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Three dimensional divisorial contractions

Jungkai Alfred Chen

Abstract.

We give a brief survey of three dimensional divisorial contractions
and provide many explicit examples.

¢1. Introduction

In algebraic geometry, it is of fundamental importance to classify
birational equivalent classes of algebraic varieties, find a good repre-
sentative in each birational equivalent class, and investigate the maps
between them. The minimal model program plays the central role in
these goals. The purpose of minimal model program is to find the min-
imal model with mild singularities inside a birational equivalent class
and to investigate those maps appeared in the process. This program is
classical for dimension < 2. However, a better understanding for higher
dimensions in general appeared in only about 25 years ago, mainly due
to Kawamata, Kollar, Mori, Reid, Shokurov, and some others.

We give a short tour of minimal model program. Given an algebraic
variety X, we say that X is minimal if Kx is nef (whenever it makes
sense). To obtain a minimal model, one can try to eliminate those non-
nef curves by contracting them. In practice, one picks a curve class
[C] in an edge of the cone of numerically equivalent classes of curves of
X. By using the Kawamata—Viehweg vanishing theorem, there is a base
point free linear system |H| producing a contraction map ¢ : X — W
contracting the curve class [C]. If dimW < dim X, then ¢ is called a
Mori fibered space and we stop. If dim W = dim X then ¢ is birational.
The case that the exceptional set is a divisor (resp. of smaller dimension)
is called a divisorial contraction (resp. small contraction). The small
contraction ¢ gives rise to wild singularities on W. It is conjectured that
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there exist a birational surgery X --» X called a flip so that X has
only mild singularities. The minimal model conjecture predicts that one
can have a finite sequence of divisorial contractions and flips that ends
up with a minimal model or Mori fibered space.

Mori completes the minimal model program for threefolds in [24].
In his subsequent work with Kolldr (cf. [20]), extremal neighborhood
are classified and flips are studied in detail. However, since the proof
of minimal model program does not rely on the understanding of divi-
sorial contractions, the explicit studies of three dimensional divisorial
contractions are available only quite recently.

The purpose of this note is to give an elementary introduction to
the recent studies of divisorial contractions in dimension three. We feel
that these kind of explicit studies will be helpful for various geometric
problems in dimension three and higher. The detailed studies of flops
and flips are not included in this note. For readers who are interesting in
flops, we refer to Kolldr’s article [19]. There are many other interesting
topics, especially the recent highlight of [1], are not covered in this note.

We work in the complex analytic category.

§2. Preliminaries

2.1. Classification of terminal singularities

One needs to allow mild singularities in minimal model program
in dimension three or higher. In this note, all varieties are normal Q-
factorial and terminal, unless otherwise specified. In fact, the develop-
ment of minimal model program in dimension three was built on the
understanding of three dimensional terminal singularities. This can be
dated back to 30 years ago (cf. [25], [26], [27]). Given a germ of three
dimensional terminal singularity (P € X), there is a canonical cover
pw:(QeY)— (Pe X)sothat Q €Y is Gorenstein and terminal and
(P € X) is the quotient by a cyclic group of order deg(u). The degree
of p is the index of (P € X). It is known that a Gorenstein terminal
singularity is an isolated ¢DV hypersurface singularity, i.e. a singularity
with local equation of the form

flz,y,z) +ug(z,y, 2,u) =0,

for some f(x,y, z) defining a Du Val (equivalently rational double point)
singularity. If (P € X) is Gorenstein, then according to the type of
f(z,y,z), we have that (P € X) = (0 € (¢ = 0) C C*) for some ¢
belongs to one of the following:

(1) type cA: (zy + g(z,u) = 0) C C* and g(z,u) € m?.
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(2) type eD: (22 + 4%z + g(y, z,u) = 0) C C* and g(y, 2,u) € m3.
(3) type cE: (2% +y3 +yg(z,u) + h(z,u) = 0) C C* and g(z,u) €
m3, h(z,u) € m?,
where m denotes the maximal ideal of 0 € C%. In the cF case, it is of type
cEg (resp. cE7,cEg) if hy # 0 (resp. g3 # 0, hs # 0), where g3, hy, hs
denotes of homogeneous part of g, h of degree 3,4, 5 respectively.

A three-dimensional terminal singularity (P € X) is therefore of the
form of a cyclic quotient of isolated ¢DV singularity ¢DV/u,.. Mori clas-
sified three dimensional terminal singularities with index r > 1 explicitly
(cf. [23]).

(1) type cA/r: (zy+g(z,u) =0) C C*/1(a,—a,1,0) and g(z,u) €

m.
(2) type cAx/2: (2% + y* + g(z,u) = 0) C C*/(0,1,1,1) and
g(z,u) € m3.
(3) type cAx/4: (22 4+ ¢ + g(z,u) = 0) C C*/1(1,3,1,2) and
g(z,u) € m3. '

(4) type cD/3: (p = 0) C C*/1(0,2,1,1), where ¢ is in one of the
following forms:
(a) 22+ 9% + 2% + .
(b) 22 + 43 + 2%u + yg(z,u) + h(z,u) with g € m*, h € m®.
(¢) 22 + 43 + 2% + yg(z,u) + h(z,u) with g € m*, h € mS.
(5) type cD/2: (¢ =0) C C*/3(1,0,1,1), where ¢ is in one of the
following forms:
(a) 22 + 4 + yzu + g(z,u) with g € m?.
(b) 22 + yzu +y™ + g(z,u) with n > 4, g € m*.
(c) 22+ y2% +y" + g(z,u) with n > 3, g € m*.
(6) type cE/2: (2% +y° +yg(z,u) +h(z,u) = 0) C C*/5(1,0,1,1)
and g,h € m*, hy # 0.

2.2. Weighted blowups

Most of the examples are illustrated by weighted blowups. We recall
the construction of weighted blowups by using the toric language.

