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ADHM sheaf theory and wallcrossing 

Wu-yen Chuang• 

Abstract. 

In this article we survey the recent developments in ADHM sheaf 
theory on a smooth projective variety X. When X is a curve the theory 
is an alternative construction of stable pair theory of Pandharipande 
and Thomas or Gromov-Witten theory on local curve geometries. The 
construction relies on relative Beilinson spectral sequence and Fourier
Mukai transformation. We will present some applications of the the
ory, including the derivations of the wallcrossing formulas, higher rank 
Donaldson-Thomas invariants on local curves, and the coholomogies 
of the moduli of stable Hitchin pairs. 

§1. Introduction 

Recently we have seen much progress in the study of curve enumera
tions on Calabi-Yau 3-folds. Three different types of theories have been 
proposed, including Gromov-Witten (GW) theory, Donaldson-Thomas 
(DT) and Pandharipande-Thomas (PT) theory. They are conjectured to 
be equivalent at the level of generating functions after suitable changes 
of variables. 

First let us briefly recall the definitions of these theories. Let X 
be smooth projective Calabi-Yau 3-fold over C. For g ~ 0 and (3 E 

H 2 (X, Z), the GW invariant Ng,fJ is defined as the integration of the 
virtual class, 

N 9 ,fJ = { _ . 1 E Q, 
lrM 9 (X,fJ)]v•r 
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where M 9 (X, j3) is the Deligne-Mumford stack of the stable map f 
C --+ Z with C a genus g curve and f* [C] = j3. The reduced GW 
generating function is 

Zaw = exp( L N 9 ,13 >.29 - 2vf3), 
g,{3f.O 

where we have omitted the contribution from the constant maps. The 
reduced GW generating function generates GW invariants with possibly 
disconnected domain curves, subject to the condition that no connected 
component be mapped to a point. 

Now we define the DT theory. Consider the Hilbert scheme In(X, f3) 
of 1-dimensional subschemes Z C X with x(Oz) =nand j3 E H2(X, Z). 
We regards In(X, j3) as the moduli parametrizing the ideal sheaves of 
1-dimensional subschemes. The DT invariant In,f3 is given by 

In,f3 = 1 1 E Z. 
[In(X,{3)]vir 

The reduced DT generating function is given by 

ZbT = L In,MnV{3 / L In,oqn · 
n,{3 n 

and the MNOP conjecture [23] [24] states that Zaw = ZbT after the 
change of variables q = -ei>.. 

The stable pair of Pandharipanda and Thomas [31] is, by definition, 
a pair (F, s), where sis a section ofF, 

s: Ox--+ F 

such that F is a pure sheaf of dimension 1 and s has zero dimensional 
cokernel. The moduli Pn(X, j3) of PT stable pair (F, s) with [F] = j3 and 
x(F) = n is constructed in and also equipped with a symmetric perfect 
obstruction theory. The PT invariants and the generating function are 
given by 

Pandharipande and Thomas conjectured that ZbT = Zpy as a wall
crossing formula where the denominator in ZbT is the wallcrossing dif
ference. This conjecture has been proved in [34], [33], [2]. 

Motivated by string theoretical consideration, ADHM sheaf theory 
was first introduced by Diaconescu [7] and the theory has a natural 
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variation of the stability conditions [6], [3]. In an asymptotic chamber 
of the stability condition space the ADHM sheaf theory on a projective 
curve X over Cis equivalent to admissible pair theory on the projective 
plane bundle over X. When the twisting data (M1 , M2 ) are chosen such 
that M 1 ®x M 2 ~ K)/, this pair theory becomes a stable pair theory 
on the local Calabi-Yau 3-fold of the total space M}1 ®x M21 over X. 
The key ingredients of the construction consist of a relative version of 
Beilinson spectral sequence and Fourier-Mukai transformation. 

Using Joyce-Song theory of generalized Donaldson-Thomas invari
ants [20], explicit wallcrossing formulas for ADHM invariants on curves 
have been derived [3], which also give rise to a further generalization of 
higher rank ADHM invariants [4]. This part of higher rank generaliza
tion is also motivated by the work of Toda [35] and Stoppa [32]. 

Another interesting application of ADHM sheaf theory on curves is 
the computation of Betti and Hodge number of moduli spaces of stable 
Hitchin pairs [5]. The application is based on refined generalizations of 
wallcrossing formulas, generalized Donaldson-Thomas invariants, and 
multicover formulas. 

The purpose of the article is to survey the aforementioned devel
opments and related background material. The paper is organized as 
follows. In Section 2 we review the definition of ADHM sheaf theory and 
prove a correspondence between stable pair theory and ADHM sheaf the
ory on curves. In Section 3 we give a briefreview of Joyce--Song theory of 
generalized Donaldson-Thomas invariants and present our results about 
wallcrossing formulas and higher rank invariants. A computational com
parison between Joyce--Song and Kontsevich-Soibelman formulas is also 
presented. In the final section we give our conjectural recursive relations 
for the Poincare polynomials of the Hitchin moduli space. 

§2. ADHM sheaf theory 

Let X be a smooth projective scheme over C equipped with a very 
ample line bundle Ox(l). 

