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Minimax approach to then-body problem 

Mitsuru Shibayama 

Abstract. 

Using the variational method Chenciner and Montgomery proved 
the existence of a new periodic solution of figure-eight shape to the 
planar three-body problem. Since then, a number of periodic solutions 
have been discovered as minimizers. We present a minimax approach to 
the n-body problem and prove the existence of some periodic solutions 
as minimax points of the action functional. 

§1. Introduction 

We consider the classical n-body problem for which the equation of 
motion is given by 

mtii£ = 0°V, QR E IR.3 , f = 1, 2, ... , n 
Q£ 

where an overdot denotes differentiation with respect to the time vari­
able, mt (> 0) is the £-th mass and 

represents the (negative-)potential energy with the unit gravitational 
constant. 

Using the variational method Chenciner and Montgomery [1] proved 
the existence of a new periodic solution of figure-eight shape to the 
planar three-body problem. Since then, a number of periodic solutions 
have been found as minimizers of variational formulation of then-body 
problem in various different settings. 
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Fig. 1. The rotating regular n-gon solution: this figure rep­
resents the case of n = 4. 

We present a minimax approach to then-body problem. We con­
sider a variational structure under a certain symmetric constraint in the 
spatial n-body problem. In the setting, the minimizers are the rotat­
ing regular n-gons which is trivial solutions (Fig. 1). The set of the 
minimizers consists of two connected components and each component 
is homeomorphically equivalent to the circle. We prove the existence 
of a mountain pass solution between these two components (Theorem 
3). We also obtain other solutions as the top of the hill whose foot is 
one of these components (Theorem 4). Morse index plays an important 
role to estimate the number of collisions and to show that the obtained 
solutions are different from the classical solutions. 

Section 2 collects some known results about variational structure 
for symmetric curves. In Section 3 we show the existence of periodic 
solutions which attain mountain pass points. In Section 4 we show the 
existence of other periodic solutions which attain a different type of 
minimax point. 

§2. Variational formulation and symmetric constraint 

The n-body problem is equivalent to the variational problem with 
respect to the action functional 

A(q) =loT L(q, q)dt 

where the function L is the Lagrangian 

L( .) 1 "' 1 . l 2 "' mimj 
q, q = 2 L....t mk Qk + L....t I . - ·I· 

i<j q, % 
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Denote the configuration space by X where 

and let 

n 

X= {q = (q1, ... ,qn) E (JR.3)n I L mkqk = o} 
k=1 

D.ij = { q E X I qi = qj}' D. = u D..ij' X = X - D. 
i<j 

where H 1 stands for the Sobolev space. Let G be a group and let 

T : G-+ 0(2), p: G-+ 0(3), a : G-+ 6n, 
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be homomorphisms. Here JR.jTZ is naturally embedded into JR.2 so that 
the image is the unit circle § 1 . We regard time t as belonging § C JR.2 

and the orthogonal group 0(2) as acting § 1 . 

We define the action of G to A by 

forgE G and q(t) = (q1, ... , qn)(t) EA. Let 

AG = {q E A I g. q = q}, AG = AIAG· 

Palais' theorem is important in this setting. 

Theorem 1 ([3]). If A is invariant under the group action of G, 
then a critical point of AG in AG is a critical point of A in A. 

As a special case, we assume the all masses are equal and take G as 
the cyclic group Cn = (g I gn = 1) of order n. The homomorphisms are 
defined by 

(
cos 211" 

T(g)= sin 2: 
-sin 2;) 
cos 211" 

n 
a(g) = (1,2, ... ,n). 

We can obtain periodic solutions as minimizers of A 0 n, but these are 
trivial as follows. 

Theorem 2 ([2]). The minimizers of A 0 n are just rotating regular 
n-gons. 
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Next we take G as the dihedral group Dn = (gl, g2 I gr = g!f = 
(g1g2)2 = 1). The homeomorphisms p, O", Tare defined by 

(1 0) (10 0) 
T(gl) = 0 -1 ' p(gl) = ~ ~ ~1 

n-1 n-1 
O"(gl) = (2,n)(3,n -1) ... ([-2-] + 1,n- [-2-] + 1) 

( cos 27r - sin 27r ) 

T(g2) = sin 2: cos 2f ' O"(g2) = (1, 2, ... , n). 

