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Geometric interpretation of double shuffle relation 
for multiple £-values 

Hidekazu Furusho 

Abstract. 

This paper gives a geometric interpretation of the generalized (in­
cluding the regularization relation) double shuffle relation for multiple 
£-values. Precisely it is proved that Enriquez' mixed pentagon equa­
tion implies the relations. As a corollary, an embedding from his cyclo­
tomic analogue of the Grothendieck-Teichmiiller group into Racinet's 
cyclotomic double shuffle group is obtained. It cyclotomically extends 
the result of our previous paper [F3] and the project of Deligne and 
Terasoma which are the special case N = 1 of our result. 

§0. Introduction 

Multiple L-values L(k1 , · · · , km; (1, · · · , (m) are the complex num­
bers defined by the following series 

(0.1) 

for m, k1, ... , km E N(= Z>o) and (1, ... ,(m E JLN(: the group of 
N-th roots of unity in C). They converge if and only if (km, (m) -=/= 

(1, 1). Multiple zeta values are regarded as a special case for N = 1. 
These values have been discussed in several papers [AK, BK, G, R] 
etc. Multiple L-values appear as coefficients of the cyclotomic Drinfel'd 
associator <P~z (1.5) in U~N+1: the non-commutative formal power 
series ring with N + 1 variables A and B(a) (a E Z/NZ). 

The mixed pentagon equation (1.3) is a geometric equation intro­
duced by Enriquez [E]. The series <P~z satisfies the equation, which 
yields non-trivial relations among multiple L-values. The generalized 
double shuffle relation (the double shuffle relation and the regulariza­
tion relation) is a combinatorial relation among multiple L-values. It 
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is formulated as (2.2) for h = Pfiz· It is Zhao's remark [Z] that for 
specific N's the generalized double shuffle relation does not provide all 
the possible relations among multiple £-values. 

Our main theorem is an implication of the generalized double shuffle 
relation from the mixed pentagon equation. 

Theorem 0.1. Let UJN+l be the universal enveloping algebra of 
the free Lie algebra JN+l with variables A and B(a) (a E ZjNZ). Let h 
be a group-like element in UJN+l with cB(o)(h) = 0 satisfying the mixed 
pentagon equation (1.3) with a group-like series g E UJ2. Then h also 
satisfies the generalized double shuffie relation (2.2). 

As a consequence we get an embedding from Enriquez' cyclotomic 
associator set Pseudo(N, Q) (Definition 1.4) defined by the mixed pen­
tagon (1.3) and the octagon (1.4) equations into Racinet's double shuffle 
set DMR(N, Q) (Definition 2.1) defined by the generalized double shuf­
fle relation (2.2). 

Theorem 0.2. For N > 0, Pseudo(N, Q) is embedded into 
DMR(N, Q). In more detail, we have embeddings of torsors 

Pseudo(a,p,) (N, Q) C DM R(a,p,) (N, Q) 

for (a, JL) E (Z/NZ) x x Q and of pro-algebraic groups 

GRTM(I,l)(N, Q) c DMR(I,o)(N, Q) 

(for GRTM(I,l)(N, Q) see Definition 1.6). 

It might be worthy to note that we do not use the octagon equation 
to show Pseudo(N, Q) c DMR(N, Q). By adding distribution rela­
tions (1.7) to both sides, we also get the inclusion Psdist(a,p,)(N, Q) C 

DMRD(a,p,)(N, Q) (for their definitions see Remark 1.7 and 2.2). 
The motivic fundamental group of the algebraic curve Gm \JLN is 

constructed and discussed in [DG]. It gives a pro-object of the tan­
nakian category of mixed Tate motives (constructed in loc.cit.) over 
Z[JLN, 1/N], which yields an action of the motivic Galois group (: the 
Galois group of the tannakian category) GalM (Z[JLN, 1/N]) on JN+l· It 
was shown that the action is faithful for N = 1 in [Br] and N = 2, 3, 4, 8 
in [De08]. The image of its unipotent part in AutJ N + 1 is contained in 
GRTMD(I,l)(N, Q) and DMRD(I,o)(N, Q), which follows from a geo­
metric interpretation of the defining equations of GRT M D(I,l) (N, Q). 
It is a basic problem to ask if they are equal or not. 

The contents of the article are as follows: We recall the mixed pen­
tagon equation in §1 and the generalized double shuffle relation in §2. In 
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§3 we calculate Chen's reduced bar complex for the Kummer coverings 
of the moduli spaces M 0 ,4 and M 0 ,5 . Two variable cyclotomic multiple 
polylogarithms and their associated bar elements are introduced in §4. 
By using them, we prove theorem 0.1 in §5. §6 proves several auxiliary 
lemmas which are essential to prove Theorem 0.1. 