Let N = Z% be a free abelian group of rank d with standard basis
{e1,....,eq}. Let v = 1(ai,...,aq) € Q% be a vector. We may assume that
ged(ay, ...,aq) = 1. We consider N := N + Zv. Clearly, N C N. Let M
(resp. M) be the dual lattice of N (resp. N).

Let o be the cone generated by the standard basis eq,...,eq and X
be the fan consists of ¢ and all the subcones of . We consider

Xy s := SpecClo¥ N M| = C4,
Xy 5 i= SpecC[o N M].
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Notice that Xp := &y 5, is a quotient variety of C% by the cyclic group
Z/rZ, which we denote it as C%/vg or C*/%(ay, ..., aq).

Let v1 = %(bl, ...,bq) be a primitive vector in N. We assume that
b; € Z>o and gcd(bi,...,bq) = 1. We are interested in the weighted
blowup over o € X with weights v; = %(bl, ..., bq) which we describe
now.

Let ¥ be the fan obtained by subdivision of ¥ along v;. One:
thus have a toric variety Xy 5 together with the natural map Ay v —
Xy 5 More concretely, for any b; > 0, let o; be the cone generated by

{ela ey €51, U1, €441, ey €d}, then
X=Xy y = Up, >0SpecCla; N M].

Let U; = Xy ,, = SpecCloy N M] = cl/E =(b1, -y i1, =7 big, -, ba).
We always denote the origin of U; as Qz In each affine chart U;, the
natural map U; — Ay is given by

z; e T i G £
b;
i X /rl

We denote the exceptional divisor £ 22 P(by, ba, ..., bg) by P(v1)

Suppose that there is a primitive vector vg = %(cl, .y¢q) € N such
that v, is contained in the cone o;. We can consider the second weighted
blowup over U; with vector v,. To this purpose, we can write

1 (0161 + ...+ cqeq)
= —(q161 +.. o+ gimieim1 + qv1 + Gip1€ip1 + - ..+ Qaed),

l |

V2

for some p € Z+ and ¢; € Z>¢. We say that wy = %(ql, .y qq) 1is the
weights corresponding to the vector ve in the cone o;, or simply the
weights corresponding to ve (in o;) and vice versa if no confusion is
likely.

Indeed, let 7;; be the cone generated by

{61, ceey 6j_1, V2, 6j+1, ey €51, V1, 6i+1, ceey ed}, lf] # i,
{er, -, €i-1,v2, €41, .. €4}, ifj =1

The map Ug;>oSpecClry; N M] — U; is the weighted blowups of U; of

weights ws (or with vector v3). Let 3 be the fan obtained by subdivision
along vg of all the cones containing vs. One thus have a toric variety
Xy = XNE and we say that the natural map Xy — X is the weighted
blowup with vector vs.
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Given a tower of weighted blowups A, — A7 — Ay with vectors
v1 and then vy, we may reverse the order of vectors and then obtain a
tower of weighted blowups Xj — X| — X, with vectors vy and then v;.
We have the following diagram

X X!
Xo.

It is clear that Ay and &4 are isomorphic in codimension one.
Given a semi-invariant ¢ = Y oy, i, ﬁl ..z on the quotient vari-
ety Xp and a vector v = %(bl,bg, wyb4) € N, we define

d
. b; .
wty(9) = winf Y L. # 0}
j=1

Let X € Ay be a complete intersection defined by semi-invariants
w1 =...= @, =0. Let Y be its proper transform of X in A;. By abuse
the notation, we also call the induced map f : ¥ — X the weighted
blowups of X of weights v.

Notice that the local chart U; of Y is defined by @1 = ... = ¢, =0
with
Qj = Sﬁj(fﬁlx?l/roa ---,»Ti—ﬁﬁifl/m,m?i/T0,$i+1$?i+l/r°7

ag/roy, —Whug (©;5)
2T A ¢ P

for each 4,j. We fix the notation that £ := £€NY C P(v) denotes the
exceptional divisor and U; := U; NY. The adjunction formula yields
that

Ky = f*Kx + a(v, X)E,

whenever E is irreducible and reduced. Where a(v, X') can be computed
as
a(v, X) = Zwtv(mi) - Zwtv(gpj) —1.
i J

For simplicity, we will use the notation

f=wBl,: Y =wBl,(X) > X
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(resp. wBlyt—y) to denote the weighted blowup of X with vector v
(resp. weights w). By construction, wBl, is a divisorial contraction if
the exceptional divisor E is reduced and irreducible, a(v, X) > 0 and ¥
is terminal.

§3. Classification of divisorial contractions to points

Among birational maps in minimal model program, divisorial con-
tractions to points are most studied. Mori classified contractions f :
Y — X > P when Y is nonsingular [22] and then Cutkosky extended
it to the situation that Y allows Gorenstein singularities [7]. On the
other hand, Kawamata classified the situation that P € X is a terminal
quotient singularity [18] and Corti [6] studied the case that P € X is of
cAy type. Markushevich [21] and Kawamata [17] showed the existence
of divisorial contractions with discrepancy % over a singular point of
index 7 = 1 and r > 1 respectively. All their examples are weighted
blowups. In [9], [10], Hayakawa classified all divisorial contractions to
points of higher indices with minimal discrepancies. A recent highlight
is Kawakita’s series of work in which all divisorial contractions to points
are classified in some sense.

3.1. Mori and Cutkosky’s work

In [22], Mori studies extremal contractions from a nonsingular three-
fold. In [7], Cutkosky notices that the same proof is still valid if Y has
only Gorenstein terminal singularities. We summarize their results.

Theorem 3.1. LetY be a Gorenstein threefold and f :' Y — X be a
divisorial contraction to a point P € X. Then f is one of the following:

(1) P e X is nonsingular, f = Blp(X) the blowup over P.

(2) P € X is of type cAy with ¢ = x? + 9% + 22 + u", for some
n > 2, f = Blp(X) the blowup over P.

(3) P € X is a quotient singularity £(1,1,1), f = wBl,(X) the
weighted blowup with weight v = 5(1,1,1).

