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Dimensions of moduli spaces of finite flat models 

Naoki Imai 

Abstract. 

In this survey paper, we explain a moduli space of finite flat models 
and a dimensional bound of the moduli spaces. We also explain some 
variant of the moduli space and a conjecture. 

§ Introduction 

Let K be a finite extension of the field Qp of p-adic numbers. We 
assume p > 2. Let e be the ramification index of K over Qp, and k 
be the residue field of K. We consider a finite-dimensional continuous 
representation vlF of the absolute Galois group G K over a finite field lF of 
characteristic p. By a finite flat model of VJF, we mean a pair of a finite 
flat group scheme g over OK, equipped with a structure of an lF-vector 
space, and an isomorphism VJF ~ g(K) that respects the action of GK 
and the structure of lF-vector space. If e < p- 1, the finite flat model of 
VJF is unique by Raynaud's result (Theorem 2.2). In general, there are 
finitely many finite flat models of VJF. · 

A finite flat model of VJF corresponds to a linear algebraic object, 
which is called a Kisin module. Using theory of Kisin modules, Kisin 
constructed a moduli space of finite flat model of VJF and studied it to 
deduce a theorem comparing a deformation ring and a Heeke ring, which 
is called R = T theorem, in [Ki]. A study of the connected components 
of the moduli space is important for the application to R = T theorem. 
For studies of the connected components, see also [Ge], [Iml] and [He2]. 

The moduli space of finite flat models itself is an interesting geomet­
ric object. Even in some simple case, classical geometric objects such as 
Schubert varieties appear in this moduli space ( cf. [Hel, Theorem 3.9. 
(b)]). 
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In this survey paper, we explain a dimensional bound of this moduli 
space in the case dim VIF = 2. The bounds of the dimensions are given by 
using ramification index e, and this result gives a dimensional general­
ization of Raynaud's result [Ra, Theorem 3.3.3] in the case dim VIF = 2. 

In [Ca], Caruso consider a variant of the moduli space of finite flat 
model, and give a dimensional bound in the setting. We also explain his 
result and conjecture. 

Acknowledgments. The contents of this paper are based on the au­
thor's talk in the meeting "Galois-theoretic Arithmetic Geometry". He 
would like to thank the organizers of the very nice meeting for inviting 
him and giving him a chance to talk there. 

Notation 
Throughout this paper, we use the following notation. Let p > 2 

be a prime number, and k be a finite field of characteristic p. The Witt 
ring of k is denoted by W(k). Let K 0 be the quotient field of W(k), 
and K be a totally ramified finite extension of K 0 . The ring of integers 
of K is denoted by 0 K. Let IF be a finite field of characteristic p. For 
a ring A, the formal power series ring of u over A is denoted by A[[u]], 
and we put A((u)) = A[[u]](l/u). For a field F, we denote the algebraic 
closure ofF by F, the separable closure ofF by psep and the absolute 
Galois group ofF by Gp. Let Vu be the valuation of IF((u)) normalized 
by vu(u) = 1, and we put vu(O) = oo. For x E JR, the greatest integer 
less than or equal to xis denoted by [x]. The category of sets is denoted 
by Set. For a positive integer d, the d-dimensional affine space over IF is 
denoted by A~ and the d-dimensional projective space over IF is denoted 
by IP'~. Let IGm,IF be A~ - {0}. 

§1. Kisin module 

In this section, we recall a definition and properties of a Kisin module 
with coefficients in an IF P-algebra. 

We put 6 = W(k)[[u]]. We define an action of ¢ on 6 by the 
Frobenius action on W ( k) and u f--7 uP. For an IF P-algebra A, we put 
6 A = 6 1:>9IFp A and extend the action of ¢ on 6 to an A-linear action 
on 6A. We put e = [K: K 0] until the end of the section 3. 

Definition 1.1. A Kisin module with coefficients in an IFp-algebra A 
is a finite projective 6 A -module 9J1 with ¢-semi-linear map ¢<JJt : 9J1 -+ 9J1 
such that the cokernel of the induced 6-linear map 

6 1:>9¢,6 9J1-t 9J1; s 1:>9 m f--7 s¢<JJt(m) 
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is killed by ue. 

The category of the Kisin modules with coefficients in an lF p-algebra 
A is denoted by (Mod /6)A-

Remark 1.2. The definition of a Kisin module with coefficients in 
an 1FP-algebra depends only on the ramification index e of K over K 0 

and not on K. 