§ 1. Mixed pentagon equation 

This section is to recall Enriquez' mixed pentagon equation and his 
cyclotomic analogue of the associator set [E]. 

Let us fix notations: For n ~ 2, the Lie algebra tn of infinitesimal 
pure braids is the completed Q-Lie algebra with generators tiJ ( i =1- j, 
1 ~ i, j ~ n) and relations 

tiJ = tli [tij tik + tjk] = 0 and [tij tk1] = 0 for all distinct i J. k l 
' ' ' ' ' ' 0 

We note that t 2 is the 1-dimensional abelian Lie algebra generated by 
t 12 . The element Zn = l.:lo(i<jo(n tiJ is central in tn. Put t~ to be the 
Lie subalgebra of tn with the same generators except t 1n. Then we have 
tn = t~ E9 Q · Zn· Especially when n = 3, t~ is a free Lie algebra ~2 of 
rank 2 with generators A := t 12 and B = t 23 . For a partially defined 
map f : {1, ... , m} -+ {1, ... , n }, the Lie algebra morphism tn -+ tm : 
X f--7 xf = xr 1 (l), ... ,r 1 (n) is uniquely defined by 

i' EJ- 1 (i) ,j' EJ- 1 (j) 

Definition 1.1 ([Dr]). The associator set M(Q) is defined to be the 
set of pairs (JL, g) E Q x exp ~2 = exp t~ satisfying the pentagon equation 
in expt~ 

(1.1) 

and two hexagon equations in exp ~2 = exp t~ 

(1.2) g(A, B)g(B, A) = 1, 

JLA JLC JLB 
exp{ 2 }g(C, A) exp{ 2 }g(B, C) exp{ 2 }g(A, B)= 1 

with C = -A- B. For JL E Q, the set Mll(Q) is the subset of M(Q) 
with (JL, g) E M(Q). Particularly the set GRT1 (Q) means Mo(Q). 

For any field k of characteristic 0, M(k) and GRT(k) are defined in 
the same way by replacing Q by k. 
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By our notation, the equation (1.1) can be read as 

g(t12, t23 +t24)g(t13 +t23, t34) = g(t23, t34)g(t12 +t13, t24+t34)g(t12, t23). 

In [Dr] it is shown that G RT1 ( Q) forms a group, called the Grothendieck­
Teichmiiller group, and the associator set M~"(Q) with JL E Qx forms a 
GRT1 (Q)-torsor. 

Remark 1.2. It is shown in [F2] that the two hexagon equations 
(1.2) are consequences of the pentagon equation (1.1). 

Remark 1.3. The Drinfel'd associator tPKz = tPKz(A, B) E C( (A, B)) 
is defined to be the quotient tPKz = G1(z)-1G0 (z) where G0 and G1 
are the solutions of the formal KZ (Knizhnik-Zamolodchikov) equation 

d A B 
-G(z) = (- + -)G(z) 
dz z z -1 

such that G0 (z);:::::; zA when z--+ 0 and G1(z);:::::; (1- z)B when z--+ 1 
( cf. [Dr]). The series has the following expression 

tPKz(A, B)= 1 + 2_) -l)m((k1, · · · , km)Ak=- 1 B · · · Ak1 - 1 B 

+(regularized terms) 

and the regularized terms are explicitly calculated to be linear combina­
tions of multiple zeta values ((k1, · · · , km) = L(k1, ... , km; 1, ... , 1) in 
[F1] Proposition 3.2.3 by Le-Murakami's method [LM]. It is shown in 
[Dr] that the series belongs to M~"(C) with JL = 2nA. This is achieved 
by considering monodromy in the real interval (0, 1) and the upper half 
plane in M 0 ,4 (see §3) and the pentagon formed by the divisors y = 0, 
x = 1, the exceptional divisor of the blowing-up at (1, 1), y = 1 and 
x = 0 in M 0 ,5 (see §3). 

