structure r.p, or the matrix (~b). The maximal torus G~+l and Weyl 
group Ak = Sk+l of the first factor GL(k + 1) act in the obvious way by 
scaling and permuting the rows of M 1 . 
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I need some standard notions for the symmetry of 0(2k) and its 
spinors. For further details, see Fulton and Harris [FH], esp. Chapter 20 
and [CR], Section 4. Write V2 = k 2k for the 2k dimensional vector space 
with basis e1, ... , ek and dual basis h, ... , fk, making the quadratic 
form cp = 0 6). Write U = Uk = h, ... ,ek), so that V2 = U EB uv. 
The orthogonal Grassmannian OGr(k, 2k) is defined as the variety of 
k-dimensional isotropic subspaces that intersect U in even codimension, 
that is, in a subspace of dimension= k modulo 2. 

3.1.1. The Dk symmetry ofOGr(k, 2k) and SpHk I describe the Dk 
Weyl group symmetry of the columns in this notation (compare [CR], 
Section 4). The maximal torus IG~ of 0(2k) multiplies ei by,\ and fi by 
Ai1 , and acts likewise on the columns of M 1 = (A B). The Weyl group 
Dk acts on the ei, ]i and on the columns of M 1 = (AB) by permuta­
tions, as follows: the subgroup sk permutes the ei simultaneously with 
the ]i; and the rest of Dk swaps evenly many of the ei with their corre­
sponding fi, thus taking U = (e1 , ... , ek) to another coordinate k-plane 
in OGr(k, 2k). Exercise: The younger reader may enjoy checking that 
the k -1 permutations si = (i,i + 1) = (eiei+I)(Jdi+d together with 
Sk = (ekfk+I)(ek+lik) are involutions satisfying the standard Coxeter 
relations of type Dk, especially (sk-lsk) 2 = 1 and (sk_ 2 sk)3 = 1. 

3.1.2. Spinor and nonspinor subsets The spinor sets J U Jc index 
the spinors CTJ (introduced in 3.3). Let {ei, ji} be the standard basis 
of k 2k with form cp = ( ~ 6). There are 2k choices of maximal isotropic 
subspaces of k 2k based by a subset of this basis; each is based by a 
subset J of { e1 , ... , ek} together with the complementary subset Jc of 
{h, ... , fk}. The spinor subsets are those for which #J has the same 
parity as k, or in other words, the complement #Jc is even; the non­
spinor subsets are those for which #J has the parity of k - 1. The 
spinor set indexes a basis CTJ of the spinor space of 0Gr(k,2k), and 
similarly, the nonspinor set indexes the nonspinors CJ~, of his dark twin 
0Gr'(k,2k). 

The standard affine piece of OGr(k, 2k) consists of k-dimensional 
spaces based by k vectors that one writes as a matrix (I A) with A 
a skew k X k matrix. The spinor coordinates of (I A) are the 2i x 2i 
diagonal Pfaffians of A for 0 -:;: i -:;: [~]. They correspond in an obvious 
way to the spinor sets just defined and they are the spinors apart from 
the quibble about taking an overall square root and what bundle they 
belong to. 

3.1.3. Even versus odd The distinction between k even or odd is 
crucial for anything to do with 0(2k), Dk, spinors, Clifford algebras, 
etc. The spinor and nonspinor sets correspond to taking a subset J 
of { e1 , ... , ek} and the complementary set Jc of {h, ... , Jk}. The 2k 



214 M. Reid 

choices correspond to the vertices of a k-cube. When k is even this 
is a bipartite graph; the spinors and nonspinors form the two parts. 
By contrast, for odd k, both spinors and nonspinors are indexed by 
the vertices of the k-cube divided by the antipodal involution ([CR], 
Section 4 writes out the case k = 5 in detail). 

For simplicity, I assume that k is even in most of what follows; 
the common case in applications that I really care about is k = 8. 
Then J = 0 and Jc = {1, ... , k} is a spinor set, and the affine pieces 
represented by (I X) and (Y I) (with skew X or Y) are in the same 
component of OGr(k, 2k). The odd case involves related tricks, but 
with some notable differences of detail (compare [CR], Section 4). 

3.1.4. The other component OGr' and SpH~ I write OGr'(k, 2k) for 
the other component of the maximal isotropic Grassmannian, consisting 
of subspaces meeting U in odd codimension. Swapping oddly many 
of the ei and fi interchanges OGr and OGr'. Likewise, SpH~ is the 
closure of the C-orbit of the matrix M6 obtained by interchanging one 
corresponding pair of columns of M0 . 