We would like to remark that in the above cases, Y is singular if
and only if it is in case (2) with n > 4. Even though it is not stated
explicitly in [22], [7], it is not difficult to see that f is either a blowup
or a weighted blowup.

Sketch of the proof. We will give a brief sketch of the proof, which
is more or less a reproduction of Cutkosky’s argument.

Let E be the exceptional divisor of f, which is Gorenstein. We
may write Ky = f*Kx + aF for some a > 0 € Q. Note that —Ky
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is f-ample and hence both —Kpr = =(a + 1)E|g and —FE|g are am-
ple. It follows from the Kawamata—Viehweg vanishing theorem that
h'(E,Og) =0,k (E,Or(—E)) =0 and h*(E, Og(—Ky)) = 0 for i > 0.
In particular, x(Og) = 1.

Consider next the A-genus (cf. [8]) of the polarized variety (F,
Og(—Ky)), which is defined as

A(E, OE(-KY)) = dim E + d(E, Og(—Ky)) — h°(E, Og(—Ky)).

In our situation, we have d(E, Og(—Ky)) = (—Ky)? - E and hence
1
A(E,Op(-Ky))=1- ‘Q‘KY - E?

by Riemann—Roch formula.

Since A(E,Og(—Ky)) > 0 (cf. [8, Theorem 1.9]), one thus has
A(E,0p(—Ky))=0and Ky - E? = aE? = 2.

It follows that

4=0a*F*?=(Ky E)-E*

Therefore, either (KZ-F) < 2 or E3 < 2. In the first case that (KZ-F) <
2 then E is isomorphic to P2 or a quadric in P® according to Fujita’s
work (cf. [8, Section 2]). In the latter case that E3 < 2, we may consider
the polarized variety (E,Og(—FE)) and show that A(E,Og(—E)) = 0,
d(E,O0p(—E)) = E® < 2. We thus conclude that in any case, E is
isomorphic to P? or a quadric in P3.

Next, one can compute direct images of Oy (—jE) and obtained that

Lemma 3.2. Keep the notation as above, one has

(1) R'f.Oy(—jE)=0 for alli>0 and j >0,

(2) fOy(—jE)=m/ and mIOx = O(—jD) for all j >0,

(3) gr(Ox,p) == @pzom™/m" ! = @,50H(E,O(—nE)) as C-
algebra.

Proof of the Lemma. The first statement follows from the relative
version of Kawamata—Viehweg vanishing theorem.
Set I; := f.Oy(—jE). By pushing forward the exact sequence

there is an induced exact sequence
0= Iy = I = f.Op(—jE) = H'(E,Op(jE)) = 0

for 7 > 0.
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Hence I/I; & H°(Og) = C. It follows that I; & m, the maximal
ideal of P, and there is an isomorphism of graded C-algebra

Bnln/Int1 = G H(E,Op(—nkE)).
Since @, H(E, Op(—nE)) is generated by H°(E, Op(—E)), one has
Inyr = LIy + Lngo, 1
for all n > 0. Inductively,
Livi =Ll + Ingm, To

for alln >0, m > 0.

On the other hand, since Oy (—F) is f-ample, one has that the
graded O x-algebra @I, is finitely generated. Hence there exists mgp > 0
so that for all n > 0,

Ity = InIpm.-

By t; and {,, we have for all n > 0,
In+1 =5L1I,+ Inero =5LI,+ InImg = NLI,.

Therefore, I,, = IT = m" for any n > 0.
Finally, one can verify that mQOy = Oy (—D). Q.E.D.

With this Lemma, one can determine gr(@;\p) = gr(Ox,p). By the
classification of terminal singularities, one can thus determine Ox p,
which is one of C[[z,y, z,u]]/(z? + y? + 2% + u™) for some n > 2 or
Clz,y, 2]]®, the invariant subring under the Z, action (z,y, z) — (-,
-Y, vz)‘

Let f': Y’ — X > P be the blowup (resp. weighted blowup with

weight 1(1,1,1)) if 6)_(7\p ~ Cllz,y, z,ull/(z* + y* + 22 + u™) (resp.
Cllz,y, 2]]?) with exceptional divisor E’. It is easy to verify that
Rf.Oy:(—nE') = Rf.Oy(—nkE). By [14, Lemma 3.4], we have that

f is isomorphic to f’, which is a blowup or a weighted blowup. Q.E.D.

Since Y is Gorenstein and hence all the intersection numbers in-
volved in the above computation are integers. If there are singularities
of index > 1 on E C Y, the above computation of A does not work any
more.

Example 3.3. Let (P € X) be a cA; singularity given by (¢ :
zy+22+ut =0) Cc C*andn > 2. Let f = Blp: Y — X be the
blowup over P. Then Sing(Y) = {Q4} with local equation in U, given
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by (¢ : 2y + 22 + w2 = 0) C C*, which is Gorenstein terminal of type
CAl.

We would like to remark that there exist some other divisorial con-
tractions over P € X in this situation. For example, take wBl, : Y’ —
X of weights v' = (1,2n’ — 1,n/,1), where n’ = |3]. It is straightfor-
ward to check that Y/ — X is a divisorial contraction with discrepancy
1 and Sing(Y') = {Q2} which is a terminal quotient singularity of type
—71T‘ (_17 nl) 1)
2n'—1

3.2. Contractions with minimal discrepancies

Given a terminal singularity P € X of index r > 1, there is at least
one divisor which has discrepancy % over X by [18]. Similarly, if X is a
terminal singularity of index 1, then there is at least one divisorial con-
traction with discrepancy one by [21]. One notices that above results are
obtained by constructing weighted blowups with minimal discrepancy %

By using similar construction, Hayakawa classified divisorial con-
tractions Y — X 3 P to a point of index r > 1 with discrepancy %
in [9], [10]. In his recent work [12], [13], he tries to classify divisorial
contractions Y — X 3 P to a point of index r = 1 with discrepancy
1. We briefly explain his method and give various examples for possible
phenomena.