Let (JF-Gr/OK) be the category of finite flat group schemes over OK 
with a structure of an lF-vector space. 

Theorem 1.3. There exists an equivalence of categories 

Gr: (Mod/6)JF-+ (JF-Gr/OK)· 

Proof. This follows from [Br2, Theoreme 4.2.1.6] and [Ki, Propo-
sition 1.1.11]. Q.E.D. 

Let Os be the p-adic completion of 6[1/u]. There is a p-adically 
continuous action of ¢ on Os determined by the Frobenius action on 
W(k) and u M uP. We fix a uniformizer 1r of OK, and choose elements 
1fm E K such that no = 1f and 1f~+l = 1fm form ~ 0, and put K= = 
Um>O K(nm)· 

Let <I>Moe,lF be the category of finite (Os®zplF)-modules M equipped 
with ¢-semi-linear map rPM : M-+ M such that the induced ( Os ®zp lF)­
linear map 

Os ®¢,Oe M-+ M; s ® m M s¢M(m) 

is an isomorphism. Let ReplF( G Koo) be the category of finite-dimensional 
continuous representations of G Koo over JF. By the theory of norm fields, 
there is an isomorphism GKoo c::: Gk((u)) (cf. [Br1, 2.1]). Then the 
functor 

gives an equivalence of abelian categories as in [Ki, (1.1.12)]. Here ¢ 
acts on k((u))sep by the p-th power map. 

Let VJF be a continuous finite-dimensional representation of G K over 
JF. We take a ¢-module MJF E <I>Moe,lF such that T(MJF) is isomorphic 
to VJF(-1)IcKoo" Here (-1) denotes the inverse of the Tate twist. 

Proposition 1.4 ([Ki, Proposition 1.1.13]). For an object 9Jt of 
(Mod/ 6)JF, there exists a canonical isomorphism 

as GKoo -representations. Here (1) denotes the Tate twist. 
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Remark 1.5. In this paper, we consider only Kisin modules and¢­
modules that are killed by p. Therefore we do not need to introduce the 
coefficient rings 6 and 0£. However, we introduce them for consistency 
with usual notation as in [Ki]. 

§2. Moduli space 

In this section, we explain the moduli spaces of finite flat models 
constructed by Kisin in [Ki]. 

First, we recall the definition of a finite flat model. 

Definition 2.1. A finite flat model of VIF, is a pair of a finite flat 
group scheme Q over OK, equipped with a structure of an lF -vector space, 
and an isomorphism VIF ~ Q(K) that respects the action of GK and 
the structure of lF -vector space. 

Theorem 2.2 (Raynaud). If e < p- 1, then VIF has at most one 
finite flat model. 

Proof. This follows from [Ra, Theoreme 3.3.3 and Corollaire 3.3.6]. 
Q.E.D. 

Next, we explain the moduli space of finite flat models. We define 
a functor 

G : {JF-algebra} -+ Set 

by putting G(A) to be the set of finite projective (k[[u]] 0IFP A)-sub­
modules 9J1A of MIF @IF A satisfying 

(1) 9J1A generates MIF @IF A over k((u)) 0JFP A 
(2) 9J1A is stable by rPM Q9 idA and the action of rPM Q9 idA makes 

9J1A a Kisin module with coefficients in A 

for JF-algebra A. Then the functor G is represented by a projective 
scheme 0"&i'vF,o over lF by [Ki, Proposition 2.1.7]. 

The scheme 0"&i'vF,o is called a moduli space of finite flat model, 
because we have the following proposition. 

Proposition 2.3. For any finite extension JF' oflF, there is a natural 
bijection between the set of isomorphism classes of finite flat models of 
VIF' = VIF @IF JF' and 0"&i'vF,o(lF'). 

Proof. This follows from Theorem 3.4 and the construction of the 
scheme 0"&i'vF,0 . Q.E.D. 

Remark 2.4. Theorem 2.2 for VIF', where JF' ranges civer all finite 
extension of JF, says that if e < p- 1 and 0"&i'vF,o is not empty, then 
0"&i'vF,o zero-dimensional and connected. 
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§3. Bound of dimensions 

To fix the notation, we recall the definition of the zeta function of a 
scheme of finite type over a finite field. 

Definition 3.1. Let X be a scheme of finite type over JF. We put 
qJF = IJFI. The zeta function Z(X; T) of X is defined by 

where 
CXJ 1 

exp(f(T)) = L - 1 f(T)m E Q[[T]] 
m. 

m=O 

for f(T) E TQ[[T]]. 