The Dn-equivalent set ADn is a subset of A0 n and ADn includes the 
rotating regular n-gons. Therefor the minimizers of A Dn are also the 
rotating regular n-gons. The minimizing rotating regular n-gon solutions 
are denoted by 

and 

q = ( (~ ( t), (~ ( t - 21r In), ... , (~ ( t - 21r( n - 1) In)) 

where 

( 
cos () cos t ) 
sin() cost 

sin t 

n-1 

(} '"""' 1 (_(t) = 6 41 . til 
j=l Sill n 

( 
cos () cos t ) 
sin () _cos t . 
-smt 

The set of minimizers is the disjoint union of two sets R+ and R_ 
where 

R+ = { ((!(t), C!(t- 2Jrln), ... , C!(t- 2Jr(n- 1)ln)) E ADn I() E JR.} 
R_ = { ((~(t), (~ (t- 2Jr In), ... , (~(t- 21r(n- 1)ln)) E ADn I() E JR.}. 

Each of R+ and R_ is topologically equivalent to 8 1 by mappings 

() H ((!(t), C!(t- 21r In), ... , C!(t- 21r(n- 1)ln)) 

() H ((~(t),(~(t- 2Jrln), ... ,(~(t- 21r(n -1)ln)). 



Minimax approach to then-body problem 

'Y 

Fig. 2. Mountain pass point 

§3. Mountain pass solution 

Let 

and let 
d = inf max A(q). 

-yEr qE-y([O,l]) 

225 

R_ 

where C(X, Y) stands for the set of continuous maps from X toY. See 
Fig 2. 

Theorem 3. In the n-body problem with equal masses, there is a 
periodic solution which attains d. The solution has binary collision at 
most once. If n ~ 4 is even, this solution is not circular solution. 

Outline of the proof. Since the action functional does not satisfy 
Palais-Smale condition, we first consider an action functional added a 
strong force part: 

where E: > 0. The modified action functional A" satisfies Palais-Smale 
condition. 

Applying the mountain pass theorem on the set of curves connecting 
these two components, it turns out that there is a mountain pass solution 
q". The Morse index of the mountain pass solution q" is no more than 1. 
We obtain a periodic solution q0 as a limit of a convergence subsequence 
q"k of q" as E: converses to +0. 
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Fig. 3. k213 (~(kt) and t;,,/J!, ... ,¢k-l (t) 

Tanaka [4], [5] studied the behavior of a solution with a collision in 
the Kepler-like problem and proved that the limit of the Morse index as 
k diverges to oo is no less than the number of collisions. The theory can 
be applied to our setting. Therefor the number of collision is at most 
one. 

Moreover we need prove that the obtained solution is not trivial. 
The other trivial solutions are the rotating regular n-gon which rotates 
k times per the period T: 

k213 (~(kt) 

where n and k must be relatively prime. Let us consider the modification 
as follows: 

~</JI, ... ,<f>k-1 (t) = 

See Fig. 3. Here 

k213 Pq, 1 ((~(kt)- (~(0)) + k213 (~(0) 
k213Pq,2((~(kt)- (~(0)) + k213 (~(0) 

k 213 Pq,k-l ((~(kt)- (~(0)) + k213 (~(0) 

( 0 ::::; t ::::; 27:) 
( 27r < t < 27r ) 

k - k 

(27r(%-2) < t::::; 27r(%-1) ). 

( 
cos¢ 

Pq, = si~¢ 
-sin¢ 0 ) 
cos¢ 0 . 

0 1 

~¢1 , ... ,¢k-l (t) fortE [21r(%-l), 2n] is defined such that the center of masses 
is at zero. There is k- 1 dimension space on which the second variation 
is negative definite. This means that the Morse index is greater than 
k -1. If n is even, k is greater than 2. Hence the mountain pass solution 
is non-trivial solution. Q.E.D. 
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f(D) 

Fig. 4. Minimax point 

§4. Another minimax solution 

Let 

and let 
c = inf max A(q). 

!EO qEf(D) 

Here D is the 2-dimensional disc (Fig. 4). 
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Theorem 4. In the n-body problem with equal masses there is a 
periodic solution which attains c. The solution has a collision at most 
twice. If n is a multiple of 6, this solution is not circular solution. 

Outline of the proof. The proof is similar as one of the previous 
theorem. The existence follows from the minimax theorem for the action 
functional added a strong force. The limit of the Morse index is no more 
than 2. Hence the number of collisions is at most two. If n is a multiple 
of 6, the Morse index of the other circular solution is greater than 2. 
Hence the obtained solution is non-trivial solution. 

Q.E.D. 
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