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Further decay results on the system of NLS 
equations in lower order Sobolev spaces 

Chunhua Li 

Abstract. 

The initial value problem of a system of nonlinear Schrodinger 
equations with quadratic nonlinearities in two space dimensions is stud­
ied. We show there exists a unique global solution for this initial value 
problem which decays like t- 1 as t--+ +oo in L 00 (.IR2 ) for small initial 
data in lower order Sobolev spaces. 

§1. Introduction and main results 

We consider global existence of solutions and time decay of the so­
lutions to the following system of nonlinear Schrodinger equations 

(1) { 
iOtVj + 2! .6.vj = Fj (v1, · · ·,vz), t E lR,x E lR2, 

J 2 
Vj (O,x) = ¢J (x) ,x E lR, 

for 1 ::; j ::; l, where v1 is the complex conjugate of v1, m 1 is a mass of 
a particle and quadratic nonlinearity has the form 

Fj (v1, · · ·, vz) = L >-.!n,kvmvk, 
l~m~k~2l 

with 

The special system 

(2) 
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in ( t, x) E lR x JR2 , where m1 and m2 are masses of particles and "( is 
a complex constant, is studied in [2] and [3]. In [2], we showed global 
existence in time of small solutions and time decay estimates to the so­
lutions in the Sobolev space H 2•2 (1R2). We also proved nonexistence of 
scattering states in L 2 (1R2 ). We constructed the modified wave opera­
tors of System (2) for suitable given data in [3]. In the case of higher 
dimensions, existence of the wave operators of System (2) was studied 
in [5]. In [13], we considered the generalized system (1). We proved 
L 00 (1R2 )-time decay estimates of small solutions in the Sobolev space 
H 2·2 (1R2). We also discussed existence and nonexistence of wave oper­
ators. The purpose in this paper is to show that L 00 (1R2)-time decay 
of small solutions in lower order Sobolev spaces H,B,o (1R2) n Ho,,B (1R2), 
where 1 < (3 < 2. 

We make the following assumptions on quadratic terms Fj for 1 :::; 
j :::; l. 
(AI) There exist positive constants Cj for 1 :::; j :::; l such that 

l 

Im L cjFjVj = 0. 
j=l 

F ( ) im·&p ( -im,e -im18 ) 
j V1, · · ·, V! = e 1 j e V1, · · ·, e V! 

for any e E R 
Under the mass condition 2m1 = m 2 and"(= 1, System (2) obeys 

these two assumptions. We may find another physical example satisfying 
these assumptions in [1]. 

Condition (A1 ) is a sufficient condition under which System (1) sat­

isfies L 2 (1R2 ) conservation law Ot L~=l Cj [[vj [[~2(JR2) = 0, where Cj > 0 
for 1 :::; j :::; l. In fact, System (1) can be regarded as the nonrelativistic 
version of a system of nonlinear Klein-Gordon equations 

1 2 1 mjc2 
(3) -22 OtUj--2-b..uj+-2-uj=-Fj(u1 ,···,ul), j=1,···,l, 

c mj mj 

under Condition (A2 ), where cis the speed of light. The related systems 
of Klein-Gordon equations were considered in [7], [8] and [10]. 

In what follows, we use the same notations both for the vector func­
tion spaces and the scalar ones. For m, s E JR, weighted Sobolev space 
Hm,s (1R2 ) is defined by 

Hm,s (1R2) = { J = (h, ... , f~ E ~2 (1R2); } , 
[[j[[wn,s(JR2)- Lj=l [[jj[[H=·s(JR2) < 00 
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where llfi11H'"'•"(JR2) !!(1- ~)T(1 + lxl 2 )~fii!L2 (JR2 ). We write 

llfj lb(JR2) = 11/i II and Hm (1R.2 ) = Hm,O (1R.2 ) for simplicity. We de­
note by the same letter C various positive constants. 

