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Large-time asymptotics for Hamilton-Jacobi 
equations with noncoercive Hamiltonians 

appearing in crystal growth 

Yoshikazu Giga, Qing Liu and Hiroyoshi Mitake 

Abstract. 

We investigate the large-time behavior of viscosity solutions of 
Hamilton-Jacobi equations with noncoercive Hamiltonian in a multi­
dimensional Euclidean space. Our motivation comes from a model de­
scribing growing faceted crystals recently discussed by E. Yokoyama, 
Y. Giga and P. Rybka (Phys. D, 237 (2008), no. 22, 2845-2855). We 
prove that the average growth rate of a solution is constant only in 
a subset, which will be called effective domain, of the whole domain 
and give the asymptotic profile in the subset. This means that the 
large-time behavior for noncoercive problems may depend on the space 
variable in general, which is different from the usual results under the 
coercivity condition. Moreover, on the boundary of the effective do­
main, the gradient with respect to the X-variable of solutions blows up 
as time goes to infinity. Therefore, we are naturally led to study singu­
lar Neumann problems for stationary Hamilton-Jacobi equations. We 
establish the existence and comparison results for singular Neumann 
problems and apply the results for a large-time asymptotic profile on 
the effective domain. 

§1. Introduction 

In this paper we consider the Cauchy problem for Hamilton-Jacobi 
(HJ) equations 

(C) { 
Ut + H(x, Du) = f(x) 

u(·, 0) = uo 
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with noncoercive Hamiltonian H : JRN x JRN -+ lR of the form 

(1) H(x,p) = O'(x)m(lpl). 

Here 0', f : JRN -+ [0, oo) and m : [0, oo) -+ [0, 1) are given continuous 
functions. Moreover m(r) is assumed to be Lipschitz continuous and 
satisfy 

(2) strictly increasing and m(r) -+ 1 as r-+ oo. 

The function u : JRN x [0, oo) -+ lR is an unknown function while 
u0 : JRN -+ lR is a given initial value which is assumed to be Lipschitz 
continuous. To be consistent with the theory of crystal growth [1, 7] 
we call 0', f and m a surface supersaturation, external force at point x 
and a kinetic coefficient, respectively. Throughout the paper, we denote 
Ut := 8uj8t and Du := (8uj8x 1 , ... , 8uj8xN ). 

A very primitive example which we have in mind is 

(3) { 
Ut + ~ arctan(u;) = lxl 

u(x,O) = 0 

in lR x (0, oo), 

for all x E R 

If u is a solution of (3), then the large-time asymptotic behavior of u 
can be described by 

u(·, t)-+ U 00 uniformly on [-1, 1], 

where 11xl 7r 

u 00 (x) = (tan( -y)) 112 dy for all x E [-1, 1], 
0 2 

and 

u(·, t)-+ +oo uniformly on each compact subset of (-oo, -1) U (1,oo) 

as t-+ oo. This large time behavior is easily obtained by the method of 
characteristics as in [4, Section 2]. From this example we learn that the 
growth rate of u may depend on the x-variable explicitly. We emphasize 
that this phenomenon seems to be new at least from the viewpoint of 
study for the large-time behavior of solutions of HJ equations. The 
typical result of study for this asymptotic problem for HJ equations with 
(coercive) Hamiltonian shows that solutions converge (locally) uniformly 
with the constant growth rate in the whole domain which is considered 
as time goes to infinity. (See [5] and references therein for instance.) 

Roughly speaking, on the one hand, the viscosity solution of (C) has 
the constant growth rate asymptotically in a subset in the whole domain 
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~N, which we will call the effective domain for (C), and on the other 
hand, outside of the effective domain, the viscosity solution of (C) has 
an unstable growth rate. In [7], an effective domain is called a maximal 
stable region of a growing facet. The other feature to be noted is that 
gradient grow-up (or infinite time gradient blow-up) of solutions happens. 
More precisely, let u be the solution of (C), ne c ~N be the effective 
domain and c be the growth rate on ne and then the normal derivative 
with respect to the x-variable of u- ct blows up on the boundary one 
of ne as time goes to infinity, i.e.' 

D(u(x, t)- ct) · n(x) -t +oo for all x E one as t -too, 

whereas u - ct remains bounded on ne = ne u one. 
One of the aims of this paper is to investigate the large-time behavior 

of viscosity solutions of (C). More precisely, we give the formulas of the 
effective domain and the growth rate and prove that viscosity solutions 
of (C) converge uniformly on the effective domain and that outside of 
the effective domain they have growth rates which are higher than that 
on the effective domain. 

