Advanced Studies in Pure Mathematics 64, 2015 Nonlinear Dynamics in Partial Differential Equations pp. 347–355

Existence of global smooth solutions to the Cauchy problem of bipolar Navier–Stokes–Maxwell system

Shu Wang, Yuehong Feng and Xin Li

Abstract.

This work is concerned with smooth periodic solutions for the compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force. The existence and uniqueness of the global smooth solution is established by using energy method.

§1. Introduction

In this paper, we are interested in the Navier–Stokes–Maxwell system

(1.1)
$$\begin{cases} \partial_t n_\mu + \nabla \cdot (n_\mu u_\mu) = 0, \\ \partial_t u_\mu + u_\mu \cdot \nabla u_\mu + \frac{\nabla p(n_\mu)}{n_\mu} = q_\mu (E + u_\mu \times B) + \frac{\nu_\mu \triangle u_\mu}{n_\mu}, \\ \partial_t E - \nabla \times B = n_e u_e - n_i u_i, \\ \partial_t B + \nabla \times E = 0, \\ \nabla \cdot E = n_i - n_e, \ \nabla \cdot B = 0. \end{cases}$$

Where, $\mu = e, i, n_e = n_e(t, x) > 0, n_i = n_i(t, x) > 0, u_e = u_e(t, x) \in \mathbb{R}^3$, $u_i = u_i(t, x) \in \mathbb{R}^3, E = E(t, x) \in \mathbb{R}^3, B = B(t, x) \in \mathbb{R}^3$, for $t > 0, x \in \mathbb{T} = (\frac{\mathbb{R}}{2\pi})^3$, denoting the electron density, ion density, electron velocity, ion velocity, electric field and magnetic field, respectively. The electrons of charge $q_e = -1$ and a single species of ions of charge $q_i = 1$ is considered. p depending only on n_{μ} denotes the pressure function with the usual assumption that p is smooth in the argument and p' > 0. $\nu_{\mu} > 0$ is a constant denoting viscosity coefficient. Throughout this

Received January 3, 2012.

²⁰¹⁰ Mathematics Subject Classification. 35A01, 35Q30, 35Q35, 35Q61.

Key words and phrases. Bipolar Navier–Stokes–Maxwell system, global smooth solution, interpolation inequality.

paper, we set $\nu_{\mu} = 1$ without loss of generality. The Initial data is given as

(1.2)
$$[n_{\mu}, u_{\mu}, E, B] |_{t=0} = [n_{\mu 0}, u_{\mu 0}, E, B], \ x \in \mathbb{T},$$

with the compatible condition

(1.3)
$$\nabla \cdot E_0 = n_{i0} - n_{e0}, \quad \nabla \cdot B_0 = 0, \quad x \in \mathbb{T}.$$

The study of the unipolar Navier–Stokes–Maxwell system is due to Duan [2]. In related models, such as Euler–Maxwell equations, some problems have been widely analyzed by many authors. The first mathematical study of the unipolar Euler–Maxwell system is due to Chen et al [1]. Peng and Wang [4] established convergence of the compressible Euler–Maxwell system to the incompressible Euler system for wellprepared smooth initial data. Ueda et al [6] established the existence and uniqueness of global solutions with small amplitude to the unipolar Euler–Maxwell system in three space dimensions.

In this paper, we investigate the existence and uniqueness of global solution to the Cauchy problem (1.1)-(1.3).

$\S 2.$ Preliminaries and main results

Let us introduce some notations for the use later. $a \sim b$ means $\lambda a \leq b \leq \frac{1}{\lambda}$ for a generic constant $0 < \lambda < 1$. For any integer $m \geq 0$, we use H^m , \dot{H}^m to denote the usual Sobolev space $H^m(\mathbb{T})$ and the corresponding m-order homogeneous Sobolev space, respectively. Set $L^2 = H^0$. We use $\langle \cdot, \cdot \rangle$ to denote the inner product over the Hilbert space $L^2(\mathbb{T})$. For a multi-index $\alpha = [\alpha_1, \alpha_2, \alpha_3]$, we set $\partial_j = \partial_{x_j}$ (j = 1, 2, 3). The main result is stated as follows.