1. First, one starts with an explicit divisorial contraction ¥ — X
to a point P € X of index r > 1 with minimal discrepancy % which is a
weighted blowup. Let E be its exceptional divisor.

2. Determine the number of valuations with minimal discrepancies.
For a given valuation v with center in P € X, one can consider a reso-
lution p : Z — 'Y so that v = vp for some prime divisor F C Z.

Claim. If o(F, X) < 1, then u(F') is a point of index > 1in Y.

Proof. For any p-exceptional divisor F' with center in P € X, one
has that p(F) C E. It follows that

a(F,X) = a(F,Y) + vp(E)a(E, X) > a(F,Y). i

If u(F) is a curve, then a(F,Y) = 1. If u(F) = Q € Y is a point
of index 1, then a(F,Y) > 1 € Z. Hence u(F) must be a point of index
> 1. The Claim now follows. Q.E.D.

Therefore, it suffices to search for points @ € Y of index r’ > r and
valuations centered at @ satisfying .

3. Find as many divisorial contractions as valuations with discrep-
ancy % Therefore, the divisorial contractions with minimal discrepan-
cies are classified completely.
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For any given explicit weighted blowup, it is easy to determine higher
index points. Together with the explicit description of local equations,
one can determine the number of valuations with minimal discrepan-
cies % Usually, these valuations corresponds to some other weighted
blowups. In some rare situations, one needs to change the embedding
and modify the weights. Hayakawa managed to determine the number
of valuations with minimal discrepancy and to find as many divisorial
contractions as valuations with discrepancy % All of them are weighted
blowups.

Example 3.4. Let P € X be a terminal singularity of cA/r type
given by

1
(p:zy+2°+u*=0)C (C4/§(2,1,1,0).

Let f(z,u) = 2% + u®. Since wty( 3 f(2,u) = 3, following Hayakawa,
we may consider f = wBl, : Y — X of weights v = $(2,7,1,3). Tt is
straightforward to check that this is a divisorial contraction with dis-
crepancy .

The higher index points on Y consists of ¢J; and Q2. We have

P

Up=(y+2°+u®=0)CC*/3(1,1,1,1) 2 C¥/1(1,1,1) =: V1,
P2

Up = (x+2°+ud=0) CC*/1(2,4,1,3) = C3/1(4,1,3) =: V3.

Let g : Z — Y Dbe the economic resolution over ()7 and Q2. Hence
1 i
R il nl .
Kz =¢*Ky + 2F + E_l 7F,,

for some exceptional divisors F1, ..., Fg and F”.

More explicitly, the economic resolution over @7 is isomorphic to
the weighted blowup at o € Vi with weight 3(1,1,1). Therefore, it is a
weighted blowup over Q; of weights w' := %(1,3, 1,1). The weight w’
corresponds to the vector

, 1

1 1 1 —
v o= §U+§€2+§€3+§€4— 5(1,8,2,3) € N.

The economic resolution over o € V; is obtained by weighted blowup
of weights (44,1, 3i), where 4, 37 denotes the residue modulo 7. Hence
the economic resolution over (2 is obtained by weighted blowups with
weight 1(c;,44,1,3i), where ¢; = min{94,3 - 3i} = 3 - 3i. Therefore, the
corresponding vectors v; € N is given by

1, _
vi = o (2- T+ 930,75, 3i + 4, 21).
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In total, one sees that there are three valuations v, vy, ve with dis-
crepancy % In fact, the weighted blowup with weights v,v; or vy are
divisorial contractions with discrepancy % Hence we have identified all
divisorial contractions with discrepancy %

The above discussion also shows that there are exactly three valua-
tion with discrepancy % and each valuation corresponds to a divisorial
contractions which is a weighted blowup with weight vs,v4 or v'.

Example 3.5. Let P € X be a terminal singularity of cAz/2 type
given by

1
(p:a® +y? -2t —22%u2 —ut + 25+ 48 =0) CC4/§(O,1,1,1).

It is easy to see that there are only two vectors v; = —5—(2, 1,1,1,),00 =
%(2, 3,1,1) with a(vy, X) = a(vz, X) = 3. However, the exceptional di-
visor of the weighted blowup of weights v; (resp. w2) is non-reduced
(resp. reducible). Hence none of these weighted blowups is a divisorial
contraction.

One needs some modification in order to get divisorial contractions.
We consider a coordinate change such as x4 := z+(22+u?), then P € X
is given by

1
(py 22 =224 (22 +0u?) + 92 + 25 +uf =0) C <c4/§(0, 1,1,1).
One can check that the weighted blowup

fi:Y, - X ccCt 0,1,1,1)
{

1
&B+,y,z,u}/§
with weight %(4, 3,1,1) is a divisorial contraction. Let E be its excep-
tional divisor. Higher index point in Y consists (1, which is terminal
quotient of type i(3, 1,1). Take the economic resolution g1 : Z — Yy
over (01, one sees that

Kz =i Ky, + Y iF, =g f1Kx + 3E4 7 + 3Fi + Fy + B,

where E 7 denotes the proper transform of £, in Z. We thus conclude
that there are two valuations with discrepancy %

Indeed, if we consider x_ := x — (22 + u?) instead, then P € X is
given by

1 ;
(2?2 +2z (2 +ud)+y? + 28 +u® =0) C C4/§(O,1,1,1).
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The weighted blowup
1
Y. sXcC cj[lwﬂy’z’u}/i(o, 1,1,1)

of weights %(4, 3,1,1) is a divisorial contraction.

We claim that fy 2 f_. To see this, consider the Weil divisor
D := div(zy). It is clear that f3(D) = Dx, + 3$E; but f*(D) =
Dx_ + %E_. Therefore, f, and f_ can not be isomorphic. Therefore,
there are exactly two divisorial contractions with discrepancy % in this
situation.

With similar technique as in above examples, Hayakawa classified
divisorial contractions to higher index points with minimal discrepancy
%. Any one of such divisorial contractions can be realized as a weighted
blowup in suitable embedding. However, there are several cases that
one needs to embed into a 5-dimensional space as a quotient of complete
intersection of hypersurfaces of degree 1 and 2.