Claim 3.1. Write Vk for the scheme defined by (2.2) (that is, the 
"variety of complexes"). It has two irreducible components Vk = SpHk U 
SpH~ containing matrixes of maximal rank k. The two components are 
generically reduced and intersect in the degenerate locus SpH%gn. (But 
one expects Vk to have embedded primes at its smaller strata, as in the 
discussion around (3.5).) 

This follows from the properties of spinor minors D.J discussed in 
Exercise 3.2.1: the D.J are k X k minors defined as polynomials on vk, 
and vanish on SpH~ but are nonzero on a dense open subset of SpHk. 

3.2. A first introduction to OGr(k, 2k) and its spinors 

The lines on the quadric surface provide the simplest calculation, 
and already have lots to teach us about 0Gr(2, 4) and OGr(k, 2k): the 
conditions for the 2 x 4 matrix 

(3.1) 

to be isotropic for ( 1 6 ) are 

X 

z 

(3.2) ax+ by = 0, az + bt +ex + dy = 0, cz + dt = 0. 

Three equations (3.2) generate an ideal Iw defining a codimension 3 
complete intersection W C A 8 that breaks up into two components 
:E U :E', corresponding to the two pencils of lines on the quadric surface: 



Gorenstein in codimension 4: the general structure theory 215 

the two affine pieces of 0Gr(2, 4) that consist of matrixes row equivalent 
to (I A) or (AI), with A a skew matrix, have one of the spinor minors 
~1 = ad- be or ~2 = xt - yz nonzero, and 

(3.3) dx-bz=at-ey=O and dy-bt=-(az-cx) 

on them. This follows because all the products of ~1, ~2 with the non­
spinors minors dx- bz, at- ey are in Iw, as one checks readily. Thus if 
~1 =f. 0 (say), I can multiply by the adjoint of the first block to get 

(3.4) ( d -b) (a b x y) = (~1 
-e a e d z t 0 

where the second block is skew. Note that 

(3.5) 

dx - bz dy - bt) 
az- ex at- ey 

If ~1 =f. 0, the relations (3.2) imply that we are in ~- The ideal of 
~ is obtained from (3.2) allowing cancellation of ~1 ; in other words 
h.= [Iw : ~1 ] is the colon ideal with either of the spinor minors ~1 or 
~2· 

The second block in (3.4) is only skew mod Iw after cancelling one of 
a, b, ... , t; similarly ~1~2 - (az- ex) 2 rt Iw, so that (3.5) involves can­
celling ~1 . Thus a geometric description of~.~' c Mat(k, 2k) should 
usually lead to ideals with embedded primes at their intersection or its 
smaller strata. 

Now by relation (3.5), the Plucker embedding takes 0Gr(2, 4) to 
the conic X Z = Y 2 , with X = ~1 = ad- be, Y = az - ex, Z = ~2 = 
xt- yz. This is (lP'1 ,0(2)) parametrised by u2 ,uv,v2 where u,v base 
H 0 (lP'1 ,0(1)). Thus X= u2 , Y = uv and Z = v2 on 0Gr(2,4); the 
spinors are u alid v. The ratio u : v equals X : Y = Y : Z. Each of 
~1 and ~2 vanishes on a double divisor, but the quantities u = ~' 
v = ...rs::2 are not themselves polynomial. 

The conclusion is that the minors ~1 and ~2 are spinor squares, 
that is, squares of sections u, v of a line bundle S, the spinor bundle on 
0Gr(2, 4). If we view 0Gr(2, 4) as a subvariety of Gr(2, 4), only S®2 

extends to the Plucker line bundle 0(1). Embedding 0Gr(2,4) in the 
Plucker space lP'(/\ 2 C4 ) and taking the affine cone gives the affine spinor 
variety a 0Gr(2, 4) as the cone over the conic, and S with its sections 
u, v as the ruling. 

In fact a 0Gr(2, 4) and his dark twin a OGr' are two ordinary quadric 
cones in linearly disjoint vector subspaces of the Plucker space 1\2 C4 , 

and the spinor bundle on the union has a divisor class that is a 2-torsion 
Weil divisor on each component. This picture is of course the orbifold 
quotient of ±1 acting on two planes A2 meeting transversally in A4 . 
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3.2.1. Exercise Generalise the above baby calculation to the subva­
riety Wk c Mat(k, 2k) of matrixes (AX) whose k rows span an isotropic 
space for ( 9 6), or in equations, the k x k product A tx is skew. Assume 
k is even. 