Definition 2.1. Let M 1 , M 2 be fixed line bundles on X. Set M = 
M 1 ®x M2. For fixed data X= (X, M1, M2), let Qx denote the abelian 
category of (M1 , M2 )-twisted coherent ADHM quiver sheaves. An object 
of Qx is given by a collection£= (E, E 00 , cp1, cp2, ¢, 'lj;) where 

• E, E00 are coherent Ox-modules 
• cpi : E ®x Mi -t E, i = 1, 2, ¢ : E ®x M1 ®x M2 -t Eoo, 

'lj; : Eoo -t E are morphisms of Ox-modules satisfying the 
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ADHM relation 

The morphisms are natural morphisms of quiver sheaves i.e. col
lections (C ~=) : (E, E=) ---+ (E', E'oo) of morphisms of Ox-modules 
satisfying the obvious compatibility conditions with the ADHM data. 

Let Cx be the full abelian subcategory of Qx consisting of objects 
with E= = V 0 0 x, where V is a finite dimensional vector spaces 
over CC. Note that given any two objects E,E' of Cx, the morphisms 
~= : V 0 Ox ---+ V' 0 Ox must be of the form~= = f 0 lox, where 
f : V ---+ V' is a linear map. 

The numerical type of an object E of Cx is the collection 

(rank( E), deg(E), dim(V)) E Z:c:o x Z x Z:c:o· 

An object of Cx is called an ADHM sheaf. An ADHM sheaf with 'lj! 
and ¢ identically 0 is called a Higgs sheaf. 

Definition 2.2. Let 5 E JR. be a stability parameter. The 5-degree 
of an object E of Cx is deg8(E) = d(E) + 5v(E). If r(E) =1- 0, the 5-slope 
of E is defined by JLc~(E) = deg8 (E)/r(E). A nontrivial object E of Cx is 
5-(semi)stable if 

(2.2) r(E) deg8 (E') (:::;) r(E') deg8 (E) 

for any proper nontrivial subobject 0 C E' C E. 

It was proved that the real parameter 5 E JR. gives a stability con
dition in the abelian category Cx of ADHM sheaves, i.e. it has see-saw 
property and every object has a unique Harder-Narasimhan filtration. 
For fixed numerical type (r, e, v) of an ADHM sheaf there are finitely 
many critical stability parameters dividing the real axis into chambers. 
The set of 5-semistable ADHM sheaves is constant within each chamber. 
When the numerical type is (r, e, 1), the strictly semistable objects may 
exist only if 5 takes a critical value and the origin 5 = 0 is a critical 
value for all (r,e, 1) E 7::> 1 x Z x 1. 

Definition 2.3. Let X be a projective curve and Y the total space 
of the projective bundle Proj(Ox EB M1 EB M2 ). Let dE 7::> 1 , n E Z. An 
admissible pair of type ( d, n) on Y is a pair ( Q, p), where Q is a coherent 
Oy-module and p E H 0 (Y, Q), such that p is not identically zero, Q is 
fiat over X, (cho(Q),chl(Q),ch2 (Q)) = (O,O,d[X]), x(Q) =nand the 
cokemel of p : Oy ---+ Q is of pure dimension 0. 
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Let II be the canonical projection II: Y--+ X. Let z0 E H 0 (Y, 0y(1)) 
corresponding to 1 E H 0 (X, 0 x) under the canonical isomorphism 

It can be shown that if (Q, p) is an admissible pair on Y, then Q is of 
pure dimension one and supp(Q) is disjoint from D00 = {z0 = 0}. Notice 
that Y\Doo is the total space of M11 EB M2 1 over X. Therefore the 
admissible pair on Y is equivalent to the stable pair theory on Y\D00 • 

Next is the theorem relating the ADHM sheaf theory on X with the 
admissible pair theory on Y [7]. 

Theorem 2.4. There exist a bijection between an S -family of ad
missible pairs on Y with certain support property and an S-family of 
(8 » 1) stable ADHM sheaves with Eoo =Ox on X. 

Sketch of Proof. First we have the resolution of the diagonal ~ E 

Y xx Y. The Koszul resolution lCD. of~ is given by 

(2.3) 0--+ Oy( -2) ~ Oi.-;x(2)--+ Oy( -1) ~ n};x(1)--+ Oy ~ Oy. 

Secondly we have the identity Fourier-Mukai functor 

(2.4) 

From (2.3) and (2.4) we construct a spectral sequence with 

(2.5) 

converging to Q if i + j = 0 and 0 otherwise. In the end we obtain a 
three term complex centered at ( -1) position with cohomology Q. We 
then take the cone construction for (Oy -4 Q), which turns out to give 
a (8 » 1) stable ADHM sheaf with E00 =Ox on X. The generalization 
to an S-family is straightforward and details can be found in [7, Sects. 
6, 7]. Also note that this theorem does not need the condition on the 
deg(Ml) + deg(M2). Q.E.D. 

We also have the following results concerning moduli spaces of ADHM 
sheaf theory with Eoo = 0 x: 

• For fixed (r, e) E Z~1 x Z and 8 E !R there is an algebraic 
moduli stack 9JW(X, r, e) of finite type over C of 8-semistable 
ADHM sheaves. If 8 E lR is noncritical, 9J1r(x, r, e) is a quasi
projective scheme equipped with a perfect obstruction theory. 
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• For fixed (r, e) E 2'::>1 x Z and 6 E lR there is a natural algebraic 
torus s = ex acti;;n on the moduli stack 9J1;58 (X, r, e) which 
acts on C-valued points by scaling the morphisms (<1>1, <!>2)-+ 
( C 1 <I> 1 , t<l> 2 ), t E S. If 6 is noncritical the stack theoretic fixed 
locus 9J1;58 (X, r, e)s is proper over C. Therefore we define the 
ADHM invariants to be the residual ADHM invariants A~(r, e) 
by equivariant virtual integration in each stability chamber. 