Example 3.6. Let P € X be a terminal singularity of ¢D/2 type
given by

1
(o: 2% +yzu+y® +2* +u® =0) C(C4/§(1,1,1,O).

One can consider the weighted blowup f : Y — X with weight v =
£(3,1,3,2). It is straightforward to see that f is a divisorial contractions
with discrepancy % and there are two valuations with discrepancy % The
other valuation corresponds to the vector vy = %(3, 1,1,2). However,
the weighted blowup with weight v is not a divisorial contraction for
its exceptional divisor is reducible.

One can consider
1

c<c5/§(1,1,1,0,1).

4zt +yS +ud =0

o~ /.
(PeX)=X { byt o

Under this embedding, the weighted blowup Y’ — X’ with weight
%(3, 1,1,2,5) is a divisorial contraction.

3.3. Kawakita’s classification

In [14], Kawakita proved the following results characterizing diviso-
rial contractions to smooth points.

Theorem 3.7. Let Y — X 3 P be a divisorial contraction to a
smooth point P € X. Then f is a weighted blowup of weights (1, m,n)
with m,n € Zso and (m,n) = 1.
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To illustrate his work, we start by considering the weighted blowup
of weights (1,m,n).

Example 3.8. Let f : Y — X = C? be the weighted blowup of
weight v = (1,2,3) over o € C3. Let E be the exceptional divisor. Y” is
nothing but the toric variety obtained by subdivision along the vector
(1,2,3).

The vector v = (1,2,3) defines a valuation. One can try to find
a resolution p : Z — X so that v = vp for some exceptional divisor
F start by usual blowups. To this end, we may start by considering
fi = Bl : Yy — X the usual blowup by subdivision along the vector
v = (1,1,1). In the cone o3 = (v1,e€2,e3), we consider fo = Blg, :
Y> — Y7 the blowup over ), which is obtained by the subdivision
along vy = (1,2,2). Next, we consider f3 : Y3 — Y, obtained by the
subdivision along vz = (1,2,3). This can be seen to be a blowup along
a smooth curve. Let F3 be the exceptional divisor of f3. In total, we

have a sequence
p:Z:=Ys =Y, =Y > X, f

so that the valuation vg is realized by the p-exceptional divisor Fs.
Indeed vg = vg,.
On the other hand, we may consider a sequence of toric maps that

7Z'=Y -5V =Y, 2Y =Y > X, g

by subdivision along v{ = v = (1,2,3), v5 = (1,1,2), v§ = (1,1,1)
and vy = (1,2,2) successively. Notice that Y — Y/ ; are Kawamata
blowups for i = 2, 3,4. Indeed, Z’ is smooth and Z’ — Y7 is the economic
resolution of Y7

We compare f’ with §. Let Z — Z be the blowup along a smooth
curve obtained by subdivision along (1,1,2). It follows that Z’ --» Z
is a simple flop. This can easily be seen as replacing the edge connect-
ing (1,0,0),(1,2,3) by an edge connecting (1,1,1),(1,1,2) in the toric
language.

Sketch of the proof of Theorem 8.7. Given a divisorial contraction

f:Y = X 3 P to a smooth point P with exceptional divisor E. One
can construct a similar sequence

Z=Y,— ..o —>X

as in § as following:
(1) Let Zy = P and let Y7 — X is the blowup over P = Zg.
(2) For ¢ > 1, let Z; be the center of £ in Y;. Let Y;41 — Y; be a
resolution of the blowup of Y; along Z; if Z; is not a divisor.
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(3) The construction stops at Y, when Z, is a divisor. Let m be
the largest integer so that Z,,_; is a point.

A key observation is that E = Z,, equals, as valuations, to an ex-
ceptional divisor of a weighted blowup of weights (1, m,n) if and only
if f.Oy(—2E) # m and f.Oy(—nE) ¢ m? (cf. [14, Proposition 3.6]).
Therefore, it is essential to study f.Oy(—jFE).

Let

D(l) = dimc Ox/f*OY(—iE),

for ¢+ > 0. By using the singular Riemann—-Roch formula, Kawakita
obtains numerical constraint on D(i) and also on type of singularities on
Y. The classification can be found in [14, Theorem 4.5] and details can
be found in [14, Section 4]. Then one can verity that f.Oy(—2E) #m
and f.Oy(—nFE) ¢ m? are satisfied. Q.E.D.

In [15], Kawakita made great progress along the line. With a lot of
elaborated studies, he classified all divisorial contractions to points in
some sense. We summarize his result. A divisorial contraction f :Y —
X is said to be of ordinary type or exceptional type depending on the
singularities of Y. For its precise definition, please see [15, p.59].

Theorem 3.9 ([15], Theorem 1.2). Suppose that f is of ordinary

type.

(1) IfP € X is of type cA or cA/r, then there exists an identifica-
tion realizing f as a weighted blowup with weight (r1,72,a,1)
for some r1,72. The discrepancy of f is £.

(2) If P € X is not of type cA nor cA/r and the discrepancy is
> %, then P € X is of type ¢D or ¢D/2 and f can be realized
as a weighted blowup explicitly.

Theorem 3.10 ([15], Theorem 1.3). Suppose that f is of exceptional
type. Then P € X is not of type cA nor cA/r. The discrepancy of f is
1. except for the cases listed in [15, Table 3].

Notice also that by Hayakawa’s work [9], [10], [11], together with
Kawakita’s work [16], the following cases are known to be weighted
blowups.

(1) P € z is a point of index 7 > 1 and discrepancy of f is % (cf.
(9], [10]).
(2) P € z is a point of index r > 1 and discrepancy of f is
11]).
(3) ED ]6) z is a point of type ¢D/2 and discrepancy of f is
[16]).
As a consequence, one has the following:

(cf.

<1s

NI

(cf.
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Theorem 3.11 ([16]). Any divisorial contraction f : Y — X to a
point P € X of index r > 1 is a weighted blowup.