(1) Wk c Mat(k, 2k) is a complete intersection subvariety of codi­
mension ( k~ 1) . [Hint: Just a dimension count.] 

(2) wk breaks up into two irreducible components I: u I:'' where 
I: contains the space spanned by (I X) with X skew, or more 
generally, by the span of the columns J U Jc for J a spinor 
set; its nondegenerate points form a principal GL(k) bundle 
over the two components OGr U OGr' of the maximal isotropic 
Grassmannian. 

(3) For J a spinor set, the k x k spinor minor L::iJ of (AX) (the 
determinant of the submatrix formed by the columns JU Jc) is 
a polynomial on Mat(k x 2k) that vanishes on I:', and vanishes 
along a double divisor of I:, that is, twice a prime Weil divisor 
DJ. 

(4) The Weil divisors Dh and Dh corresponding to two spinor 
sets J 1 and J 2 are linearly equivalent. [Hint: First suppose 
that J 1 is obtained from J by exactly two transpositions, say 
(ed2)(e2h), and argue as in (3.5) to prove that CJJCJJt re­
stricted to I: is the square of either minor obtained by just one 
of the transpositions.] 

3.2.2. Spinors on OGr(k, 2k) The orthogonal Grassmann variety 
OGr(k, 2k) has a spinor embedding into lP'(k2k-

1
), of which the usual 

Plucker embedding 

k 

OGr(k, 2k) c Gr(k, 2k) '-+ lP'(/\ k2k) 

is the Veronese square. The space of spinors k 2k-t is a representation of 
the spin double cover Pin(2k)-+ 0(2k). 

A point W E OGr(k, 2k) is a k-dimensional subspace Wk c k 2k 
isotropic for ( 9 6) and intersecting U = (e1 , ... , en) in even codimension. 
I can write a basis as the rows of a k x 2k matrix Nw. If I view W as 
a point of Gr(k, 2k), its Plucker coordinates are all the k x k minors of 
Nw. There are (2/:) of these (that is, 12870 if k = 8), a fraction of which 
vanish OGr(k, 2k), as the determinant of a skew matrix of odd size. 

The finer embedding of OGr(k, 2k) is by spinors. The spinors CJJ 

are sections of the spinor line bundle S, 2k-l of them (which is 128 if 
k = 8, about 1/100 of the number of Plucker minors). Each comes by 
taking a k x k submatrix formed by a spinor subset of columns of Nw 
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(in other words, restricting to an isotropic coordinate subspace of k 2k in 
the specified component OGr(k, 2k)), taking its 2K: x 2K: minor (where 
K: = [ ~]) and factoring it as the perfect square of a section of S. The 
only general reason for a 2K: x 2K: minor to be a perfect square is that 
the submatrix is skew in some basis; in fact, as in (3.4), after taking one 
fixed square root of a determinant, and making a change of basis, the 
maximal isotropic space can be written as (J X) with X skew, and the 
spinors are all the Pfaffians of X. 

3.3. Cramer-spinor coordinates on SpHk 

3.3.1. Geometric interpretation A point of the open orbit SpHg c 
SpHk is a matrix M of rank k; it defines an isomorphism from a k­
dimensional subspace of V1 (the column span of M) to its row span, a 
maximal isotropic subspace of V2 in the specified component OGr(k, 2k). 
Therefore the nondegenerate orbit SpHg C SpHk has a morphism to 
lP'(V1v) x OGr(k, 2k) that makes it a principal GL(k) bundle. The prod­
uct lP'(V1v) x OGr(k, 2k) is a projective homogeneous space under G = 
GL(k + 1) x Pin(2k) 

It embeds naturally in the projectivisation of kk+1 Q9 k 2k-", with the 
second factor the space of spinors. This is the representation of G with 
highest weight vector v = (0, ... , 0, 1) Q9 (1, 0, ... , 0). The composite 

takes the typical matrix M 0 (or equivalently, the complex (2.4)) to v. 
The Cramer-spinor coordinates of a E SpHk ( S) are the bihomoge­

neous coordinates under the composite map (3.6). 
3.3.2. Spinors as polynomials The spinors CY J occur naturally as sec­

tions of the spinor line bundle S on OGr( k, 2k), and so have well defined 
pullbacks to SpHZ or to any scheme T with a morphism a: T -+ SpHZ. 
For CY J to be well defined in H 0 (Or), the pullback of the spinor line 
bundle to T must be trivial. 