• (Theorem 2.4) For (r, e) E 2'::>1 x Z there exists a critical value 
6 M E lR >O so that for any 6 > 6 M, 9J1;5s (X, r, e) is isomorphic to 
the moduli space of stable pairs of Pandharipande and Thomas 
on the total space of M1 1 tBM2 1 over X. This identification in
cludes the equivariant perfect obstruction theories establishing 
an equivalence between local stable pair theory and asymptotic 
ADHM theory. 

§3. Wallcrossing and higher rank ADHM invariants 

For completeness we include a very brief review of Joyce-Song the
ory. This review is far from self-contained and the interested readers are 
encouraged to refer to the original papers [20], [16], [17], [18], [19]. 

3.1. Joyce-Song theory of generalized Donaldson-Thomas 
invariants 

Joyce-Song Theory is a virtual counting theory on an algebraic mod
uli stack 9J1A locally of finite type over C, parametrizing all the objects 
in the abelian category A. The central element in Joyce-Song theory is 
the stack function algebra SF(9J1A), which is Grothendieck group gen
erated over Q by isomorphism classes of pairs [(X, p)] where X is an 
algebraic stack of finite type over C and p : X -+ 9J1A is a representable 
morphism of stacks. 

Let ~~actA be the moduli stack locally of finite type over C, parametriz
ing all the three term exact sequences 0 -+ E 1 -+ E 2 -+ E 3 -+ 0 in A. 
There are also three natural projections 

We define a ()!-bilinear operation * : SF(9J1A) x SF(9J1A) -+ SF(9J1A) 
as follows. Given two stack functions [(X1 , p1 )] and [(X3 , p3 )], set the 
Ringel-Hall multiplication 

where f is determined by the following Cartesian diagram of stacks. 
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(3.2) 

According to Joyce-Song, (SF(9J1A), *, O[oJ) is an associative algebra 
with unity, where O[o] = [(Spec(C), 0)] is the stack function of the zero 

object in 9J1A. One then defines a Lie subalgebra SF~~~(9J1A) imposing 
certain conditions on the stabilizers of closed points ~ of the stacks :t. 
Namely, the subscript alg stands for 'algebra stabilizers', which requires 
each such stabilizer Stab(~) to be identified with the group of invertible 
elements in a certain subring of the endomorphism ring End A (p(~)). The 
upperscript ind stands for 'virtually indecomposable' stack functions, 
which requires the closed points ~ to have virtual rank one stabilizers. 
The definition of virtual rank is very technical and will not be reviewed 
here in detail. The important point here is the subspace SF~~~(9J1A) is 
closed under the Lie bracket determined by the product *· Therefore it 
has a Lie algebra structure. 

We could look at a simple example of the *-multiplication for char
acteristic delta functions of two object E 1 ,E3 E obj(A) to have a feel 
about it. We have 

Then 0E1 * 0E2 is given by 

such that pis a 1-morphism sending the extension class u E Ext1 (E3 , E 1 ) 

representing the exact sequence 0 -+ E 1 -+ E2 -+ E3 -+ 0 to the object 
E 2 E obj(A) modulo the trivial action Hom(E3 , EI). In the following 
theorem we consider the characteristic delta functions of T-semistable 
objects in A. 

Lemma 3.1. [18, Thm. 8.7] Let (T, T, .::;) be a stability condition on 
A. Define the stack function 5~5 (T) in SFaig(9JlA) foro: E K(A) to be 
the characteristic function of the moduli sub stack 9J1A ( T) of T-semistable 
objects with o: E K(A) in 9J1A. We then define E""'(T) in SFaig(9JlA) to 
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be 

(3.3) E"(T) = L 
n2':l,a1,-·· ,<>nEC(A) 

a1 +·+<>n=a,T(a,)=T(a) 

where* is the Ringel-Hall multiplication in SFalg(9JlA)· Moreover, E"(T) 
is in SF~~~(9JlA)· We call E"(T) a log stack function. 

Theorem 3.2. [19, Sec. 4, Sec. 5] Under certain appropriate as
sumptions let (T, T, :S:), (T, T, :S:) and (T1 , T', :S:) be three stability con
ditions on A with (T',T',:S:) dominating (T,T,:S:) and (T,T,:s;:). (i.e. 
( T1 , T', :S:) is the critical stability condition on the wall.) Then for a E 
K(A) we have the following wallcrossing formulas in terms of stack func
tions, 

(3.4) 
8~8 ( i) 

L S( al' ... 'an; T,T)8~s1 ( T) * 8~; ( T) * ... * 8~sn ( T)' 
n2':l,a1,··· ,anEC(A) 

a1+···+<>n=a 

~(i) 

L U(a1,··· ,an;T,T)E"1 (T)*~2 (T)*···*~n(T), 
n2':l,a1,··· ,anEC(A) 

<>1+···+an=a 

where the coefficients S(*;T,i) E Z and U(*;T,T) E Q are certain com
binatorial coefficients which are complicated enough to be omitted here 
and there are only finitely many nonzero terms in the summation. 