Our main theorem is stated as follows : 

Theorem 1. Assume that (AI) and (A2 ) hold. We also assume 
that ¢ = ( ¢1, · · ·, ¢z) E H.B,o (1R.2 ) n H 0 •.B (1R.2 ), where 1 < f3 < 2. Then 
for some c: > 0 there exists a unique global solution v = ( v1 , • · ·, v1) to 
System (1} such that v = (v1 , • · ·, v1) E C (JR.; H.B,o (JR.2) n H 0·.B (JR.2)) 

and 
l 

llv (t)IIL=(JR2) = L llvi (t)IIL=(JR2) ~ C (1 + ltl)-1 
i=1 

for any¢= (¢1, · · ·, ¢1) satisfying 

I 

ll¢11w.o(JR2) + II¢11Ho·~(JR2) = L (11¢illw.o(JR2) + ll¢iiiHo·~(JR2)) ~ c:. 
i=1 

The global existence result of System (1) can be obtained by using 
the method of [11] and [9]. L 00 (1R.2)-time decay of small solutions for 
System (1) in H.B,O (1R.2) n H 0 •.B (JR.2), where 1 < f3 < 2, is our main 
result and will be proved by showing a priori estimates of local in time 
of solutions. This idea was used in [4] and [15]. 

Remark 1. By the same method, we may obtain the similar time 
decay results to Theorem 1 in the case of f3 > 2. 

§2. A priori estimates of solutions 

For any ¢ = ( ¢1, · · ·, ¢1) E H.B,o (JR.2 ) n H 0 •.B (1R.2 ) , where 1 < f3 < 2, 
we let T > 0 and v = (v1 , • • ·, v1) be a solution of System (1) in Space 
Xr = { C ([0, T] ; HiJ,O (1R.2 ) n H 0 •iJ (1R.2)) ; llvllxr < oo} with norm 

I I 

llvllx ="""'II vi llx = suptE[O TJ """'(1 + t)o llu _L ( -t) vi II ' 
T ~ T > ~ m· H0•~(JR2) 

j=1 j=1 3 . 

where 0 < 8 < H/3- 1). Existence of local in time of solutions can be 
obtained by contraction mapping principle. We give it without proof 
(See [14]). 

Theorem 2. LetT> 1, then there exists a small c: > 0 such that 
for any¢ = (¢1> · · ·, ¢z) E HM (1R.2 ) n H 0 •.B (1R.2 ) with ll¢11w.o(JR2) + 
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II<PIIHa,f3(JR2) ::; E, where 1 < (3 < 2. System (1) has a unique pair of 
solutions v = (v1, · · ·, vz) E Xr such that llvllxT ::; 2c. 

Let U0 (t) be the Schrodinger evolution group defined by U0 (t) = 

F-1 E° F with c5 =f. 0, E = e-~t1~1 2 fort =f. 0. In what follows we let v be a 
solution given by the above theorem. We define the dilation operator by 
(D0 q)) (x) = (i~)q) (-J) for c5 =f. 0 and define E = e-!t1~1 2 , M = e-f.lxl 2 

for t =f. 0. Evolution operator U0 (t) for t =f. 0 is written as 

We have 
Uo ( -t) q) (x) = -M~ (F-1 E0 D;,<f>) (x). 

Then the free evolution group is factorized as U0 (t) F-1 = M-~ DotM_l, 
i5 

whereM_l =FM-~F-1 . MoreoverwehaveFU0 (-t) = -M1E0D_L. 
i5 i5 i5t 

These formulas were used in [6] first. 
We estimate difference between the free Schrodinger solution and its 

main term. Lemma 1 is obtained in [4]. 

Lemma 1. Let f E H 0 •i'l (1R2), c5 =f. 0. Then 

II!- M-~ DatFUo ( -t) IIILoo(JR2) ::; Cltl-l-a IIUo ( -t) fiiHa,f3(JR2), 

for ltl ?: 1, where 0 < a < 1 and (3 > 1 + 2a. 

If we multiply both sides of (1) by FU ..L ( -t), then we can divide rnj 
the nonlinear term into the main term and the remainder term under 
the gauge condition (AI). Detailed calculations can be seen in [13]. 

We define 

Rl,j 

i (M -1) mJ F (-D= M- 1 FU 1 (-t)v1 · · · 
mJ t J i'} ml ml ' ' 

-D"":l.M;;.~FU..L (-t)vz) 
mz rnz 

and 

R2,j 

i ffij Fj (-Drnj M;;.~ FU __L ( -t) VI, .. ·, -Drnj M-:;;.1 FU ..L ( -t) vz) t m.l rnl ml l rnz 

-imJ FJ (-D=1 FU..L (-t)v1,· · ·,-D=jFU..L (-t)vz). t rnl 'ml rnz mz 
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Then the nonlinear term can be divided into two parts such that 

1 2 

i8tu· = -P. (u1 · · · uz) +D 1 '""'R; · 
J t J ' ' m. ~ ,J, 

j i=1 
(4) 

where 
u · = D 1 FU 1 ( -t) v ·. 