Lemma 3.2. Let a E Mor(Spec S, SpHk) = SpHk(S) be a classi­
fying map as in Theorem 2.5 and write M1 E Mat(S, k + 1, 2k) for its 
matrix (with entries inS). Then for a spinor set J U Jc (as in 3.1.2), 
the (k + 1) x k submatrix NJ of M 1 with columns J U Jc has 

(3.7) 1\k 2 
NJ=L·CYJ, 

where L = (L1, ... , Lk+l) generates the cokernel of M 1, and CYJ E S. 



218 M. Reid 

3.4. Proof 
A classifying map a E SpHk(S) as in Theorem 2.5 restricts to a 

morphism a from the nondegenerate locus SpecS\ V(IR) to SpH~; on 
the complement of V(IR), the matrix M 1 has rank k, and its kth wedge 
defines the composite morphism to the product IP'k x Gr(k, 2k) in its 
Segre embedding: 

(3.8) SpecS\ V(IR) --+ SpH~ --+ IP'k x OGr(k, 2k) 

'---+ IP'k X Gr(k, 2k) c IP' ( kk+l 18!(\k V 2k). 

The entries of 1\ k N J are k + 1 coordinates of this morphism, and are of 
the form Li · oj already on the level of IP'k x OGr(k, 2k). 

Note that SpecS\ V(IR) is the complement in SpecS = AN of a 
subset of codimension 2': 4 so has trivial Pic. Each maximal minor of 
N J splits as Li times a polynomial that vanishes on a divisor that is a 
double (because it is the pullback of the square of a spinor); therefore 
the polynomial is a perfect square in S. Q.E.D. 

The following statement is the remaining basic issue that I am cur­
rently unable to settle in general. 

Conjecture 3.3. Under the assumptions of Lemma 3.3.2, aJ E JR. 

This is clear when R is reduced, that is, IR is a radical ideal. Indeed 
if aJ is a unit at some generic point~ E V(IR) =SpeeR, then (3.7) 
implies that IRis generated at~ by the k x k minors of the (k + 1) x k 
matrix NJ; these equations define a codimension 2 subscheme of SpecS, 
which is a contradiction. This case is sufficient for applications to con­
struction of ordinary varieties, but not of course to Artinian subschemes 
of A.4 • 

The conjecture also holds under the assumption that IR is generi­
cally a codimension 4 complete intersection. Indeed, the resolution of 
IR near any generic point ~ E V(IR) is then the 4 x 6 Koszul resolution 
of the complete intersection direct sum some nonminimal stuff that just 
add invertible square matrix blocks. Then both the Li and the a J are 
locally given by Example 2.1. 

At present, the thing that seems to make the conjecture hard is that 
the definition of the a J and the methods currently available for getting 
formulas for them consists of working on the nondegenerate locus of 
SpHk: choose a block diagonal form and take the Pfaffian of a skew 
complement, .... This is just not applicable at points a E V(IR)· 

The conjecture could possibly be treated by a more direct under­
standing of the spin morphism Spec S --+ k 2k defined by spinors and 
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nonspinors, not passing via the square root of the Plucker morphism as 
I do implicitly in Lemma 1 by taking 1\ k. 

§4. Final remarks, open problems 

4.1. Birational structure and dimension of SpHk 

A general M = (AB) E SpHk has k + 1 rows that span a max­
imal isotropic space U E OGr(k, 2k) and 2k columns that span a k­
dimensional vector subspace of kk+l, that I can view as a point of lP'k; 
thus SpH~ is a principal GL(k) bundle over lP'k x OGr(k, 2k). In partic­
ular dim SpH - k2 + k + (k) - 3k2 +k ' k- 2- 2 ° 

The tangent space to SpHk at the general point M 0 = ( 1~ g ) is 

calculated by writing an infinitely near matrix as M 0 + ( A~ bB~ ) ; here 
ak+l k+l 

the blocks A~ and B~ are kxk matrixes, and ak+ 1 and bk+l are 1xk rows. 
Then the tangent space to Vk defined by A tB = 0 is the affine subspace 
obtained by setting B~ to be skew and bk+1 = 0. Therefore SpHk has 
codimension (kt1) + k and dimension 2k(k + 1) ,--- (kt1) - k = 3k~+k. 