For n ~ 2 and N ~ 1, the Lie algebra tn,N is the completed Q-Lie 
algebra with generators 

t 1i (2 ~ i ~ n), t(a)ij (i # j, 2 ~ i,j ~ n, a E Z/NZ) 

and relations 

t(a)ij = t( -a)1i, [t(a)ij, t(a + b)ik + t(b)jk] = 0, 

[t1i+t1J+ L t(c)i1,t(a)i1]=0, 
cEZ/NZ cEZ/NZ 
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for all a, b E Z/NZ and all distinct i, j, k, l (2 ~ i,j, k, l ~ n)o We 
note that tn,l is equal to fn for n ~ 20 We have a natural injection 
fn-l,N '-+ tn,N ° The Lie subalgebra fn,N of tn,N generated by t 1n and 
t(a)in (2 ~ i ~ n- 1, a E Z/NZ) is free of rank (n- 2)N + 1 and 
forms an ideal of tn,N 0 Actually it shows that tn,N is a semi-direct 
product of fn,N and tn-l,No The element Zn,N = 2::1:(i<j:(n tij with 

tij = l:aEZ/NZ t(a)ij (2 ~ i < j ~ n) is central in tn,No Put t~,N to be 

the Lie subalgebra of fn,N with the same generators except t 1n 0 Then we 
have tn,N = t~,N EEl Q 0 Zn,N 0 Occasionally we regard t~,N as the quotient 
fn,N/Q 0 Zn,No Especially when n = 3, t~,N is free Lie algebra JN+l of 
rank N + 1 with generators A:= t 12 and B(a) = t(a) 23 (a E Z/NZ)o 

For a partially defined map f : {1, 0 0 0, m} -+ {1, 0 0 0, n} such that 
f(1) = 1, the Lie algebra morphism fn,N -+ fm,N x H xf = 
xr 1 (l), .. o,r 1 (n) is uniquely defined by 

t(a)i'j' (i -1- j, 2 ~ i,j ~ n) 

and 

(tlj)f = 2:: tlj' + ~ 2:: 2:: t(c)j'j" 
j'Ej- 1 (j) j',j"EJ- 1 (j) cEZ/NZ 

+ L t(c)i'j' (2 ~ j ~ n)o 
i'f-1Ej- 1 (1),j'EJ- 1 (j) cEZ/NZ 

Again for a partially defined map g : { 2, 00 0 , m} -+ { 1, 00 0 , n}, the Lie 
algebra morphism tn -+ tm,N x H x9 = xg- 1 (l), .. o,g- 1 (n) is uniquely 
defined by 

(i -1- j, 1 ~ i,j ~ n)o 
i' Eg- 1 ( i),j' Eg- 1 (j) 

Definition 1.4 ([E]). The cyclotomic associator set Pseudo(N, Q) 
is defined to be the collection of Pseudo(a,J")(N, Q) for (a, f..L) E Z/NZ x 
Q which is defined to be the set of pairs (g, h) with g E exp J2 and 
h = l::w:word cw(h)W E expJN+l satisfying g E MM(Q), CB(o)(h) = 0, 
the mixed pentagon equation in exp t~,N 

(1.3) 
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and the octagon equation in exp J N + 1 

(1.4) 
-1 JJ..B(a) 

h(A, B(a), B(a + 1), ... , B(a+ N- 1)) exp{-2-}· 

JJ..C 
h( C, B(a), B(a- 1), ... , B(a + 1- N)) exp{ N }· 

-1 JJ..B(O) 
h(C,B(O),B(N -1), ... ,B(1)) exp{-2-}· 

JJ..A 
h(A, B(O), B(1), ... , B(N- 1)) exp{ N} = 1 

with A+ LaEZ/NZ B(a) + C = 0. 

By our notation, each term in the equation (1.3) can be read as 

h1,2,34 = h(t12' t23(0) + t24(0), t23(1) + t24(1), ... ' 

t 23 (N- 1) + t24(N- 1)), 

h12,3,4 = h(t13 + 2::>23(c), t34(0), t34(1), ... , t34(N _ 1)), 
c 

l,3,4 = g(t23(0), t34(0)), 

h1,23,4 = h(t12 + t13 + L t23(c), t24(0) + t34(0), ... , 
c 

Remark 1.5. In loc.cit. the cyclotomic analogue <P~z E 
expJN+I(C) of the Drinfel'd associator is introduced to be the renor­
malized holonomy from 0 to 1 of the KZ-like differential equation 

d A ~ B(a) 
dz H(z) = (-;; + L...t z- (a )H(z) 

aEZ/NZ N 

with (N = exp{ 27r?}, i.e., <P~z = HJ." 1 H 0 where H 0 and H1 are the 
solutions such that H0 (z) ~ zA when z ---t 0 and H 1(z) ~ (1- z)B(o) 
when z ---t 1 (cf.[E]). There appear multiple L-values (0.1) in each of its 
coefficient; 

(1.5) 

<Pf.:z 

= 1+ L(-1)mL(k1,"' ,km;6, ... ,~m)Ak=- 1 B(am)"·Ak1 - 1 B(al) 