Theorem 2.1. Let $N \ge 4$ and (1.3) hold. There exit $\delta_0 > 0$ sufficiently small and C > 0 such that if

$$\|[n_{\mu 0}-1, u_{\mu 0}, E_0, B_0]\|_N \le \delta_0,$$

then, the Cauchy problem (1.1)–(1.2) has a unique global solution $[n_{\mu}(t,x), u_{\mu}(t,x), E(t,x), B(t,x)]$ with

$$[n_{\mu}-1, u_{\mu}, E, B] \in C([0, \infty); H^{N}(\mathbb{T})),$$

$$n_{\mu} - 1 \in L^{2}((0, +\infty); H^{N}(T)), \quad \nabla u_{\mu} \in L^{2}((0, +\infty); H^{N}(T)),$$
$$\nabla E \in L^{2}((0, +\infty); H^{N-2}(T)), \quad \nabla^{2}B \in L^{2}((0, +\infty); H^{N-3}(T)),$$

Existence of global smooth solutions to bipolar Navier-Stokes-Maxwell 349

and

$$\begin{aligned} \|[n_{\mu} - 1, u_{\mu}, E, B]\|_{N}^{2} + \int_{0}^{t} \left(\|n_{\mu}(s) - 1\|_{N}^{2} + \|\nabla u_{\mu}(s)\|_{N}^{2} + \|\nabla E(s)\|_{N-2}^{2} + \|\nabla^{2}B(s)\|_{N-3}^{2}\right) ds &\leq C \|[n_{\mu0} - 1, u_{\mu0}, E_{0}, B_{0}]\|_{N}^{2} \end{aligned}$$

for any $t \geq 0$.

Next, we introduce the reformulated version of (1.1). Set

(2.1)
$$\rho_{\mu} = n_{\mu} - 1, \quad v_{\mu} = \frac{1}{\gamma} u_{\mu}, \quad \widetilde{E} = \frac{1}{\gamma} E, \quad \widetilde{B} = \frac{1}{\gamma} B,$$

with $\gamma = \sqrt{p'(1)} > 0$. Then, $V := [\rho_{\mu}, v_{\mu}, \widetilde{E}, \widetilde{B}]$ satisfies

(2.2)
$$\begin{cases} \partial_t \rho_\mu + \gamma \nabla \cdot v_\mu = h_{1\mu}, \\ \partial_t v_\mu + \gamma \nabla \rho_\mu - q_\mu \widetilde{E} - \Delta v_\mu = h_{2\mu}, \\ \partial_t \widetilde{E} - \nabla \times \widetilde{B} + v_i - v_e = h_3, \\ \partial_t \widetilde{B} + \nabla \times \widetilde{E} = 0, \\ \nabla \cdot \widetilde{E} = \frac{1}{\gamma} (\rho_i - \rho_e), \quad \nabla \cdot \widetilde{B} = 0, \quad t > 0, \ x \in \mathbb{T}, \end{cases}$$

with initial data

(2.3)
$$V|_{t=0} = V_0 := [\rho_{\mu 0}, v_{\mu 0}, \widetilde{E}_0, \widetilde{B}_0], \ x \in \mathbb{T}.$$

Here, $V_0 = [\rho_{\mu 0}, v_{\mu 0}, \widetilde{E}_0, \widetilde{B}_0]$ satisfies

(2.4)
$$\nabla \cdot \widetilde{E}_0 = \frac{1}{\gamma} (\rho_{i0} - \rho_{e0}), \quad \nabla \cdot \widetilde{B}_0 = 0, \quad x \in \mathbb{T}.$$

Where,

(2.5)
$$h_{1\mu} = -\gamma \nabla \cdot (\rho_{\mu} v_{\mu}),$$

(2.6)
$$\begin{aligned} h_{2\mu} &= -\gamma v_{\mu} \cdot \nabla v_{\mu} - \frac{1}{\gamma} \left(\frac{\nabla p(1+\rho_{\mu})}{1+\rho_{\mu}} - p'(1) \nabla \rho_{\mu} \right) + q_{\mu} \gamma v_{\mu} \times \widetilde{B} \\ &+ \left(\frac{1}{1+\rho_{\mu}} - 1 \right) \Delta v_{\mu}, \end{aligned}$$