It is interesting to observe that the set of equations (2.2) express 
SpHk U SpH~ as an almost complete intersection. Namely, (2.2) is a set 
of (kt1) equations in A2k(k+l) vanishing on a variety of dimension 3k~+k, 
that is, of codimension (kt1) - 1. 

4.2. Intermediate rank 

The Spin-Hom variety SpHk certainly contains degenerate matrixes 
M1 of rank k - 1 or k - 2, but any morphism SpecS --t SpHk that hits 
one of these must hit the degeneracy locus in codimension ~ 3, so does 
not correspond to anything I need here. The following claim must be 
true, but I am not sure where it fits in the logical development. 

Claim 4.1. Every point P E SpHk corresponds to a matrix M 1 = 
(A B) of rank~ k. If a morphism a: SpecS --t SpHk takes ~ to a matrix 
M1 of rank k + 1- i fori = 1, 2, 3, 4 then a-1 (SpH%gn) has codimension 
~ i in a neighbourhood of ~. In other words, a morphism a that is 
regular in the sense of my requirement never hits matrixes M1 of rank 
intermediate between k and k- 3; and if a is regular then a-1 (SpH%gn) 
has codimension exactly 4. 

4.3. The degeneracy locus as universal subscheme 

The proof in 2.6 doesn't work for SpHk itself in a neighbourhood of 
a point of SpH%gn, because taking the reflexive hull, and asserting that 
Po is locally. free works only over a regular scheme. Moreover, it is not 
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just the proof that goes wrong. I don't know what happens over the 
strata of SpH%gn where M 1 drops rank by only 1 or 2. 

We discuss the speculative hope that SpH%gn C SpHk has a descrip­
tion as a kind of universal codimension 4 subscheme, with the inclusions 
enjoying some kind of Gorenstein adjunction properties. But if this is 
to be possible at all, we must first discard uninteresting components of 
SpH%gn corresponding to matrixes of intermediate rank k - 1 or k - 2. 

It is possible that there is some universal blowup of some big open in 
SpHk that supports a Gorenstein codimension 4 subscheme and would 
be a universal space in a more conventional sense. Or, as the ref­
eree suggests, there might be a more basic sense in which appropri­
ate codimension 4 components r of the degeneracy locus are universal 
Gorenstein embeddings, meaning that the adjunction calculation wr = 
Ext0spH (Or, wspH) for the dualising sheaf is locally free and commutes 
with regular pullbacks. 

4.4. Koszul syzygies 

Expressing the generators of I as a function of the entries of the 
syzygy matrix is essentially given by the map 1\2 P1 -+ P2 that writes 
the Koszul syzygies as linear combinations of the minimal syzygies. 

The Li are certainly linear combinations of the entries of M1 . More 
precisely, since the 2k columns of M 1 provide a minimal basis for the 
syzygies, they cover in particular the Koszul syzygies Li · L1 - L1 · Li = 0. 
This means that for every i =f. j there is column vector Vij with entries 
inS such that M1vij = ( ... , Lj, ... , Li, ... ) is the column vector with 
L1 in the ith place and Li in the jth and 0 elsewhere. For example, 
referring to Example 2.3, you might enjoy the little exercise in linear 
algebra of finding the vector 

v = ( -.Ac, .Ab, 0, 0, 0, d, e, g, 0, 0, 0, 0, 0, 0, 0, 0) for which 

v tM1 = ( -.Aab- dh + ef, -.Aac- eh + fg, 0, 0, 0, 0, 0, 0, 0), 

where tM1 is the matrix of (2.8), and similarly for 35 other values of i, j. 

4.5. More general ambient ringS 

I restrict to the case of ideals in a graded polynomial ring over a field 
of characteristic =f. 2 in the belief that progress in this case will surely 
be followed by the more general case of a regular local ring. Then P2 is 
still a free module, with a perfect symmetric bilinear form S 2 (P2 ) -+ P4, 
with respect to which P1 +- P2 is the dual of P 2 +- P3. This can be put 
in the form ( 9 6) over the residue field ko = S / ms of S if we assume that 
k(S) is algebraically closed and contains ~; we can do the same overS 
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itself if we assume that Sis complete (to use Hensel's Lemma). At some 
point if we feel the need for general regular rings, we can probably live 
with a perfect quadratic form cp and the dualities it provides, without 
the need for the normal form ( 9 6 ) . 