We say that f "is” a weighted blowup means that there exists an
embedding of the germ of P € X so that f is isomorphic to a weighted
blowup of certain weights. Hayakawa started to work on a project to
classify divisorial contractions to points of type c¢D, cE in [12], [13]. It
is expected that such divisorial contractions are weighted blowups. In
[14, Section 8], Kawakita gives some more examples of type el, e2, e3,
€9, which are weighted blowups. It is thus natural to ask the following

Question 3.12. Is every divisorial contraction a weighted blowup?
We give some more examples which are not known previously.

Example 3.13. Let P € X be defined as

{ @123+ x§d+1 + z425 =0 co
) b—1 2d,.2 . s,

paizs+xy  +x5tzi—x5 =0

where b > 8d + 3. Let f: Y — X be the weighted blowup of weights

v=(4d +2,4d + 1,4,1,8d + 3). One can check that P is terminal and

f is a divisorial contraction with discrepancy 4 of type el.

Example 3.14. Let p € X be defined as
@1 T3+ Taxs + woriT 2% =0 5
o2 .2dbl b1 cC,
o1 x5 5" 1y z5 =10

where a > 2d +2,b > 8 + 5. Let Y — X be the weighted blowup of
weights v = (4d-+3,4d+2,4,1,8d+5). One can check that P is terminal
and f is a divisorial contraction with discrepancy 4 of type el.

§4. Resolution of terminal singularities

Given a germ of three-dimensional terminal singularity P € X, it is
expected that one can have a resolution by successive divisorial contrac-
tions. In [10], Hayakawa proved the following

Theorem 4.1. For a terminal singularity P € X of index r > 1,
there exists a partial resolution

X, —w...0 X1 X3P

such that X, is Gorenstein and each f; : X;41 — X, is a divisorial
contraction to a point P; € X; of index r; > 1 with minimal discrepancy
1/r;. All these maps f; are weighted blowups.
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It is natural to ask whether one can resolve Gorenstein terminal
singularities in a similar manner.

Definition 4.1. Given a three-dimensional terminal singularity P €
X. We say that there exists a feasible resolution for P € X if there is a
sequence
Xn—=>Xp1—...0 X125 Xg=X3P,

such that X, is non-singular and each X;,1 — X is a divisorial contrac-
tion to a point with minimal discrepancy, i.e. a contraction to a point
P; € X; of index r; with discrepancy 1/r;.

In [3], we prove the existence of feasible resolution for any terminal
singularity.

Theorem 4.2. Given a three-dimensional terminal singularity P €
X. There exists a feasible resolution for P € X.

The proof is a straightforward but complicated inductive argument.
The order of induction is as following: 1. quotient terminal singularities;
2. cA points; 3. cA/r points; 4. ¢D and cAxz/2 poitns; 5. cAz/4, ¢D/2,
and ¢D/3 points; 6. cFg points; 7. ¢E/2 points; 8. cEr points; 9. cEg
points. For each singularity with given explicit local equation, we pick
a convenient weighted blowup Y — X which is a divisorial contraction
with minimal discrepancy. Keep track of singularities on Y, one finds
that singularities upstairs are of milder type or of the same type but of
smaller invariants. For details, please see [3].

§85. Divisorial contraction to a curve

In this section, we consider divisorial contraction f : Y — X con-
tracting the exceptional divisor F to a curve I' C X.

We first recall some well-known results of Mori, Cutkosky and Tzi-
olas.

(1) If Y is smooth, then X is smooth (in the neighborhood of T")
and f is the blowup along the smooth curve T' (cf. [22]).

(2) Y is Gorenstein, then X is smooth and f is the blowup along
a locally complete intersection curve I" (cf. [7]).

(3) Let P € T' C X be a germ of Gorenstein threefold singularity
and I' a smooth curve. The general hyperplane section S con-
taining I' is Du Val of type A,,, D,, Eg, F7r. Then such maps
are classified. (cf. [28], [29], [30], [31]).

One of Tziolas approaches has the similar flavor as the 2-ray game.
Let I' C X be a smooth curve that there is a singular point P of X lying
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on I'. Take f': Y’ — X be the blowup over I'. It produces singularities
which is not Q-factorial. Notice also that f'~(T") = E; + mE, for some
m > 2, where f'(E;) =T and f/(Es) = P. Let Z' — Y’ be the Q-
factorialization of Y. Under certain conditions, one has a contraction
g: Z' =Y contracting the proper transform of E5 in Z and f: Y — X
is a divisorial contraction to the curve I'.

Another interesting result is a factorization of divisorial contractions
into simpler birational maps (cf. [4]). The starting point is the following:

Theorem 5.1. [4, Theorem 3.1] Let g : Y D C — X > R be a
flipping contraction or a divisorial contraction contracting an irreducible
curve C to a point R € X. If Y is not Gorenstein, then there exists a
divisorial contraction g : Z — Y to a point Q € Y of index r with
minimal discrepancy %, such that Cz - Kz < 0, where Cz denotes the
proper transform of C in Z.

Therefore, one can play the 2-ray game and the run the minimal
model program over X.

Theorem 5.2. [4, Theorem 3.3] Let f : Y — X be o divisorial
contraction to a curve I' (resp. flipping map). If Y is not Gorenstein,
then there is a diagram

O Y,
le lﬁ
Y Y’
N
X

where Yo --+ Y] consists of flips and flops over X, fa is a divisorial
contraction to a point Q € Y of index r > 1 with discrepancy %, 1% is
a divisorial contraction to a curve and f’ is divisorial contraction to a
point (resp. f4 is a divisorial contraction and Y' =Y).

Recall from Theorem 4.1 that there is a partial resolution for ter-
minal singularity of index r > 1 by a successive divisorial contractions
over points of higher index with minimal discrepancies. In [4], the no-
tion depth of Y, denoted dep(Y), is introduced as the minimal length
of such partial resolution.