We now specialize to the case of the coherent sheaf A = coh(M) 
on a Calabi-Yau 3-fold M or A is the abelian category of modules 
over a CY3 algebra. Using the Serre duality on Calabi-Yau spaces or 
Calabi-Yau algebra we have an antisymmetric Euler form x([E], [F]) for 
E, FE obj(A). We define a Lie algebra L(M) to be the Q-vector space 
generated by the _Aa for each a E K(A), with the Lie algebra 

(3.5) 

Theorem 3.3. [20, Thm. 5.14] There exist a canonical Lie algebra 
morphism \lf : SF~~~(9JlA) -+ L(M), which gives the Q-valued general

ized DT invariants DT"(T). Namely, \lf(E"(T)) = DTa(T)Aa. Moreover, 
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conjecturally the multicover formula defines the Z-valued DT invariants 
-a 
DT ( T) for generic T by 

(3.6) 

Remark 3.4. Consider an element in SF~I~(9J1A) of the form [(U x 
[Spec(IC)/IC*], p)], where U is a quasi-projective variety and p a repre
sentable 1-morphism p : U x [Spec(IC)/IC*] -t DJtA C DJtA. Then the 
canonical Lie algebra morphism will send this to 

1ll([(U x [Spec(IC)/IC*],p)]) = x(U,p*(v!mA))>."', 

where p*(vOOtA) is the pullback of the Behrend function V!JJtA to a con
structible function on U x [Spec(IC)/IC*]. 

3.2. Wallcrossing formulas in ADHM sheaf theory 

We now consider ADHM sheaf theory on curves with line bundles 
M 1 and M 2 such that M 1 ® x M 2 ~ K)/. The following definition is used 
to take care of the summation over all the possible Harder-Narasimhan 
filtrations in the wallcrossing formulas. 

Definition 3.5. Let a = (r, e) E 7/,> 1 x Z. For any integer l 2': 1 
and v = 1,2 let HN-(a,v,be,l,l-1) denote the set of order sequence 
(aih<i<l, ai = (ri, ei) E Z>1 x Z satisfying a1 + · · · + az = a and 
edr1_=_· · · = ez-drz-1 = (ez-+ Vbe)/rz = (e + vbe)/r. 
For any integer l 2': 2 let 1iN _(a, 2, be, l, l- 2) denote the set of order 
sequence (aih<i<l, ai = (ri, ei) E Z>1 x Z satisfying a1 + · · · + az =a 
and edr1 = · -:-. -= ez-2/rz-2 = (ez-~ + be)/rz-1 = (ez + be)/rz = (e + 
2be)/r. 

In the ADHM sheaf theory with Eoo = Ox we have proved the 
following ADHM rank one wallcrossing formula [3]. 

Theorem 3.6. Let be be a critical stability parameter and (a, 1) = 

(r, e, 1) be the numerical types of ADHM sheaves. 
( i) The following wallcrossing formula holds for be > 0 

(3.7) 1 

I: (l-1)! 
1~2 

l-1 

L A_(az, 1) IT h(ai)H(ai)· 
(a;)EHN _(a,1,8c,l,l-1) i=1 
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(ii) The following wallcrossing formula holds for 8c = 0. 

!-1 
1 

2::: (l-1)! 
L A_(az, 1)IJ!l(ai)H(ai) 

(3.8) !~2 (01.;)EHN _ (D1,1,8c,l,l-1) i=1 

1 l 

+ L TI L n h(ai)H(ai), 
!~1 (01.;)EHN _ (01.,1,0,!,!-1) •=1 

where h (a) = ( -1)v(e-r(g-l))v(e- r(g -1)) for a= (r, e) and A±(a, 1) 
and H(a) are generalized DT invariants with numerical invariants (r, e, 1) 
and (r, e, 0) respectively for a= (r, e). 

Strategy of Proof. The first step to derive the wallcrossing formulas 
is usually to write the formulas in terms of characteristic delta stack 
function. Take (i) for example. First we have a relation in SF(ootA) 

ll+ - ll~ = 2::: ( -1 )1 2::: ~011 * ~012 * ... * [ll~_l, ~OI.l-1 L 
!~2 (01.;)E1-£N -(D1,1,clc,!,!-1) 

where ll% and ~01.; are the characteristic stack functions for ADHM sheaf 
moduli and Higgs sheaf moduli. 

The second step is to transform all the characteristic stack functions 
in the formula to the log stack function. Assume that the log stack 
functions for the stack functions ~01.; is g 01;. After the transformation we 
have 

(3.9) 

ll+ -ll~ = 2::: (i -=_1i;, 2::: [gOI.l, [g01.2, [· .. [g~l-\ ()Dill·. ·J. 
!~2 (01.;)EHN _ (D1,1,8c,l,l-1) 

Notice that the automorphism group of all ADHM sheaves with 
E= = 0 x is isomorphic to C x . Therefore all the stack functions in 
(3.9) belong to the Lie algebra SF~~~(ootA)· We arrange the formula as 
a sequence of Lie brackets such that when applying the canonical Lie 
algebra homomorphism \}1 to (3.9) we extract the invariants directly. 

Q.E.D. 
For fixed r E Z>1, and fixed 8 E IR.>o \ Q let 

z,(q)r = L qe-r(g-1) A8(r, e), 
eEZ 

Zcx;(q)r = L qe-r(g-1) A=(r, e) . 
eEZ 
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Z00 (q)r is the generating function of degree r local stable pair in
variants of the data X = (X, M 1 , M2 ). Using the above theorem the 
following rationality result is proven, which is a consequence of the BPS 
expansion conjectured by Gopakumar~Vafa. 

Theorem 3.7. For any r E Z>1, and any 8 E lR>o \ Q, Z0(q)r, 
Z00 (q)r are Laurent expansions of rational functions ofq. Moreover, the 
rational function corresponding to Z00 (q)r is invariant under q ++ q~ 1 . 
If g ?: 1, Z0 (q)r = Z00 (q)r is a polynomial in q, q~ 1 invariant under 
q ++ q~1. 