(2.7)
$$h_3 = (\rho_e v_e - \rho_i v_i).$$

In the following, we set the integer $N \geq 4$. Besides, for $V = [\rho_{\mu}, v_{\mu}, \widetilde{E}, \widetilde{B}]$, we define the full instant energy functional $\mathcal{E}_N(V(t))$ and the corresponding dissipation rates $\mathcal{D}_N(V(t))$ by

(2.8)
$$\mathcal{E}_N(V(t)) \sim \left\| \left[\rho_\mu, v_\mu, \widetilde{E}, \widetilde{B} \right] \right\|_N^2$$

and

(2.9)
$$\mathcal{D}_N(V(t)) \sim \|\rho_\mu\|_N^2 + \|\nabla v_\mu\|_N^2 + \|\nabla \widetilde{E}\|_{N-2}^2 + \|\nabla^2 \widetilde{B}\|_{N-3}^2$$

Then, concerning the reformulated Cauchy problem (2.2)-(2.3), one obtain the following global existence result.

Proposition 2.1. Assume that $V_0 = [\rho_{\mu 0}, v_{\mu 0}, \widetilde{E}_0, \widetilde{B}_0]$ satisfies (2.4). Then, there exist $\mathcal{E}_N(\cdot)$ and $\mathcal{D}_N(\cdot)$ such that the following holds true. If $\mathcal{E}_N(V_0)$ is small enough, the Cauchy problem (2.2)–(2.3) has a unique global nonzero solution $V = [\rho_{\mu}, v_{\mu}, \widetilde{E}, \widetilde{B}]$ satisfying

(2.10)
$$V \in C([0,\infty); H^N(\mathbb{T}))$$

and

(2.11)
$$\mathcal{E}_N(V(t)) + \lambda \int_0^t \mathcal{D}_N(V(s)) ds \le \mathcal{E}_N(V_0)$$

for any $t \geq 0$.

Lastly, it is easy to see that Theorem 2.1 follows from Proposition 2.1. Thus, the rest of this paper is to prove the stated above Proposition.

$\S3.$ A priori estimates and the proof of global existence

3.1. A priori estimates

Theorem 3.1. Assume $N \geq 4$ and $V = [\rho_{\mu}, v_{\mu}, \widetilde{E}, \widetilde{B}] \in C([0, T); H^{N}(\mathbb{T}))$ is smooth for T > 0 with

(3.1)
$$\sup_{0 \le t \le T} \|\rho_{\mu}(t)\|_{N} \le 1,$$

and suppose that V solves the system (2.2) for $t \in (0,T)$. Then, there exist $\mathcal{E}_N(\cdot)$ and $\mathcal{D}_N(\cdot)$ in the form of (2.8) and (2.9) such that

(3.2)
$$\frac{d}{dt}\mathcal{E}_N(V(t)) + \lambda \mathcal{D}_N(V(t)) \le C\mathcal{E}_N(V(t))^{\frac{1}{2}}\mathcal{D}_N(V(t))$$

for any $0 \le t \le T$.

Existence of global smooth solutions to bipolar Navier-Stokes-Maxwell 351

Proof. It is divided by five steps as follows. Step 1 It holds that

(3.3)
$$\frac{1}{2} \frac{d}{dt} \|V\|_N^2 + \|\nabla v_\mu\|_N^2 \le C \|V\|_N \|[\rho_\mu, \nabla v_\mu]\|_N^2.$$

In fact, from the first two equations of (2.2), energy estimates on $\partial^{\alpha} \rho_{\mu}$ and $\partial^{\alpha} v_{\mu}$ for $|\alpha| \leq N$ give