J mj mj J 

We multiply both sides of ( 4) by cj'iij , take the imaginary part and use 
Condition (Al) to obtain 

where c1 > 0 for 1 :::; j:::; l. We prove the second term of the right hand 
side of ( 4) is a remainder term. 

Lemma 2. We have 

l 2 2 

L L IIRi,jiiL=(JR2):::; Cltl-1-a llu ;k ( -t) viiHo,f3(JR2)' 
j=1i=1 

for itl ?: 1, where 

l 

llu ;k ( -t) viiH0,/3(JR2) = ~ llu rr!j ( -t) Vj IIH0,/3(JR2)' 

0 < a < 1 and (3 > 1 + 2o:. 

Proof. By Schwarz inequality and Lemma X 4 in [12], we have 

IIR1,j IIL=(JR2) 
< Cltl-1-a IIFj (-D5FM-m 1 U__1__ (-t)v1, · · ·, 

Tnl m1 

-D5FM-mzu_1_ (-t)vz)ll 
"'l "'l Hf3,0(JR2) 

l 

< Cltl-1-a L llu rr!p (-t)vpiiL1(JR2) llu rr!. (-t)vqiiHo.f3(JR2) 
p,q=1 

l 

< Cltl-1-a L llu rr!p ( -t) vpiiHo,/3(JR2) llu rr!. ( -t) vqiiHo,f3(JR2) 
p,q=1 

l 2 

< Cltl-1-aLIIU__l_(-t)vjll , j=1 "'j H0,/3(JR2) 
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where 0 < o: < 1 and fJ > 1 + 2o:. 
We can estimate IIR2,jiiL=(JR2) by the same method. Q.E.D. 

We define 

(6) IJ,); is= U,); (t) lxls U,;; ( -t), 
J J J 

where s > 0. Then (6) can be presented as (see [4]) 

Moreover we have commutation relations with I J ,;;j I 8 and L ,;;j = i8t + 
2,;, . ~ such that 

J 

We evaluate the derivative of jju, ( t)vjj with respect tot. m - HD,f3(JR2) 
Then we have 

Lemma 3. We have 

! jju ~ (-t) vjjH0,/3(JR2) 

< eel llu ~ ( -t) viiHD,f3(JR2) IIFU ~ ( -t) viiL00 (lR2) 

+ eel-a jju .l ( -t) vjj2 
"' HD,f3(JR2) 

for any t E [1, T], where 0 < o: < 1, 2 > fJ > 1 + 2o: and 

l 

II FU .l ( -t) vjj ="""' jjFU _1_ ( -t) vii . "' L=(JR2) ~ "'j L=(JR2) 
J=l 

By Lemma 3, we have the following desired a priori estimates of 
local solutions. 

Lemma 4. There exist small c > 0 and J with d < J < ~ ( o: is 
mentioned in Lemma 3.) such that 



and 
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l 

L (11¢jiiH/3,D(JR2) + ll¢jiiHo,/3(ffi:2)) ~ c 
j=l 

for any t E [1, T], where 2 > fJ > 1. 
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The proofs of Lemma 3 and Lemma 4 are similar to the proofs in 
[13]. Because of the limitation of length, we omit the proofs of them 
here. 

§3. Proof of Theorem 1. 

Proof. We consider the case of t 2 1. From Lemma 1 we have 

whereO <a< 1 andfJ > 1+2a. Bythestandardcontinuationargument 
we have a unique time global solution such that 

II U_l_ (-t)vll ~ c!(1 +t)8 , 
m HD,/3 (ffi:2) 

IIFU _1_ ( -t) vii ~ c! 
m L=(JR2) 

for any t 2 1, where d < 6 < ~ and 2 > fJ > 1 + 2a. 
Therefore we get the time decay estimates 

j=l 

< eel IIFU ~ ( -t) viiL=(JR2) +eel-a llu ~ ( -t) vt0,/3(JR2) 

< e (ch-l + el-a+J) ~ ee1 

fort 2 1. If t E [0, 1], we have llviiL=(JR2) ~ ec by llv(O)IIw.ocrn:2) ~ c 
for 2 > fJ > 1 . In the case of t ~ 0, the theorem follows by the same 
method. This completes the proof of the theorem. Q.E.D. 
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