4.6. More general rings and modules 

Beyond the narrow question of Gorenstein codimension 4, one could 
ask for the structure of any free resolution of an S-module M or S­
algebra R. As in 2.2, one can say exactly what the general fibre is, 
and think of the complex P. as a fibre bundle over S \ Supp M with 
some product of linear groups as structure group. If we are doing R­
algebras, the complex P. also has a symmetric bilinear structure, that 
reduces the structure group. My point is that if we eventually succeed 
in making some progress with Gorenstein codimension 4 rings, we might 
hope to also get some ideas about Cohen-Macaulay codimension 3 and 
Gorenstein codimension 5. 

For example, in vague terms, there is a fairly clear strategy how to 
find a key variety for the resolution complexes of Gorenstein codimen­
sion 5 ideals, by analogy with my Main Theorem 2.5. In this case, the 
resolution has the shape 

(4.1) 

with P0 = S, H = (a+ 1)S, P2 = (a+ b)S and P3, ... , P 5 their duals. 
The complex is determined by two syzygy matrixes M 1 E Mat( a+ 1, a+b) 
of generic rank a defining P 1 +--- P2 and a symmetric (a + b) x (a + b) 
matrix M 2 of generic rank b defining P2 +--- P3 = P:j, constrained by 
the complex condition M 1M 2 = 0. The "general fibre" is given by the 
pair M1 = ( 10 g), M 2 = ( g R ) , the appropriate key variety is its closed 
orbit under GL(a + 1) x GL(a +b). The maximal nonzero minors of M 1 

and M 2 define a map to a highest weight orbit in 

a a b 

Hom(/\ P2, 1\ P 1 ) x Sym2 (/\ P2 ). 

4. 7. Difficulties with applications 

I expand what the introduction said about the theory currently not 
being applicable. We now possess hundreds of constructions of codi­
mension 4 Gorenstein varieties, for example, the Fano 3-folds of [TJ], 
but their treatment (for example, as Kustin-Miller unprojections) has 
almost nothing to do with the structure theory developed here. My 
Main Theorem 2.5 does not as it stands construct anything, because it 
does not say how to produce morphisms a: SpecS ---+ SpHk, or predict 
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their properties. The point that must be understood is not the key vari­
ety SpHk itself, but rather the space of morphisms Mor(Spec S, SpHk), 
which may be intractable or infinitely complicated (in the sense of Vakil's 
Murphy's law [Va]); there are a number of basic questions here that I 
do not yet understand. 

Even given a, we do not really know how to write out the equations 
(L1 , ... , Lk+1 ), other than by the implicit procedure of taking hcfs of 
k x k minors. One hopes for a simple formula for the defining relations 
Li as a function of the first syzygy matrix M 1 = (A B). Instead, one 
gets the vector (L1 , ... , Lk+d by taking out the highest common factor 
from 1\ k M 1 for any spinor subset I, asserting that it is a perfect square 
oj. The disadvantage is that as it stands this is only implicitly a formula 
for the Li. 

4.8. Obstructed constructions 

One reason that Mor(S, SpHk) is complicated is that the target is big 
and singular and needs many equations. However, there are also contexts 
in which S-valued points of much simpler varieties already give families 
of Gorenstein codimension 4 ideals that are obstructed in interesting 
ways. 

Given a 2 x 4 matrix A= ( ~~ ~~ ~: ~:) with entries in a regular ring 

S, the 6 equations 1\2 A = 0 define a Cohen-Macaulay codimension 3 
subvariety V c SpecS. An elephant X E 1-Kvl is then a Gorenstein 
subvariety of codimension 4 with a 9 x 16 resolution. If we are in the 
"generic" case with 8 independent indeterminate entries, V is the affine 
cone over Segre(IP'1 x IP'3 ), and X is a cone over a divisor of bidegree 
(k, k + 2) in Segre(IP'1 x JP'3 ). 

Although X c V is a divisor, if we are obliged to treat it by equa­
tions in the ambient space SpecS, it needs 3 equations in "rolling factors 
format". The general case of this is contained in Dicks' thesis [Di], [R1]: 
choose two vectors m1, m2, m3, m4 and n 1, n2, n3, n4, and assume that 
the identity 

( 4.2) 

holds as an equality in the ambient ring S. Then the 3 equations 

define a hypersurface X C V that is an elephant X E 1-K vI and thus 
a Gorenstein subvariety with 9 x 16 resolution. 