(3.4)
$$\frac{\frac{1}{2}\frac{d}{dt}\left\|\left[\rho_{\mu}, v_{\mu}, \widetilde{E}, \widetilde{B}\right]\right\|_{N}^{2} + \left\|\nabla v_{\mu}\right\|_{N}^{2}}{=\sum_{|\alpha|\leq N} \left(\left\langle\partial^{\alpha}h_{1\mu}, \partial^{\alpha}\rho_{\mu}\right\rangle + \left\langle\partial^{\alpha}h_{2\mu}, \partial^{\alpha}v_{\mu}\right\rangle + \left\langle\partial^{\alpha}h_{1\mu}, \partial^{\alpha}\widetilde{E}\right\rangle\right)}.$$

Notice

(3.5)
$$h_{1\mu} \sim \nabla \cdot (\rho_{\mu} v_{\mu}), \ h_{3} \sim \rho_{e} v_{e} - \rho_{i} v_{i},$$

(3.6)
$$h_{2\mu} \sim v_{\mu} \cdot \nabla v_{\mu} + \rho_{\mu} \nabla \rho_{\mu} + v_{\mu} \times \widetilde{B} + \rho_{\mu} \Delta v_{\mu}.$$

Then for the second term on the right hand side of (3.4), (3.6) implies that

(3.7)
$$\begin{aligned} &\langle \partial^{\alpha} h_{2\mu}, \partial^{\alpha} v_{\mu} \rangle \\ &\leq C \left| \langle \partial^{\alpha} (v_{\mu} \cdot \nabla v_{\mu}), \partial^{\alpha} v_{\mu} \rangle \right| + C \left| \langle \partial^{\alpha} (\rho_{\mu} \cdot \nabla \rho_{\mu}), \partial^{\alpha} v_{\mu} \rangle \right| \\ &+ C \left| \langle \partial^{\alpha} (v_{\mu} \times \widetilde{B}), \partial^{\alpha} v_{\mu} \rangle \right| + C \left| \langle \partial^{\alpha} (\rho_{\mu} \Delta v_{\mu}), \partial^{\alpha} v_{\mu} \rangle \right|. \end{aligned}$$

Let I_j denote the j-th (j = 1, 2, 3, 4) term on the right hand side of (3.7). When $|\alpha| = 0$, one has

(3.8)
$$I_1 \le C \|v_\mu\|_{L^6} \|\nabla v_\mu\| \|v_\mu\|_{L^3} \le C \|v_\mu\|_N \|\nabla v_\mu\|_N^2,$$

(3.9)
$$I_{2} \leq C \|v_{\mu}\|_{L^{\infty}} \|\nabla \rho_{\mu}\| \|\rho_{\mu}\| \leq C \|v_{\mu}\|_{N} \|\rho_{\mu}\|_{N}^{2},$$

(3.10)
$$I_3 = C \left| \langle v_{\mu} \times \widetilde{B}, v_{\mu} \rangle \right| = 0$$

and

$$(3.11) \quad I_4 \le C \|v_\mu\|_{L^{\infty}} \|\rho_\mu\| \|\Delta v_\mu\| \le C \|v_\mu\|_N \left(\|\rho_\mu\|_N^2 + \|\nabla v_\mu\|_N^2 \right).$$

When $|\alpha| \ge 1$, one has

(3.12)
$$I_1 \le I_{11} + \sum_{\beta < \alpha} C^{\alpha}_{\beta} I_{12}, \ I_2 \le I_{21} + \sum_{\beta < \alpha} C^{\alpha}_{\beta} I_{22},$$

S. Wang, Y. H. Feng and X. Li

(3.13)
$$I_3 \le I_{31} + \sum_{\beta < \alpha} C^{\alpha}_{\beta} I_{32}, \ I_4 \le I_{41} + \sum_{\beta < \alpha} C^{\alpha}_{\beta} I_{42}.$$

Where,

(3.14)
$$I_{11} = C \left| \left\langle v_{\mu} \partial^{\alpha} \nabla v_{\mu}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \left\| v_{\mu} \right\|_{N} \left\| \nabla v_{\mu} \right\|_{N}^{2},$$