Theorem 3.2. We assume that dimJF VJF = 2. We put dvw 
dim~ £4?vw,o and n = [k : lF p]· Then followings are true. 

( 1) After extending the field lF sufficiently, we have 

dvw 

Z(~£4?vw,o; T) = IJ (1- IJFiiT)-mi 
i=O 

for some mi E Z such that mdvw > 0. 
(2) If n = 1, we have 

o:::;dvw::::; [e+2]· 
p+1 

If n 2': 2, we have 

0 < d < [~] [-e ] + [~] [~] + [~]. 
- Vw- 2 p+1 2 p+1 p+1 

Here, [x] is the greatest integer less than or equal to x for x E lP1.. 
Furthermore, each equality in the above inequalities can 

happen for any finite extension K of Qp. 

Remark 3.3. If e < p- 1, Theorem 3.2 also implies that ~£4:'vw,o 
is zero-dimensional. Therefore it gives a dimensional generalization of 
Raynaud's result for two-dimensional Galois representations. 

The connectedness of ~£4?vw,o is completely false in general. For 
example, we can check that if K = Qp((p) and VJF is trivial representa­
tions then ~ £4?vw,O consists of lP'i and two points ( c.f. [Ki, Proposition 
2.5.15(2)]). 
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In the remaining of this section, we explain an outline of a proof of 
Theorem 3.2. 

From now on, we assume lF q c lF and fix an embedding k '-+ lF. 
This assumption does not matter, because we may extend lF to prove 
Theorem 3.2. We consider the isomorphism 

II JF((u)) ; 
aEGal(k/lFvl 

and let Ea E k((u)) ®lFv lF be the primitive idempotent corresponding 
to a. Take a 1, · · · , an E Gal(k/lFp) such that ai+1 = ai o ¢-1. Here 
we regard ¢ as the p-th power Frobenius, and use the convention that 
an+i = ai. In the following, we often use such conventions. Then we 
have ¢(EaJ = Eai+1 and¢: MJF-+ MJF determines¢: Ea;MlF-+ Eai+ 1 MJF. 

For (Ai)I:<:;i:<:;n E GL2(JF((u))r, we write 

MJF'"" (A1, A2, ... , An) = (Ai)i 

if there is a basis { ei, e2} of Ea, MJF over lF ( ( u)) such that ¢ (:D = 

Ai ( :F ~) . We use the same notation for any sublattice 9J1JF c MJF 

similarly. Here and in the following, we consider only sublattices that 
are (6 ®zv JF)-modules. 

Let A be an lF-algebra, and 9J1A be a finite free (k[[u]] ®lFv A)­
submodule of MJF ®JF A that generates MJF ®JF A over k( ( u)) ®JF v A. We 
choose a basis { el, e;}i of 9J1A over k[[u]] ®lFv A. For B = (Bih:<:;i:<:;n E 

GL2(lF((u)) ®lFv At, the (6 ®zv A)-module generated by the entries 

of \ Bi ( :D ) for 1 :<:: i :<:: n with the basis given by these entries is 

denoted by B · 9J1 A. Note that B · 9J1 A depends on the choice of the basis 
of 9J1A. We can see that if 9J1JF'"" (Ai)i for (Ah:<:;i:<:;n E GL2(lF((u))r 
with respect to a given basis, then we have 

with respect to the induced basis. 

Lemma 3.4. Suppose JF' is a finite extension of lF, and x E 

( (
USj,i Vj,i)) . ' 

0 t . 9J1JF u J,'t 

i 
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for 1 :::; j :::; 2, Sj,i, tj,i E Z and Vj,i E JF' ( ( u)). Assume 9J11,JF' and 9J12,JF' 
correspond to x1, x2 E ~ &i'vw,O (JF') respectively. Then x1 = x2 if and 
only if 

s1,i = s2,i, h,i = t2,i and vl,i- v2,i E uh,iJF'[[u]] for all i. 

Proof. The equality x 1 = x 2 is equivalent to the existence of B = 
(Bih<i<n E GL2(lF'[[u]])n such that 

for all i. It is further equivalent to the condition that 

for all z. The last condition is equivalent to the desired condition. 
Q.E.D. 

The claim on existence of a zero-dimensional moduli space follows 
from the following example. 

Example 3.5 ([Im2, Proposition 1.3]). If MJF ~ ( ( ~e ~)) / then 

~ &i'vw,O (JF') is one point for any finite extension JF' of lF. 