The problem in setting up the data defining X is then to find so­
lutions in S of (4.2). In other words, these are S-valued points of the 
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affine quadric cone Q16 , or morphisms SpecS ----+ Q16 . How to map a 
regular ambient space to the quadratic cone Q16 is a small foretaste 
of the more general problem of the classifying map Spec S ----+ SpHk. 
This case is discussed further in [Ki], Example 10.8, which in particular 
writes out explicitly the relation between ( 4.3) and the classifying map 
SpecS ----+ SpHk of Theorem 2.5. 

There are many quite different families of solutions to this problem, 
depending on what assumptions we make about the graded ringS, and 
how general we take the matrix A to be; different solutions have a num­
ber of important applications to construction and moduli of algebraic 
varieties, including my treatment of the Horikawa quintic n-folds. 

Another illustration of the phenomenon arises in a recent preprint 
of Catanese, Liu and Pignatelli [CLP]. Take the 5 x 5 skew matrix 

( 4.4) 

with entries in a regular ring S0 , and suppose that v, u, z2 , D forms a 
regular sequence in S. Assume that the identity 

(4.5) z1m45- ym35 + lm25 = av + bu + cz2 + dD 

holds as an equality in S0 . The identity ( 4.5) puts the Pfaffian Pf23.45 
in the ideal ( v, u, z2 , D); the other 4 Pfaffians are in the same ideal for 
the trivial reason that every term involves one entry from the top row 
ofM. 

This is a new way of setting up the data for a Kustin-Miller unpro­
jection: write Y C Spec S0 for the codimension 3 Gorenstein subscheme 
defined by the Pfaffians of M. It contains the co dimension 4 complete 
intersection V( v, u, z2 , D) as a codimension 1 subscheme, and unproject­
ing V in Y adjoins an unprojection variable x 2 having 4 linear equations 
x 2 · ( v, u, z2 , D) = · · ·, giving a codimension 4 Gorenstein ring with 9 x 16 
resolution. 

The problem of how to fix ( 4.5) as an identity in So is again a 
question of the S0-valued points of a quadric cone, this time a quadric 
Q14 of rank 14. [CLP], Proposition 5.13 find two different families of 
solutions, and exploit this to give a local description of the moduli of 
their surfaces. 

At first sight this looks a bit like a Jerry15 unprojection. In fact 
one of the families of [CLP] (the one with c0 = Bx = 0) can easily 
be massaged to a conventional Jerry15 having a double Jerry structure 
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(compare [TJ], 9.2), but this does not seem possible for the more inter­
esting family in [CLP] with Dx = (l/co)Bx. 

Question Do these theoretical calculations contain the results of [Di], 
[CLP] and the like? 

Answer Absolutely not. They may provide a framework that can pro­
duce examples, or simplify and organise the construction of examples. 
To get complete moduli spaces, it is almost always essential to use other 
methods, notably infinitesimal deformation calculations or geometric 
constructions. 

Question The fact that S can have various gradings seems to add to 
the complexity of the space Mor(S, SpHk), doesn't it? 

Answer That may not be the right interpretation-we could perhaps 
think that Mor( S, SpHk) (or even the same just for Mor( S, Q2k) into a 
quadric of rank 2k 2:: 4) is infinite dimensional and infinitely complicated, 
so subject to Murphy's law [Va], but that when we cut it down to graded 
in given degrees, it becomes finitely determined, breaking up into a 
number of finite dimensional families that may be a bit singular, but 
can be studied with success in favourable cases. 

4.9. Problem session 

4.9.1. Computing project It is a little project in computer algebra 
to write an algorithm to put the projective resolution (2.1) in symmet­
ric form. This might just be a straightforward implementation of the 
Buchsbaum-Eisenbud symmetrised complex 8 2 P. outlined in Section 1. 
Any old computer algebra package can do syzygies, but as far as I know, 
none knows about the symmetry in the Gorenstein case. 

We now have very many substantial working constructions of codi­
mension 4 Gorenstein varieties. We know in principle that the matrix 
of first syzygies can be written out in the (A B) form of (2.8), but as 
things stand, it takes a few hours or days of pleasurable puzzling to do 
any particular case. 

4.9.2. Linear subvarieties What are the linear subvarieties of SpHk? 
The linear question may be tractable, and may provide a partial answer 
to the quest for an explicit structure result. 