(3.15)
$$I_{12} = C \left| \left\langle \partial^{\alpha-\beta} v_{\mu} \partial^{\beta} \nabla v_{\mu}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \|v_{\mu}\|_{N} \|\nabla v_{\mu}\|_{N}^{2},$$

(3.16)
$$I_{21} = C |\langle \rho_{\mu} \partial^{\alpha} \nabla \rho_{\mu}, \partial^{\alpha} v_{\mu} \rangle| \\ \leq C ||v_{\mu}||_{N} ||\rho_{\mu}||_{N}^{2} + C ||\rho_{\mu}||_{N} \left(||\rho_{\mu}||_{N}^{2} + ||\nabla v_{\mu}||_{N}^{2} \right),$$

(3.17)
$$I_{22} = C \left| \left\langle \partial^{\alpha-\beta} \rho_{\mu} \partial^{\beta} \nabla \rho_{\mu}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \|v_{\mu}\|_{N} \|\rho_{\mu}\|_{N}^{2},$$

(3.18)
$$I_{31} = C \left| \left\langle v_{\mu} \times \partial^{\alpha} \widetilde{B}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \left\| \widetilde{B} \right\|_{N} \left\| \nabla v_{\mu} \right\|_{N}^{2},$$

(3.19)
$$I_{32} = C \left| \left\langle \partial^{\alpha-\beta} v_{\mu} \times \partial^{\beta} \widetilde{B}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \left\| \widetilde{B} \right\|_{N} \left\| \nabla v_{\mu} \right\|_{N}^{2},$$

(3.20)
$$I_{41} = C \left| \left\langle \rho_{\mu} \partial^{\alpha} \Delta v_{\mu}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \left\| \rho_{\mu} \right\|_{N} \left\| \nabla v_{\mu} \right\|_{N}^{2},$$

(3.21)
$$I_{42} = C \left| \left\langle \partial^{\alpha-\beta} \rho_{\mu} \partial^{\beta} \Delta v_{\mu}, \partial^{\alpha} v_{\mu} \right\rangle \right| \le C \|\rho_{\mu}\|_{N} \|\nabla v_{\mu}\|_{N}^{2}.$$

Thus, (3.7)-(3.21) give that

(3.22)
$$\langle \partial^{\alpha} h_{2\mu}, \partial^{\alpha} v_{\mu} \rangle \leq C \left\| \left[\rho_{\mu}, v_{\mu}, \widetilde{B} \right] \right\|_{N} \left\| \left[\rho_{\mu}, \nabla v_{\mu} \right] \right\|_{N}^{2}$$

From (3.5) similar argument give that

(3.23)
$$\langle \partial^{\alpha} h_{1\mu}, \partial^{\alpha} \rho_{\mu} \rangle \leq C \| [\rho_{\mu}, v_{\mu}] \|_{N} \| [\rho_{\mu}, \nabla v_{\mu}] \|_{N}^{2},$$

(3.24)
$$\left\langle \partial^{\alpha} h_{3}, \partial^{\alpha} \widetilde{E} \right\rangle \leq C \left\| \widetilde{E} \right\|_{N} \left\| \left[\rho_{\mu}, \nabla v_{\mu} \right] \right\|_{N}^{2}.$$

Hence, (3.4) together with (3.22)–(3.24) yield (3.3). Step 2 It holds that

(3.25)
$$\frac{d}{dt} \sum_{|\alpha| \le N-1} \left(\langle \partial^{\alpha} v_{e}, \partial^{\alpha} \nabla \rho_{e} \rangle \right) + \langle \partial^{\alpha} v_{i}, \partial^{\alpha} \nabla \rho_{i} \rangle + \lambda \left\| \rho_{\mu} \right\|_{N}^{2} \\ \le C \left\| \nabla v_{\mu} \right\|_{N}^{2} + C \left\| \left[\rho_{\mu}, v_{\mu}, \widetilde{B} \right] \right\|_{N} \left\| \left[\rho_{\mu}, \nabla v_{\mu} \right] \right\|_{N}^{2}.$$