It turns out that the asymptotic profile on the effective domain is 
reduced to stationary problems. As we state above, we encounter a dif­
ficulty related to boundary-value problems for stationary HJ equations. 
More precisely, we are led to consider the singular Neumann problem for 
stationary HJ equations 

(4) 

(S) 

(5) 

IDvl = m -1 ( f~lx~ c) 

OV 
-=+oo on 
sup lv(x)l < +oo, 
n. 

where c and ne will be decided by u, m, f. See Section 3 below. 
We use the following definition of solutions of (S) which has been 

introduced in [6, Section V.l]. 

Definition 1 (Definition of solutions of (S)). Let v be a function 
on ne with values in R We call v a subsolution of (S) if v E USC (Oe) 
is a viscosity subsolution of (4). We call v a supersolution of (S) if 
v E LSC (Oe) is a viscosity supersolution of (4) and satisfies 

v - ¢ never has a local minimum on ne 
at the boundary one for any¢ E C 1 (ne)· 
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We call v a solution of (S) if v E C(Oe) is a subsolution and a superso­
lution of (S). 

In order to distinguish a viscosity solution of (4) which blows up at 
some points on boundary, i.e., u(x)-+ +oo as X-+ Xo E ofl, we impose 
(5). In fact, notice that in the example above, we have 

(uoo)x(x) lx=±l · ± 1 = +oo, 

while u is bounded on [-1, 1]. 
We present the explanation for the derivation of (C). We establish 

the existence and comparison results for (S) in Section 3.1 and we use 
these results for (S) for the study of the large-time behavior of viscosity 
solutions of (C) in Section 3.2. 

§2. Explanation for the derivation of (C) 

Before stating main results on (S) and (C), we describe how the 
noncoercive Hamiltonian (1) is derived in this section. We derive prob­
lem (C) from the evolution of hypersurface {q}t>o C JRN+l moving 
according to the law of propagation 

(6) 

where c: > 0, V6 is the normal growth rate at the surface, p is the step 
density and a-, j: JRN+l -+ lR are given functions which satisfy 

iT(x,O) = cr(x), ](x,O) = f(x) for all x E JRN. 

Due to the physical requirement it is important to consider the function 
m which satisfies (2) and we refer to the literature [1] for the background 
of the physical model in crystal growth. Let us consider the graph 
representation of the above evolution and therefore we introduce the 
function v6 which satisfies q = {(x, -v6 (x, t)) I x E JRN}. Then the 
step density and the growth rate perpendicular to x-axis are expressed 
by the gradient of v6 , i.e., p = Dv6 (x) and vf, respectively. Thus, the 
above surface evolution equation can be written by 

(7) 

where 

H 6 (x, r,p) := (a-(x, -r)m( JEl)- ](x, -r)) VIPI 2 + 1. 
c; 
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We approximate vc: by using the microscopic time variable, i.e., T = 
tjE: so that 

vc:(x,E:T) = cu(x,T) + o(c) as E:-+ 0, 

where o : [0, oo) -+ [0, oo) is a function which satisfies o(r)fr -+ 0 as 
r-+ 0. 

Proposition 2.1 ([4, Proposition 5.1]). Assume thatuo and iT, j are 
bounded in ffi.N and ffi.N+l, respectively. Let vc: be the viscosity solutions 
of (7) with the initial value uo. Then, 

1 
uc:(x,t) := -vc:(x,ct) 

E: 

converges to the viscosity solution of (C) uniformly on every compact set 
ofJRN x [0, oo) as E:-+ 0. 

The main theorem below, Theorem 3.3, gives a clear view of the 
solution vc: on the effective domain Oe of (C). We have 

t 
vc:(x, t) = cu(x,-) + o(c) 

E: 
= c(¢00 (x) + d/c) + o(c) 

= c¢00 (x) + d +a( c) 

for all x E ne and t = O(c) and c, ¢00 are the constant and the function 
given by Theorem 3.3. Therefore, we see that roughly speaking, the 
growing facet moving according to (6) is flat up to order E: with speed c 
on the effective domain ne. 