The Spin-Hom variety SpHk is defined near a general point by qua­
dratic equations, so its linear subspaces can be studied by the tangent­
cone construction by analogy with the linear subspaces of quadrics, Segre 
products or Grassmannians: the tangent plane Tp at P E V intersects V 
in a cone, so that linear subspaces of V through P correspond to linear 
subspaces in the base of the cone. Now choose a point of the projected 
variety and continue. 
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Presumably at each stage there are a finite number of strata of the 
variety in which to choose our point P, giving a finite number of types 
of II up to symmetry. I believe that the two famous cases of the Segre 
models of IP'2 x IP'2 and IP'1 x IP'1 x IP'1 are maximal linear space of SpH8 . 

It is possible that this method can be used to understand more 
general morphisms SpecS --t SpHk from the regular space SpecS. In 
this context, it is very suggestive that Tom and Jerry [TJ] are given in 
terms of linear subspaces of Gr(2, 5). In this case, the intersection with 
a tangent space is a cone over IP'1 x IP'2 , so it is clear how to construct all 
linear subspaces of Gr(2, 5), and equally clear that there are two different 
families, and how they differ. 

4.9.3. Breaking the Ak and Dk symmetry Experience shows that 
the bulk constructions of Gorenstein codimension 4 ideals do not have 
the symmetry of the Buchsbaum-Eisenbud Pfaffians in codimension 3. 
The equations and syzygies invariably divide up into subsets that one is 
supposed to treat inhomogeneously. For example, in the 9 x 16 unpro­
jection cases, the defining equations split into two sets, the 5 Pfaffian 
equations of the variety in codimension 3 not involving the unprojection 
variable s, and the 4 unprojection equations that are linear in s. 

The columns of the syzygy matrix (A B) are governed by the al­
gebraic group Spin(2k) of type Dk, whereas its rows are governed by 
GL(k + 1) of type Ak. The common bulk constructions of Gorenstein 
codimension 4 ideals seem to to accommodate the Ak symmetry of the 
rows of M1 and the Dk symmetry of its columns by somehow break­
ing both to make them compatible. This arises if you try to write 
the 128 spinor coordinates a J as linear combinations of the 9 relations 
(L 1 , .•. , Lk+l), so relating something to do with the columns of M1 to 
its rows. This symmetry breaking and its effect is fairly transparent in 
2.3, Example 2.2, (2.6). 

Example 2.3 is more typical. (This case comes with three different 
Tom projections, so may be more amenable.) Of the 128 spinors a J, it 
turns out that 14 are zero, 62 are of the form a monomial times one of 
the relations Li (as in (2.9)), and the remainder are more complicated 
(probably always a sum of two such products). Mapping this out creates 
a correspondence from spinor sets to relations, so from the rows of M 1 to 
its columns; there is obviously a systematic structure going on here, and 
nailing it down is an intriguing puzzle. How this plays out more generally 
for Kustin-Miller unprojection [KM], [PRJ and its special cases Tom and 
Jerry [TJ] is an interesting challenge. 

4.9.4. Open problems To be useful, a structure theory should make 
some predictions. I hope that the methods of this paper will eventually 
be applicable to start dealing with issues such as the following: 
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• k = 3. A 4 x 6 resolution is a Koszul complex. 
• k = 4. There are no almost complete intersection Gorenstein 

ideals. Equivalently, a 5 x 8 resolution is nonminimal: if X is 
Gorenstein codimension 4 and ( £ 1 , ... , £ 5 ) generate I x then 
the first syzygy matrix M 1 has a unit entry, making one of the 
Li redundant. This is a well known theorem of Kunz [K], but 
I want to deduce it by my methods. 

• k = 5. Is it true that a 6 x 10 resolution is a hypersurface in a 
5 x 5 Pfaffian as in 2.3, Example 2.2? 

The same question for more general odd k: are hypersur­
faces in a codimension 3 Gorenstein varieties the only cases? 
Is this even true for all the known examples in the literature? 
This might relate to my even versus odd remark in 3.1.3. 

• k = 6. I would like to know whether every case of 7 x 12 resolu­
tion is the known Kustin-Miller unprojection from a codimen­
sion 4 complete intersection divisor in a codimension 3 com­
plete intersection. 

• k = 8. As everyone knows, the main case is 9 x 16. How do we 
apply the theory to add anything useful to the huge number of 
known examples? 

There are hints that something along these lines may eventually be 
possible, but it is not in place yet. 
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