We explain the outline of a proof of Theorem 3.2 only in the case 
where VJF is not absolutely irreducible. A proof in the case where VJF is 
absolutely irreducible is similar, but more complicated. 

Extending the field lF, we may assume that VJF is reducible. Let 
9J1o,JF be a lattice of MJF corresponding to a point of ~&i'vw,o(lF). Then 
we take and fix a basis of 9J1o,JF over k[[u]] ®lFp lF such that 9J1o,JF "" 

( ( ai~ao,i (3~:,;~,,)) i for ai, f3i E JFX, 0 :::; ao,i, bo,i :::; e and Wo,i E 

JF[[u]]. For any finite extension JF' of lF, we put 9J1o,JF' = 9J1o,JF ®JF JF' and 

: ~ ::,::nw~ ((:~~ !:I))~ d:::P::':~:: :·: ::::·:;i~ew~;(:;' 
We put 
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and 

(f fiv, ,o,.,; (W') ~ { ( ( u ~· :!, ) ) ' · 91tor c Cf!il"' ,o (IF') I 

si, tiE Z, v~ E JF'((u)), ai = ao,i +psi- si+l, bi = bo,i + pti- ti+l} 

~~VF,o(JF') = u ~~VF,O,g,!;(JF'), 
(g,l;)EI 

and this is a disjoint union by Lemma 3.4. 

Take 9JtlF' = ( ( u~' :J,)) i · 9Jto,JF' E ~~vF,O&,l!(lF') with the basis 

induced from the basis of 9Jto,JF'' then 9JtlF' rv ( ( O:i~ai f3~bi)) i for 

some ( wi)l<i<n E JF' [[u]]n. We note that ai + bi - Vu ( wi) :::; e for all i by 
the conditi;;n-ue9JtlF' C (1 ® cf;) ( cf;* (9JtlF')). 

Now, any 9)1:~, E ~ ~vF,O&,i;(JF') can be written as ( G ~i)) i · 9JtlF' 

for some (vi)l<i<n E JF'((u))n. With the basis induced from 9JtJF,, we 
have 

We are going to examine the condition for (vih<i<n E JF'((u))n to give 

a po;nt of o/,?l''T ,0 ,0 ,; (W') a' ( ( ~ ~i) ) i · 911.,.-E-:aending the field F, 

we may assume that ~~vF,O&,!;(lF) = 0 if and only if ~~vF,O,g,.Q(lF') = 0 
for each (g, !!.) E I and any finite extension JF' of JF. 
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Foe (v,)''''" C JF'((v))", we hoYe 9!1~. ( G ~))' · 9Jt,, E 

~ a?vF,O&,Q(lF') if and only if 

vu(wi- aiua;vi+l + f3iub;¢(vi))?. 0 and 

Vu(aiua;) + vu(f3iub;)- vu(wi- aiua;vi+l + f3iub;¢(vi))-:;_ e for all i, 

by the condition ue9Jt~, C (1 ® ¢) ( ¢* (9Jt~,)) C 9Jt~,. This is further 
equivalent to 

because vu(wi) ?_ max{O,ai + bi- e}. 
We define an JF'-vector space Ng,Q,F' by 

Ng,Q,F' = {(vl, ... ,vn) E JF'((u))n I 

Vu ( aiua; Vi+l - f3iub; ¢(vi))?_ max{O, ai + bi - e} for all i}. 

We note that Ng,Q,F' => JF'[[u]]n, and put Ng,Q,F' = Ng,Q,F' /JF'[[u]]n. Then 
we have a bijection Ng,Q,F' ---+ ~a?vF,O&,Q(JF') by Lemma 3.4. We put 
dg,Q = dimw' Ng,Q,F', and note that dimw' Ng,Q,F' is independent of finite 
extensions JF' of lF. 

We take a basis (v1h<::j<:,:d",g_ of Ng,Q,F over lF, where 

Vj = (vj,l, ... , Vj,n) E lF((u)t. 

Then an (JF[[u]] ®w JF[X1, ... , Xda b])-module 

gives a morphism Jg,Q : A;".!>. ---+ ~a?vF,o such that /g,Q(JF') is injective 
and the image of /g,Q(JF') is ~a?vF,O&,Q(JF'). Then we have the claim on 
the zeta functions and 

We can express dg,Q explicitly and bound it by combinatorial arguments. 
We can also give an explicit ¢-module Mw such that dim ~a?vF,o 

coincide with the upper bound. See the proof of [Im2, Proposition 2.1] 
for more details. 
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Remark 3.6. In the case where VJF is not absolutely irreducible, we 
have decomposed ~~Vw,o into affine spaces in the level ofrational points 
after extending the field JF. However, in the case where VJF is absolutely 
irreducible, we have to decompose ~~Vw,O into A4, A~-l x Gm,JF and 
A~-2 x G;;,,JF in the level of rational points after extending the field JF. 