Proposition 5.3. [4, Proposition 2.15] Let f : Y — X be a diviso-
rial contraction to a point. Then dep(X) < dep(Y) + 1.
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By induction on dep(Y’), one can prove the following facts on depth
together with the factorization of flipping contractions divisorial con-
tractions to curves.

Proposition 5.4. [4, Proposition 3.5, 3.6] If f : Y — X is a divi-
sorial contraction to a curve, then dep(X) < dep(Y). If f: X --» X*
is a flip, then dep(X ™) < dep(Y).

Theorem 5.5. [4, Theorem 1.1} Let g : X — W be a Q-factorial
flipping contraction and ¢ : X--+X' be the corresponding flip, then ¢
can be factored as

X = Xo % Xy oos o ooa X, I X

such that each f; is a flop, a blow-down to a LCI curve, a divisorial
contraction to a point or the inverse of a divisorial contraction to a
point od index r > 1 with minimal discrepancy %

Let g : X — W be a Q-factorial divisorial contraction to a curve,
then g can be factored as

X =Xy —]E)-) Xi--+...--2X, ——-) W,

such that each f; is a flop, a blow-down to a LCI curve, a divisorial
contraction to a point or the inverse of a dzmsorzal contraction to a
point od index v > 1 with minimal dzscrepancy =

Example 5.6. Let I' = (z = g(x,y) = 0) C C3 = X be a complete
intersection curve which is singular at the origin. Let f : Y — X be
blowup along T' and let 7 = wt(; 1yg(z,y) > 2. It is easy to easy that YV’
has only one singular point, which is given by zu — g(z,y) = 0 in local
chart. This is a singularity of cA type.

In fact, we may consider an embedding X — X, C C* that X, =
(w—g(z,y)) =0and I' = XgN Z, where Z = (z = u =0). Let Y1 = X,
be the weighted blowup with weights (0,0,1,1) and Yo — Y7 be the
weighted blowup with vector (1,1,1,7), i.e of weights (1,1,1,7—1) over
@3. One sees that Y7 — X is isomorphic to f, the blowup along I’
and Y, — Y) is the weighted blowup over a singularity Q3 of cA type of
vector (1,1,1,7).

On the other hand, we may consider Yy — Y] — X, by weighted
blowup with vector (1,1,1,7) and then (0,0,1,1). Then Y{ — Xj is
isomorphic to BI(X) — X = C3, and YJ — Y/ is the blowup along
a curve I} which is the proper transform of I'. The equation of I"} is
given by z = g(z,zy)z™" = 0 and z = g(zy,y)y " in the chart Uy, Uy
respectively. It is clear that I’} has milder singularities than that of T'.
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Moreover, one sees that Yo --» Y is isomorphic in codimension
1. Indeed, by the same trick as in {4], this fits into the diagram as in
Theorem 5.2 and one has that Ys --» Y] consists of a sequence of flips
and flops.

Example 5.7. Let P € X be a germ of terminal quotient singularity
of index r > 2. Let C' C X be any curve passing through P. Kawamata
[18] shows that there is no divisorial contraction f : Y — X such that
f(E) = C. Therefore, there are more restriction on the existence of
divisorial contractions to a given curve.

Example 5.8. Let P € X be a ¢D singularity given by
(p:2? +y?z 4y +ud=0)cC*

and = (z=y=u=0).

By Tziolas’s construction, we may start with a blowup f = Blp :
Y = Bip(X) — X. The exceptional set consists of F; and Es such
that f(F1) =T and f(FEs) = P. In the chart Uy, the exceptional set
E,=(y=u=0)and E> = (2 =u =0).

Notice that Y can be realized as the proper transform of X in the
weighted blowup Xy — X of weights v; = (1,1,0,1).

Let g: Z — Y be the blowup of Y along E7, which can be realized
as weighted blowup of Uy of weights wq = (0, 1,0, 1), which corresponds
to the vector vy = (1, 2,0, 1). Therefore, these maps fit into the following
diagram.

A A
gl lg’
U, CY YIDUé

N

Where f': Y’ — X is the weighted blowup with weight vo = (1,2,0,1)
and ¢’ : Z' — Y is the weighted blowup with weight 1(1,1,0,1) (with
vector v; = (1,1,0,1)) over Uj. One can check that Y/ — X is a
divisorial contraction to a curve I'. Notice that there is a singularity of
index 2 which is Qs of type cAx/2 in Y’ with the local equation

1
(2 + 9?2+ 22 +udy=0) C (C4/§(1, 1,0,1).

Notice also that ¢’ is the weighted blowup of weights ws = %(1, 1,0,1)
over Uj.
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Another way to realized this contraction is to follow the diagram
in Theorem 5.2. Take a weighted blowup Z* — Y’ of weights ws =
1(3,1,2,1) over U C Y’, which is a divisorial contraction with minimal
discrepancy % This weights correspond to the vector vs = (2,1,1,1).
Let Y” — X be the weighted blowup of weights v3. One can check that
the weighted blowup Y” — X is a divisorial contraction with discrep-

ancy 1. These maps fit into the following diagram.
zv — Zz'
g*lwt:%(i},l,ll) g”lwt:(l,Z,O,l)
Us CY’ Y > Uy
f’lwt:(l,Z,O,l) £ wi=(2,1,1,1)
X — X

One can check that UY is given by (222 + y? +y +u® = 0) C C* and
g" : Z" — UY is isomorphic to wBI,(C3) — C® with v = (1,0,1). In
other words, ¢g” is isomorphic to the blowup along a smooth curve.

§6. Factoring divisorial contractions with non-minimal dis-
crepancy

As we have seen in the previous section, divisorial contractions with
minimal discrepancies play a very interesting role. First of all, for any
terminal singularity P € X of index r > 1, there exists a partial resolu-
tion X,, — ... = Xy := X such that X,, has only terminal Gorenstein
singularities and each X;,; — X, is a divisorial contraction to a point
with minimal discrepancy (cf. [10]). In fact, for any terminal singular-
ity P € X, there exists a feasible resolution by a sequence of divisorial
contractions with minimal discrepancies.