§3. Main results 

(8) 

3.1. Singular Neumann problems 

We use the following assumptions on a, m, f. 
(A1) The function m : [0, oo) -+ [0, 1) is a Lipschitz function with 

m(O) =: m 0 E [0, 1), and satisfies (2). 
(A2) The function f satisfies f?: 0 in ffi.N and 

A:= {x E IRN I f(x) = O,a(x) =a} =J 0, 

where we set a:= sup{a(x) I x E ffi.N}. 
(A3) The set ne := {x E IRN I a(x) - f(x) > c} is a bounded 

domain, where c := am(O). 
(A4) a E C1(JRN) and Da(x) =J 0 on 80e. 
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We call the set ne the effective domain for (C). For any X E ne, p E JRN 
we have 

f(x)+c 1 
CT(x) < . 

Thus we can define the function h : Sle -t lR by 

In view of (A4), there exists a modulus w such that 

11 
h(sx + (1- s)y)lx- Yl ds ~ w(lx- yl) 

for all x, y E n such that [x, y] c n, where [x, y] := {Ax+ (1- >..)y I >.. E 

[0, 1]}. This observation implies that any subsolution u E USC (De) of 
(4) is uniformly continuous in Sle. (See [4, Lemma 3.3].) 

Moreover we have 

Proposition 3.1 (Existence of solutions of (S), [4, Thorem 3.2]). 
Assume that (A1)-(A4) hold. There exists a solution v E C(Oe) of (S). 

We add the following assumption. 

(A5) n~ := {CT(·)- f(·) > c- a} are convex for all a E (0, a 0] for a 
small ao > 0. 

Proposition 3.2 (Comparison principle for (S), [4, Thorem 3.8]). 
Assume that (A1)-(A5) hold. Let v E C(Oe) and w E LSC (Oe) be a 
subsolution and a supersolution of (S), respectively. If v ~ w on A, then 
v ~ w on fie, where A is defined by (8). 

Noting that 
A= {x E JRN I h(x) = 0}, 

we see that the set A coincides with the Aubry-Mather set for (4), 
i.e., an attractor set for the geodesics associated with the Lax-Oleinik 
formula. (See [2] for instance.) 

3.2. Large-time asymptotics 

In this section we state the main result of the large-time behavior 
of solutions of (C). 

Theorem 3.3 (Main result, [4, Thorem 4.1]). Assume that (A1)­
(A5) holds. Let u be a solution of (C). We have the result of large-time 
asymptotics given by 

u(-, t) + ct -t ¢oo uniformly on each compact subset of Sle 
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and 

u(·, t) + ct -t +oo uniformly on each compact subset of TR.n \De 

as t -+ +oo, where ¢oo is a solution of (S). Moreover ¢ 00 can be repre­
sented by 

(9) 

where 

¢oo(x) :=min{ d(x, y) + cp_(y) I yEA}, 

cp_(x) :=inf(u(x,t)+ct), 
t2':0 

(10) d(x,y) := sup{v(x)- v(y) I vis a viscosity subsolution of (4)} 

(11) = inf{lt h(r(s)) ds It> 0,1 E C(x, t; y, 0), i'Y(s)l ~ 1}, 

where 

C(x, t; y, 0) := {r E AC ([0, t]; Oe) lr(t) = x, r(O) = y} 

and we denote the set of absolutely continuous functions on [0, t] with 
values in fle by AC ([0, t]; Oe)· 

Finally, we give an example which we can calculate the function ¢oo 
given by (9) concretely. Let N = 1 and let us set u0 = 0, (}(x) = 0'(1-
x2)+ and f = 0, where r + := max{r, 0} for r E R Let m be a function 
which satisfies (A1) with m 0 = m(O) > 0. Then we have c = O'mo, 

fle = ( -v1- mo, v1- mo), A= {0} and h(x) = m-1 (mo/(1- x 2)+)· 
Note that 0 is a subsolution of (C) at this case and therefore we have 

0 ~ u ~ u+ct on lJL x [O,oo), 

which implies cp_(x) = inft>o(u(x,t) + ct) = 0. Therefore we have 
cp00 (x) = minyE.A{d(x,y) +¢-(y)} = d(x,O). By (11) we have for any 
X E fle 

d(x,O) = inf{lt h(r(s))ds It> 0,1 E C(x,t;O,O), I'Y(s)l ~ 1} 

1x 1x m = h ( s) ds = m - 1 ( ( 0 
2 ) ) ds. 

o 0 1-s + 

Thus we obtain 

1x -1 mo -
¢oo(x) = m (( 2 ) ) ds for all X E Oe, 

0 1- s + 

which is same as the result in [7]. 
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