352

In fact, Let $|\alpha| \leq N - 1$. Applying ∂^{α} to the second equation of (2.2), multiplying it by $\partial^{\alpha}(\gamma \nabla \rho_{\mu})$, taking integration in x and then using integration by parts and also the final equation of (2.2) gives

$$(3.26) \frac{d}{dt} \sum_{\mu=e,i} \langle \partial^{\alpha} (\gamma \nabla \rho_{\mu}), \partial^{\alpha} v_{\mu} \rangle + \lambda \left(\|\partial^{\alpha} [\rho_{e}, \rho_{i}]\|^{2} + \|\partial^{\alpha} \nabla [\rho_{e}, \rho_{i}]\|^{2} \right) \\ \leq \| [\nabla v_{e}, \nabla v_{i}] \|_{N}^{2} + \langle \partial^{\alpha} (\gamma \nabla h_{1e}), \partial^{\alpha} v_{e} \rangle + \langle \partial^{\alpha} (\gamma \nabla h_{1i}), \partial^{\alpha} v_{i} \rangle \\ + \langle \partial^{\alpha} h_{2e}, \partial^{\alpha} (\gamma \nabla \rho_{e}) \rangle + \langle \partial^{\alpha} h_{2i}, \partial^{\alpha} (\gamma \nabla \rho_{i}) \rangle ,$$

where, Poincare inequality and Cauchy–Schwarz inequality were also used used. Similar argument as estimate for $\langle \partial^{\alpha} h_{2\mu}, \partial^{\alpha} v_{\mu} \rangle$ in step 1, we get (3.25).

Step 3 It holds that

$$(3.27) \qquad \frac{d}{dt} \sum_{|\alpha| \le N-2} \left\langle \partial^{\alpha} \nabla \times \widetilde{E}, \partial^{\alpha} \nabla \times (v_{e} - v_{i}) \right\rangle + \lambda \left\| \nabla \widetilde{E} \right\|_{N-2}^{2}$$
$$\leq C \left\| [\widetilde{E}, \widetilde{B}] \right\|_{N} \left(\left\| [\rho_{\mu}, \nabla v_{\mu}] \right\|_{N}^{2} + \left\| \nabla \widetilde{E} \right\|_{N-2}^{2} \right) + \varepsilon \left\| \nabla^{2} \widetilde{B} \right\|_{N-3}^{2} + C_{\varepsilon} \left\| \nabla v_{\mu} \right\|_{N}^{2}$$

In fact, for $|\alpha| \leq N-2$, applying ∂^{α} to the second equation of (2.2), multiplying it by $\partial^{\alpha} \nabla \times \tilde{E}$, taking integration in x and then using integration by parts and also the third equation of (2.2) gives (3.27). Where we also used

(3.28)
$$\left\| \partial^{\alpha} \partial_{i} \widetilde{E} \right\| = \left\| \partial_{i} \Delta^{-1} \nabla \times (\nabla \times \partial^{\alpha} \widetilde{E}) \right\| \leq C \left\| \nabla \times \partial^{\alpha} \widetilde{E} \right\|$$

for each $1 \leq i \leq 3$, due to the fact that $\partial_i \triangle^{-1} \nabla$ is bounded from L^p to L^p for 1 ; see [5].Step 4 It holds that

(3.29)
$$\frac{d}{dt} \sum_{1 \le |\alpha| \le N-2} \left\langle \partial^{\alpha} (-\nabla \times \widetilde{B}), \partial^{\alpha} \widetilde{E} \right\rangle + \lambda \left\| \nabla^{2} \widetilde{B} \right\|_{N-3}^{2} \\ \le C \left\| \nabla \widetilde{E} \right\|_{N-2}^{2} + C \left\| \nabla v_{\mu} \right\|_{N}^{2} + C \left\| \widetilde{B} \right\|_{N} \left\| [\rho_{\mu}, \nabla v_{\mu}] \right\|_{N}^{2}.$$

In fact, for $1 \leq |\alpha| \leq N-2$, applying ∂^{α} to the third equation of (2.2), multiplying it by $\partial^{\alpha}(-\nabla \times \widetilde{B})$, taking integration in x and then using the fourth equation of (2.2) gives (3.29) by further using Cauchy–Schwarz inequality and taking summation over $|\alpha| \leq N-2$, where we also used (3.28) for \widetilde{B} .