3.3. Higher rank ADHM invariants 

In this section we consider ADHM sheaves with Eoo = V Q9 Ox, 
where V is a finite dimensional vector space over C. We proved the 
following rank 2 wallcrossing formulas for ADHM sheaf theory [4]. 

Theorem 3.8. The ADHM invariants with numerical types (a, 2) = 
(r, e, 2) satisfy the following wallcrossing formula 

(3.10) 

A_(a, 2)- A+(a, 2) = 
1 !~1 

L (l- 1)! L A+(az, 2) [I fz(ai)H(ai) 
!2:2 (a.;)E1UV _ (a.,2,8c,l,l~1) t~1 

!~1 

A+(az, 1)A+(al+1, 1) II fz(ai)H(ai) 

(a.1,;)E1iN- (a.1,1,oc,h,h -1) 
(a.2,;)E1iN -(a.2,1,8chh-1) 

i=1 

ll -1 !2-1 

II h(a1,i)H(a1,i) II h(az,i)H(az,i) 
i=1 i=1 
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where A±(a, 2) are the generalized DT invariants of the numerical in
variants (a, 2) and fv(a) and g(a1, a2) are given by 

fv(a) = ( -1)v(e-r(g-l))v(e- r(g- 1)), V = 1, 2 

g(at, a2) = ( -1)el-e2-(rl-r2)(g-l)(el- e2- (rt- r2)(g- 1)). 

Strategy of Proof. The proof strategy of this theorem is almost the 
same as v = 1 case. But since the numerical invariants are of the form 
(a, 2), we need to tranform the characteristic stack function nr'2) to 

its corresponding log stack functions er'2) by (3.3) when a is divisible 
by 2. Q.E.D. 

An application of this theorem gives rank 2 genus zero invariants. 
Consider the following generating function 

(3.11) Zx,v(u,q) = LLurqnA00 (r,n-r,v) 
r2':1nEZ 

where v = 1, 2. Using the wallcrossing formula the following closed 
formulas are proven [4]. 

Corollary 3.9. Suppose X is a genus 0 curve and M1 c:::: Ox(dt), 
M2 c:::: Ox(d2) where (dt, d2) = (1, 1) or (0, 2). Then 
(3.12) 

00 

Zx,t(u, q) = IT (1- u( -q)n)(-l)dl-ln 

n=l 

Zx,2(u,q) = ~ fi:(1-uqn)2(-l)d1-ln 

n=l 
1 
2 

r1>r22':l, n1,n2EZ 
or r1=r22':l, n2>n1 

or r12':l, n1 EZ, r2=n2=0 

Proof. Let C~ be the full abelian subcategory of Cx consisting of 
ADHM sheaves E with¢= 0. For any o E JR, an object E of C~ will be 
called 8-semistable if it is 8-semistable as an object of Cx. One can see 
that the properties of a-stability and moduli stacks of semistable objects 
in C~ are analogous to those of C X. 

Given an ADHM sheaf E = (E, V, <I>i, '1/J) E C~ of type (r, e, v), it 
cab be checked that foro< 0 the proper nontrivial object (E, 0, <I>i, 0) is 
always destabilizing. Therefore the main difference between C~ and Cx 
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is that for any (r, e, V) E Z>l X Z X Z>l the moduli stack of £5-semistable 
objects of c~ of type (r, e,-v) is empty if b < 0. 

Let £ = (E, 0, <Pi, 0) be a semistable Higgs sheaf of C~ of type 
(r,e,O), (r,e) E Z;::1 x Z. If (d1,d2) = (1,1), E must be isomorphic 
to Ox(n)Eilr for some n E Z, and <Pi= 0 fori= 1, 2. If (d1, d2) = (0, 2), 
E must be isomorphic to Ox(n)Eilr for some n E Z, and <P2 = 0. 

This implies that for ( d1, d2) = (1, 1) the moduli stack 9J188 (r, e, 0) is 
isomorphic to the quotient stack [*/GL(r)] if e = rn for some n E Z, and 
empty otherwise. For (d1, d2) = (0, 2) the moduli stack 9J188 (r, rn, 0), 
n E Z, is isomorphic to the moduli stack of trivially semistable repre
sentations of dimension r of a quiver consisting of one vertex and one 
arrow joining the unique vertex with itself. If e is not a multiple of r, 
the moduli stack 9J188 (X, r, e, 0) is empty. 

Performing a computation similar to [20, Sect. 7.5.1] we obtain the 
Higgs sheaf invariant H ( r, e) and the only invariants in b < 0 chamber 
of c~ are given by 

if e = rn, n E Z 
(3.13) 

(3.14) 

otherwise, 

1 
A8 (0, 0, 1) = 1 , Ao(O, 0, 2) = 4. 

Then we could apply (3.10) or the analogous wallcrossing formulas of 
Kontsevich and Soibelman to compute the invariants in the asymptotic 
b » 0 chamber. We leave out the remaning details and refer the inter
ested readers to [4]. Q.E.D. 

3.4. Comparison with Kontsevich-Soibelman formula 

The goal of this section is to illustrate that the ADHM wallcrossing 
formulas (3.7), (3.10) are in agreement with the wallcrossing formulas 
of Kontsevich and Soibelman [21], which will be referred to as the KS 
formula in the following. 

Numerical types of ADHM sheaves will be denoted by 1 = (a,v), 
a= (r, e) E Z;::1 x Z, v E Z;:: 0 . In order to streamline the computations, 
let L(X) 9 denote the truncation of the Lie algebra L(X) defined by 
(3.15) 

['( ) '( )] _ { [.A(a1, vi), .A(a2, v2)] 
/1 a1, v1 , /1 a2, v2 :::::2 - 0 otherwise. 