Moreover, for any flipping contraction or divisorial contraction to
a curve, by taking a divisorial extraction over the highest index point
with minimal discrepancy, one gets a factorization into simpler birational
maps. It is thus natural to ask whether one can factorize divisorial
contractions to points with non-minimal discrepancies into simpler ones.
In [2], we work on the factorization of divisorial contraction to a point
of index r > 1 with discrepancy % > %

Theorem 6.1. Let f : Y — X be a divisorial contraction to a point
P € X of index r > 1 with discrepancy ¢ > L. Let E C Y be the
exceptional divisor and and g : Z — Y be a divisorial contraction over a
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point of highest index p in E C'Y with discrepancy %. Then the relative
canonical divisor —Kz;x is nef.

Notice that the relative Picard number p(Z/X) = 2. Therefore, we
are able to play the so called 2-ray game. As a consequence, there is
a flip or flop Z --» ZT. By running the minimal model program of
Zt/X, we have Z --» Z' 5 Y’ 1, X, where Z --» Z' consists of a
sequence of flips and flops, Z’ — Y’ is a divisorial contraction. This can
be summarize into the following diagram.

/2 -7
gl blg’
Y Y’
N
X

We have the following more precise description.

Theorem 6.2. Let f : Y — X 3 P be a divisorial contraction to
a point P € X of index v with discrepancy & > % Keep the notation
as in the above diagram. We have that f' is a divisorial contraction to
P € X with discrepancy ”7/ < 2. Moreover, g' is a divisorial contraction
to a singular point Q' € Y' and exactly one of the following holds.
(1) If P € X is of type other than cE /2, then Q' is a point of index
r, and g’ has discrepancy aT” with ' + a” = a.
(2) IfP e X isof type cE/2, then Q' is a point of index 3, and ¢’
has minimal discrepancy %

As an immediate corollary by induction on discrepancy a, we have:

Corollary 6.3. For any divisorial contraction Y — X to a point
P € X of index r > 1 with discrepancy 7 > % There exists a sequence
of birational maps

Y=X,->»...-2Xg=X

such that each map X;+1 --» X; is one of the following:

(1) a divisorial extraction over a point of index r; > 1 with minimal
discrepancy L or its inverse;
T4

(2) a flip or a flop.
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Example 6.4. We consider a divisorial contraction over a cA/r
point with discrepancy 7 > % This case is described in [15, Theorem
1.1.i], and its local equation is given by

¢ 2132 + g(25,74) = 0 C C* /v,

where v = %(1, -1,b,0).
The map f is given by weighted blowup with weight v; = %(7‘1, ro,a,r).

We may write r1 + ro = dar for some d > 0 with the term asg’" € p. We

also have that s; := “_Tb’"l is relatively prime to r; and s5 := “ﬂ’” is

relatively prime to ro (cf. [15, Lemma 6.6]). We thus have the following:

a = bry + rsq,
1=qr1 + sis1,
a = —bry + rsa,

1= goro + 8552,
for some 0 < s} < r; and some g;.

We set
01 := —nqy + bsy, 2 := —ngy — bs3.

One sees easily that

011 +r = asy,
Oorg +17 = ass.

It is easy to see that a > 0; # 0 for ¢ = 1,2 and §; > 0 for some
7. One can also check that if both 61,02 > 0 and (a,r1) = 1, then
01+ 02 = a.
Case 1. Suppose that §; > 0.
Since 1 which is a quotient singularity of type ;11—(1"1 —s7,1,57). Let
g = wBlyi—y, : Z — Y be Kawamata blowup over @)1 with wy =
%(7‘1 —s3,dr,1,s%).

The diagram 1 is as following.

-—3

z  —— 7

ﬁ wt=wa 571 wt=wj
Qiey Y' '3 Q),
2 j/wt:un “—_nél J/wt:w'l

X — X
‘Where

1 /
wy = ;1(7"1,7”2,@,7’), wy = (ry — s1,r2 — d1dr + 57,0 — 61,7);
—_ * 1
wy = o-(r1 — s7,dr,1,87), wy = ;(s7,01dr — s7,01,7).

[
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Note that 0 < a’ := a—8; < a and both f, ¢’ are extremal contrac-
tions with discrepancies < 2.
Case 2. Suppose that d, > 0.
Since Q2 is a quotient singularity of type %(rg — s3,1,85), we take
g = WBlyt=—w, : Z — Y the Kawamata blowup over QJo with wy =
%(dr, ro — 85,1, 8%).

The diagram I is as following,.

z — Z

1

Q2€Y Y'>Q;

a — a—¥8g i
= lwt—wl ——T—lwtfw1

X — X

1 _ 8o o
wit=wg e 1wt—w2

Where

1 / 1 .
wy = =(r1,72,0,1), wy = 2 (r1 + 85 — dadr, 7o — 55,0 — 02,7);

* * / 1 * %
wy = =(dr,r2 — 83,1, 83), wy = £(02dr — 53,83, 02,7).

It is easy to see that if r;1 > ry, then §; > 0. Hence extracting
over (01 provides the desired factorization. Similar argument holds if
rg > ri. Therefore, one obtain a factorization by extracting over the
point of highest index.

§7. Further remarks

It is interesting and useful to find a set of simple and explicit bira-
tional maps so that each birational maps can be factored into a compo-
sition of these simple maps. According to our discussion above, one can
expected that a divisorial contraction to a point, to a curve, or a flip
can be factored into a sequence of birational maps such that each map
is one of the following:

(1) a divisorial contraction to a point with minimal discrepancies
(or its inverse);

(2) a divisorial contraction to a curve which is the blowup over a
smooth curve in a smooth threefold;

(3) a flop.

The reader might also find that the technique and results of factor-
izations are very similar to that of Sarkisov’s program (cf. [5]). It would
be very interesting if there exists a unified program which realizes the
factorization of birational maps together with Sarkisov’s program.
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