Step 5 Now following four steps above, we are ready to prove (3.2). In fact, let us define

$$\mathcal{E}_{N}(V(t)) = \left\| \left[\rho_{\mu}, v_{\mu}, \widetilde{E}, \widetilde{B} \right] \right\|_{N}^{2} + \mathcal{K}_{1} \sum_{|\alpha| \leq N-1} \left(\left\langle \partial^{\alpha} (\gamma \nabla \rho_{e}), \partial^{\alpha} \nabla v_{e} \right\rangle \right) + \left\langle \partial^{\alpha} (\gamma \nabla \rho_{i}), \partial^{\alpha} \nabla v_{i} \right\rangle \right)$$

$$(3.30) + \mathcal{K}_{1} \sum_{|\alpha| \leq N-2} \left\langle \partial^{\alpha} \nabla \times \widetilde{E}, \partial^{\alpha} \nabla \times (v_{e} - v_{i}) \right\rangle$$

$$+ \mathcal{K}_{2} \sum_{1 \leq |\alpha| \leq N-2} \left\langle \partial^{\alpha} (-\nabla \times \widetilde{B}), \partial^{\alpha} \widetilde{E} \right\rangle$$

for constants $0 < \mathcal{K}_2 \ll \mathcal{K}_1 \ll 1$ to be determined. Notice that as soon as $0 < \mathcal{K}_i \ll 1$ is sufficiently small for i = 1, 2, then $\mathcal{E}_N(V(t)) \sim ||V||_N^2$ holds true. Moreover, by letting $0 < \mathcal{K}_2 \ll \mathcal{K}_1 \ll 1$ be sufficiently small with $\varepsilon \mathcal{K}_1 < \mathcal{K}_2$, the sum of (3.3), $(3.25) \times \mathcal{K}_1$, $(3.27) \times \mathcal{K}_1$ and $(3.29) \times \mathcal{K}_2$ gives that there exists $\lambda > 0$, C > 0 such that (3.2) also holds true with $\mathcal{D}_N(\cdot)$ defined in (2.9). This completes the proof of the Theorem 3.1. Q.E.D.

3.2. The proof of global existence.

Proof of Proposition 2.1. The global existence of smooth solutions follows from the standard argument by using the local existence result, the a priori estimate (3.2) given in Theorem 3.1 and the continuous extension argument, see [3]. This completes the proof of the Proposition 2.1. Q.E.D.

Acknowledgments. The authors are grateful to the referee for the comments. This work is supported by the key fund of the Beijing education committee of China, NSFC (No. 11371042), BNSF (No. 1132006) and China Postdoctoral Science Foundation funded project.

References

- G. Q. Chen, J. W. Jerome and D. H. Wang, Compressible Euler–Maxwell equations, Transport Theory Statist. Phys., 29 (2000), 311–331.
- [2] R. J. Duan, Green's function and large time behavior of the Navier–Stokes– Maxwell system, preprint, 2011.
- [3] T. Nishida, Nonlinear hyperbolic equations and related topics in fluids dynamics, Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, No. 78-02, 1978.

Existence of global smooth solutions to bipolar Navier-Stokes-Maxwell 355

- [4] Y.-J. Peng and S. Wang, Convergence of compressible Euler–Maxwell equations to incompressible Euler equations, Comm. Partial Differential Equations, 33 (2008), 349–376.
- [5] E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970.
- [6] Y. Ueda, S. Wang and S. Kawashima, Large global existence and asymptotic decay of solutions to the Euler–Maxwell system, preprint 2010.

Shu Wang College of Applied Sciences Beijing University of Technology Beijing 100124 China

Yuehong Feng College of Applied Sciences Beijing University of Technology Beijing 100124 China

Xin Li Department of Mathematics and Computer Science Xinyang Vocational and Technical College Xinyang 464000 China

E-mail address: wangshu@bjut.edu.cn fengyuehong001@163.com lixin91600@163.com