Furthermore, it will be more convenient to use the alternative notation 
e00 =.A( a, 0), fa =.A( a, 1), and g"' =.A( a, 2). 
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Given a critical stability parameter 8c of type (r, e, 2), (r, e) E Z~1 x 
Z, there exist two pairs a= (ra, ea) and (3 = (r13, e13) with 

so that any T) E Z> 1 x ;z, with MoJT/) = fLoJr) can be uniquely written 
as T) = (q(3, 0), (a+ q(3, 1), or (2a + q(3, 2), with q E Z~o· 

For any q E Z~o the following formal expressions will be needed in 
the KS formula, 

(3.16) 

Moreover, let 

lHI= LH(qf3)eqf3, 
q~O 

where the invariants H(a) are the Higgs sheaf invariants. Then the 
wallcrossing formula of Kontsevich and Soibelman reads 

(3.17) 

where an up, respectively down arrow means that the factors in the 
corresponding product are taken in increasing, respectively decreasing 
order of q. Note that the hatted invariants in the exponents are the 

integral invariants corresponding to Dr(a,v) (T±) in (3.6) while the un

hatted invariants correspond to the rational DT( a,v) ( T ±). In this case 
we have 

A±(a + q(3, 1) = A±(a + q(3, 1), 
~ 1 

A±(2a + q(3, 2) = A±(2a + q(3, 2) + 4 A±(a + qf3/2, 1) , when q I 2, 

A±(2a + q(3, 2) = A±(2a + q(3, 2), when q f 2. 
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Expanding the right hand side, equation (3.17) yields 
(3.18) 

q2':0 

1 L 2g(qlf3, Q2/3)A-(a + Ql/3, 1)A_(a + Q2/3, 1)g2a+(q1 +q2 ),a) = 
q2>q12':0 

exp(IHI) exp(L A+(2a + q/3, 2)g2a+q.B 
q2':0 

1 
+ L 2g(qlf3, Q2/3)A+(a + Ql/3, 1)A+(a + q2f3, 1)g2a+(q1 +q2 ),B) 

ql>q22':0 

x exp( -IHI), 

97 

modulo terms involving fy. In fact the terms involving fy precisely give 
us the v = 1 wallcrossing formula (3.7). 

The BCH formula 

(3.19) 

yields 
(3.20) 

1 
exp(A)exp(B)exp( -A)= exp(L --,(Ad(A)t B) 

n. 
n=O 

1 
= exp(B +[A, B] + 2,[A, [A, B]] + · · · ), 

exp(IHI) exp(g2a+q,B) exp( -IHI) = 

exp(g2a+q,B + L f2(qlf3)H(qlf3)g2a+(q+q1 ),B 

1 + 2! L f2(qlf3)H(qlf3)f2(q2f3)H(q2f3)g2a+(q+q1 +q2 ),B + · · ·) 
q1>0,q2>0 
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Substituting (3.20) in (3.18) results in 
(3.21) 

exp( LA_ (2a + q(3, 2)g2a+q,B 

+ L ~g(q1f3,q2(3)A-(a + q1(3, 1)A-(a + Q2(3, 1)g2a+(q1 +q2 ),B) 
q2>q1:0::0 

1 l 

= exp( L A+(2a + q(3, 2)TI(rr h(qif3)H(qif3))g2a+(q+ql+·+qz).B 
q:O::O,l:O::O i=1 

q;>O 

+ L ~g(q~(3, q~(3)A+(a + q~(3, 1)A+(a + q~(3, 1)x 
q~>q~:O::O 
l:O::O,q;>O 

1 l 

If (IJ f2(qi(3)H(qif3))g2a+(q~ +q~+q1 +·+qz).B) · 
•=1 

In order to further simplify the notation, let 

A±(va + q(3, v) = A±(q, v), 

Comparing the coefficients of gQ in (3.18), yields 
(3.22) 

A_(Q, 2) = 
1 l L A+(q'' 2)TI(Il h(qif3)H(qif3)) 

1 
+-

2 

1 

2 

q';:::o, z;:::o, q;>O •=1 
q'+ql+·+qz=Q 

l 

g(q~(3, q~(3)A+(q~, 1)A+(q~, 1)~(IJ h(qif3)H(qif3)) 
q~>q~;:::o 

z;:::o, q;>O 
q~ +q~+q1 +·+qz=Q 

q~>q~;:::o, q~+q~=Q 

i=1 

Using the v = 1 wallcrossing formula (3.7) to transform the last term in 
(3.22) we finally obtain the v = 2 wallcrossing formula. 



(3.23) 

A~(Q,2)= 
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1 l 2::: A+(q', 2)li(rr h(qif3)H(qif3)) 
q'::;>O, l::;>O, qi>O i=l 
q' +q1 + ··+qz =Q 
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1 
+-

2 
q~>q;::,.o 

l::;>O, qi>O 

l 

~g(q~,B, q~,B)A+(q~, 1)A+(q~, 1)~(IJ h(qi,B)H(qi,B)) 

1 

2 

q~ +q;+q, +··+qz=Q 

q2>q1::;>0 
q,+q2=Q 
z::;o.o, f::;o.o 

q~ ::;>0, q; ::;>0 
ni>O,iii>O 

q~ +n1 +··+nz=q, 
q;+ih +·+iir=q2 

This formula agrees with (3.10). 