§4. Variant and conjecture 

In this section, we explain a variant of the moduli space of finite flat 
models after Caruso. We also explain his result and conjecture in some 
case. 

We consider a ring homomorphism 

for a E Gal(k/1Fp) and bE Z;::: 2 . 

Remark 4.1. If we change k to JFP and lF to k in the notation in 
the section 1, then ¢ is equal to c/Ju,p for the p-th power map a. 

Let M be a finite k((u))-module equipped with c/Ju,b-semi-linear map 
¢M: M-+ M such that the induced k((u))-linear map 

k((u)) ®q,,k((u)) M-+ M; s ® m f--7 s¢M(m) 

is an isomorphism. For any positive integer e, we define a functor 

F <::e : { k-algebra} -+ Set 

by putting F<e(A) to be the set of finite projective (k[[u]] ®k A)-sub­
modules 9JlA of M ®k A satisfying 

(1) 9JlA generates M ®k A over k( ( u)) ®k A 
(2) 9JlA is stable by ¢M ® idA and the cokernel of the induced 

(k[[u]] ®k A)-linear map 

k[[u]] ®q,",b,k((u)) 9JlA-+ 9JlA; a® m f--7 a(¢M ® idA)(m) 

is killed by u e 

for a k-algebra A. Then the functor F<::e is represented by a projective 
scheme X<::e(c/JM) over k. 

Theorem 4.2 ([Ca, Theoreme 2]). We assume that M has a basis 
{eih<i<d over k((u)) such that ¢M(ei) = ei for 1::; i::; d. If a# idk, 
we have 

e 

b+1 
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If a= idk, we have 

e 

b+1 

In fact, Caruso considered also a more general moduli space and gave 
some bound of the dimension of the moduli space (cf. [Ca, Theoreme 4 
and 5]). 

Conjecture 4.3 ([Ca, Conjecture 4.5]). We fix M as a k((u))­
module. There are constant real numbers b0 , c1 and c2 satisfies the 
following: 

If b 2 bo, then we have 

(1) 

for all positive integer e and 

(2) 

for all sufficiently large integer e. 

e 
b+1 

e 

b+1 

Remark 4.4. The upper bound in Theorem 3.2 is compatible with 
(1) in Conjecture 4.3. Furthermore, there is no contradiction between 
the strict lower bound in Theorem 3.2 and (2) in Conjecture 4.3, because 
we fixe and change MTJI in Theorem 3.2 and, on the other hand, fix M 
and change ¢M and e in Conjecture 4.3. 

References 

[Br1] C. Breuil, Une application du corps des normes, Compositio Math., 117 
(1999), 189-203. 

[Br2] C. Breuil, Groupes p-divisibles, groupes finis et modules filtres, Ann. of 
Math. (2), 152 (2000), 489-549. 

[Ca] X. Caruso, Estimation des dimensions de certaines varietes de Kisin, 
preprint, arXiv:l005.2394. 

[Ge] T. Gee, A modularity lifting theorem for weight two Hilbert modular 
forms, Math. Res. Lett., 13 (2006), 805-811. 

[He1] E. Hellmann, On the structure of some moduli spaces of finite flat group 
schemes, Mosc. Math. J., 9 (2009), 531-561. 

[He2] E. Hellmann, Connectedness of Kisin varieties for GL2 , Adv. Math., 228 
(2011), 219-240. 



262 N. Imai 

[Im1] N. Imai, On the connected components of moduli spaces of finite flat 
models, Amer. J. Math., 132 (2010), 1189-1204. 

[1m2] N. lmai, Ramification and moduli spaces of finite flat models, Ann. Inst. 
Fourier, 61 (2011), 1943-1975. 

[Ki] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of 
Math. (2), 170 (2009), 1085-1180. 

[Ra] M. Raynaud, Schemas en groupes de type (p, ... ,p), Bull. Soc. Math. 
France, 102 (1974), 241-280. 

Research Institute for Mathematical Sciences 
Kyoto University Kyoto 606-8502 
Japan 
E-mail address: naoki@kurims. kyoto-u. ac. jp 