~=1 

§4. Cohomology of the moduli space of Hitchin pairs 

In this section we present a conjectural formalism to determine the 
Poincare (Hodge) polynomial of Hitchin moduli space [5]. More pre
cisely refined wallcrossing formulas and the refined ADHM invariants 
with Eoo = Ox in the asymptotic chamber are conjectured on local 
curves. It is shown that these formulas yield a recursive relation which 
correctly determines the Poincare (Hodge) polynomial of the moduli 
space of Hitchin pairs with coprime rank and degree on a smooth pro
jective curve of genus at least two. 

We recall the definition of a Hitchin pair. Let X be a smooth pro
jective curve and L is an invertible sheaf on X. A Hitchin pair is a 
pair ( E, <I>) where E is a coherent sheaf on X and <I> : E ---+ E ® x L a 
morphism of coherent sheaves. A Hitchin pair is semistable if for any 
proper subsheaf 0 C E' c E such that <I>(E') c E' ®x L, we have 

deg(E') deg(E) 
--~~~ < . 
rank(E') - rank(E) 

( 4.1) 

Note that if rank(E) > 0, semistability of the Hitchin pair implies 
that E is locally free. Assume that deg(L) :::0: 2g - 2. According to 
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[12], [30], [1] we have an algebraic moduli stack S)it(X, L, r, e) locally 
of finite type parametrizing the semistable Hitchin pairs with numerical 
type (r, e). If (r, e) are coprime, this stack is a cx-gerbes over a smooth 
quasi-projective variety Hit(X, L, r, e). 

One of the major observations, which make the enumerations pos
sible, is the relation between semistable Higgs sheaves and semistable 
Hitchin pairs as follows. 

(4.2) 

(4.3) 

• Suppose M1 = Ox, M2 = Kx/ and let (r, e) E Z::::-:1 x Z be 
coprime. Then there is an isomorphism 

S)iggs(X, r, e) c:::' C x S)it(X, Kx, r, e) . 

• Suppose M2 is a line bundle of degree 2-2g-p, where p E z>O· 
Then there is an isomorphism 

Both statements rely on the fact that for coprime (r, e) slope semista
bility is equivalent to slope stability. Therefore the endomorphism ring 
of any semistable ADHM sheaf £ is canonically isomorphic to C. 

Then note that in the first case, given any semistable object £ = 
(E, <l>1, <l>2) the relation <l>1 o (<l>2 ®1M1 )- <l>2 o (<l>1 ®1M2 )= 0 implies 
that <l>1 : E -+ E is an endomorphism of £ since it obviously commutes 
with itself. Therefore it must be of the form <l>1 = AlE for some A E 
C. In particular, it preserves any subsheaf E' C E. Generalizing this 
observation to flat families it follows that there is an forgetful morphism 

S)iggs(X, r, e)-+ S)it(X, Kx, r, e) 

projecting (E, <l>1, <l>2) to (E, <l>2 0 lKx ). The isomorphism (4.2) then 
follows easily. 

In the second case, note that given a semistable Higgs sheaf ( E, <l>1, <[>2), 
of type (r, e), the data 

£' = ( E ®x M;-1, <l>1 0 1 M1"1, <l>2 0 1 M1"1) 

determines a semistable Higgs sheaf of type (r, e- rdeg(Ml)) = (r, e
rp). The relation 

implies that <l>1 0 lM-1 is a morphism of (semistable) Higgs sheaves. 
1 

However p,(£) > p,(£') since p > 0, therefore any such morphism must 
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vanish. Then ( 4.3) follows. 

Besides these observations we make the following conjectures. 

Conjecture 4.1. Let a = (r, e) E Z~1 x Z. Then for 8 not crit
ical there exist refined equivariant ADHM invariants A 8 (r, e, 1)(y) E 
Z[y, y-1], for any 8 E IR, and refined equivariant Higgs sheaf invari
ants H(r, e)(y) E Ql(y) so that A.,(r, e, 1)(1) = A 8 (r, e, 1), H(r, e)(1) = 
H(r, e) and refined wallcrossing formulas hold. The conjectural refined 
wallcrossing formulas are obtained by the following direct substitution: 
A.,(r, e, 1)-+ A.,(r, e, 1)(y), H(r, e)-+ H(r, e)(y), and ( -1)(e-r(g-l))v(e
r(g- 1))-+ ( -1)(e-r(g-1)) [(e- r(g- 1))]y in the rank one wallcrossing 

formulas, where [n]y = Y:~:~1n. Moreover H(r,e)(y) E Z[y,y-1] if(r,e) 
are coprime. 

Conjecture 4.2. The following refined multicover relation holds for 
any (r,e) E Z>1 X Z 

(4.4) H(r,e)(y)= L k[~] H(i,~)(yk), 
kEZ, k~1 y 

kJr, kJe 

where H(r,e)(y) E Z[y,y-1]. 

Remark 4.3. The invariants A 8(r, e, 1)(y) E Z[y, y-1], H(r, e)(y) 
are refined generalizations of Joyce-Song invariants of ADHM sheaves. 
They are conjecturally related to Kontsevich-Soibelman invariants 
A 8 (r, e, 1) (y) E Z[y, y-1], H(r, e) (y) E Z[y, y-1 J by a refined multicover 
formula in Conjecture 4.2. For v = 1 invariants this formula states 
simply that A.,(r, e, 1)(y) = A.,(r, e, 1)(y). 

The last essential piece in the construction is the Nekrasov partition 
function of instanton counting. Physically we can geometrically engineer 
a five dimensional SU(2) gauge theory with g adjoint hypermultiplets 
by putting M-theory on the total space Z of canonical bundle Ks on 
the ruled surfaceS= lP'(Ox EB Ml). InsideS there are two sections X 1 

and X 2 . The normal bundle Nx1 IZ of X 1 inside Z is given by 

Nx1 IZ ~ M11 EB M21 . 

This construction involving ruled surfaces is needed because other con
structions are problematic physically, i.e. other geometries do not admit 
geometric engineering of five dimensional gauge theory. However the 
subtlety in ruled surface construction is that we need to separate the 
contributions coming from the other section X 2 • 
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Given such a five dimensional theory, Nekrasov has constructed an 

equivariant instanton partition function Zi~~t( Q, E1, E2, a1, a2, y), where 
E1 , E2 , a 1 , a 2 are equivariant parameters for a natural torus action, Q is 
a formal variable counting instanton charges, and y is another formal 
variable. 

It has been verified by string theorists in other local geometries that 
the instanton partition function could be identified with the (refined) 
topological string after suitable changes of variables [8], [29], [13], [14], [9], 
[15]. 

Mathematically zi~~t(Q,El,E2,al,a2,Y) is the generating function 
for the Xy-genus of a certain holomorphic bundle on a partial compact
ification of the instanton moduli space M(r, k) as described in the fol
lowing. 

Hirzebruch genus Let M(r, k) denote the moduli space of rank 
r framed torsion-free sheaves (F, f) on lP'2 with second Chern class k E 

Z~o- The framing data is an isomorphism 

(4.5) 

along the line linfty at infinity defined by [0, z1, z2] in terms of the ho
mogeneous coordinates of lP'2 . 

M(r, k) is a smooth quasi-projective fine moduli space i.e. there is 
an universal framed sheaf (F, f) on M(r, k) x lP'2 . Let V = R 1phF 0 
p~ OIP'2 ( -1) where p 1, p2 : M ( r, k) x lP'2 --+ M ( r, k), lP'2 denote the canoni
cal projections. It follows from [26] that V is a locally free sheaf of rank 
k on M(r, k). 

There is a torus T =ex X ex X (ex yr action on acting on M(r, k), 
where the action of the first two factors is induced by the canonical action 
on ex x ex on lP'2 , and the last r factors act linearly on the framing. 
According to [27] the fixed points of the T-action on M(r, k) are isolated 
and classified by collections of Young diagrams Y = (Y1 , ... , Yr) so that 
the total number of boxes in all diagrams is 1Y I = I Y1l + · · · IYr I = k. Let 
Yr,k denote the set of all such r-tuples of Young diagrams. Note also 
that both the holomorphic cotangent bundle T~(r,k) and the bundle 
V constructed in the previous paragraph carry canonical equivariant 
structures. 

The K-theoretic instanton partition function of an SU(2) theory 
with g adjoint hypermultiplets and a level p Chern-Simons term is 
given by the equivariant residual Hirzebruch genus of the holomorphic 
T-equivariant bundle 
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This is defined by equivariant localization as follows [28], [22]. Let (Et, t:2 , 

a 1 , a2 ) be equivariant parameters associated to the torus T. Then the 
localization formula yields [28], [22] 

= L IT (e-IYalaa II e(i-1}<I+(j-1)E2) p 

YEY2,k <>=1 (i,j)EYa 

2 ( 1 _ yeCYJ,J-i)El-(Ya,i-j+1)<2+aall) g 

II . n (1- ecYJ,j-i)<I-(Ya,i-j+1h+aal') 
a,/3=1 (•,J)EYa 

( 1- ye-(Y~,1 -i+1h+(Y!l,i-j)<2+aal' )g 
II ( 1 e-(Y,! J-i+1)El +(Yil ;-j)<2+aal') 

(i,j)EYIJ - ' ' 

where for any Young tableau Y, Yi, i E Z>1 denotes the length of the 
i-th column and yt denotes the transpos; of Y. If i is greater than 
the number of columns of Y, Yi = 0. Moreover a,13 =a,- a13 for any 
a,(3 = 1,2. 

Let z[t~L)(q1, q2, Qf, y) be the expression obtained by setting q1 = 

-e1 - -e2 d Q - a 12 and a 1 - 1 1'n z(g,p) ("' "' a a . y) e , q2 - e an f- e , e -- (Y1 ,y2 ) '-1, '-2, 1, 2, . 

Let 

(4.8) nV·P) (A, y) = y2IYIA(g-1JIYiz[P,:~ (A -1y, Ay, Qf = 0, y-1 )Co). 

Conjecture 4.4. The generating function of asymptotic refined 
ADHM invariants is given by 

(4.9) Z+oo(X,r;A,y) = LAeA+oo(r,e)(y) = L nV·p)(A,y). 
eEZ IYI=r 

Combining (4.2), (4.3), Conjecture 4.1, 4.2, 4.4 we have a com
plete recursive relation determining the cohomologies of the Hitchin 
moduli. The physics reason behind (4.8) and (4.9) is that we think 
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of Zi~~t ( Q, E1, E2, a1, a2, y) as a refined GW theory or refined topolog
ical string theory and by the correspondences Zaw = Zbr = Z PT 

in the introduction, properly generalized to the refined case, it is also 
a refined PT theory conjecturally (i.e. refined ADHM theory in the 
asymptotic chamber.) Then the refined wallcrossing formula can deter
mine the Poincare (Hodge) polynomials of Higgs moduli, which in turn 
determines the Poincare (Hodge) polynomials of Hitchin moduli. 

After this work was completed, it was shown by Mozgovoy [25] that 
the H-polynomials and E-polynomials introduced in a series of conjec
tures by Hansel and Rodriguez-Villegas [11], [10] are consistent with our 
computational results determined in the recursive way. 
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