+(regularized terms) 
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"th t ra2-a1 t rarn-arn-1 d t r-arn h th 
Wl <,1 = '-N , ... , <,m-1 = '-N an <,m = '-N , w ere e 
regularized terms can be explicitly calculated to combinations of multiple 
L-values by the method of Le-Murakami [LM]. In [E] it is shown that 
(<PKz,<P~z) belongs to Pseudo(-l,21r..;=I)(N,C). This is achieved by 
considering monodromy in the pentagon formed by the divisors y = 0, 
x = 1, the exceptional divisor of the blowing-up at (1, 1), y = 1 and 

x = 0 in Mb~) (see §3) to get (1.3) and in the octagon formed by 0, 1, 

oo and (N in, Mb~) = Gm \t-LN to get (1.4). 

Definition 1.6 ([E]). The set GRTMcr,l)(N, Q) means the subset 
of Pseudo(I,o) (N, Q) satisfying the special action condition in exp tg,N 

aEZ/NZ 

+ Ad ( h -l · h ( C, B ( 0), B ( N - 1), ... , B ( 1))) (C) = 0 

where Ta (a E Z/NZ) is the automorphism defined by A r--t A and 
B(c) r--t B(c +a) for all c E Z/NZ. 

In loc.cit. it is shown that GRTM(I,l)(N, Q) forms a group and 
Pseudo(a,!-')(N, Q) with (a, p,) E (Z/NZ)X x qx forms a 
GRTM(I,l)(N, Q)-torsor. In the case of N = 1 we have g = h and 
then M~-'(Q) = Pseudo(l,!-')(N, Q) and GRT1 (Q) = GRTM(I,l)(N, Q). 
It is not known for general N whether GRTM(I,l)(N, Q) is equal to 
Pseudo(I,o) (N, Q) or not. 

Let N,N'?: 1 with N'IN. Put d = N/N'. The morphism 

1rNN' : fn,N---+ tn,N' 

is defined by t 1i ---+ dt1i and tiJ(a) r--t tij(a) (i i- j, 2 ~ i,j ~ n, 
a E Z/NZ), where a E Z/N'Z means the image of a under the map 
Z/NZ---+ Z/N'Z. The morphism 

15 N N' : tn,N ---+ tn,N' 

is defined by t 1i r--t t 1 i and tij (a) r--t tij (a/ d) if dl a and tij (a) r--t 0 if 
d fa (i i- j, 2 ~ i,j ~ n, a E Z/NZ). The morphism 7rNN' (resp. 
8NN'): fn,N---+ fn,N' induces the morphisms Pseudo(a,!-')(N,Q)---+ 
Pseudo(a,!-')(N', Q) which we denote by the same symbol 7rNN' (resp. 
15 N N'). Here a means the image of a by the natural map Z / NZ ---+ 
Z/N'Z. 

Remark 1. 7. In [E], the distribution relation in exp t~,N' 
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is also discussed and Psdist(a,fJ-)(N,Q) (resp. GRTMD(I, 1)(N,Q)) is 
defined to be the subset of Pseudo(a,fl-)(N, Q) (resp. GRTMcr,l)(N, Q)) 
by adding the distribution relation (1.7) in expt~ N' for all N'IN. In 
loc.cit. it is shown that GRTMD(I,1)(N, Q) forms a group and 
Psdist(a,fl-)(N, Q) with (a, JL) E (Z/NZ)x x qx forms a 
GRTMD(I,1)(N,Q)-torsor and the pair (tf>Kz,<l>lJiz) belongs to it with 
(a,JL) = (~1,2IrH). 

Remark 1.8. In [EF] it is proved that the mixed pentagon equation 
(1.3) implies the distribution relation (1.7) for N' = 1 and that the 
octagon equation (1.4) follows from the mixed pentagon equation (1.3) 
and the special action condition for N = 2. It is also shown that the 
duality relation shown in [B] is compatible with the torsor structure of 
Psdist(2, Q) and a new subtorsor Psdist+(2, Q) is discussed in [EF]. 

§2. Double shuffle relation 

This section is to recall the generalized double shuffle relation and 
Racinet 's associated torsor [R]. 

Let us fix notations: Let JyN be the completed graded Lie Q-algebra 
generated by Yn,a (n;? 1 and a E Z/NZ) with degYn,a = n. Put UJyN 
its universal enveloping algebra: the non-commutative formal series ring 
with free variables Yn,a (n;? 1 and a E Z/NZ). 

Let 
Jry : UJN+1---+ UJyN 

be the Q-linear map between non-commutative formal power series rings 
that sends all the words ending in A to zero and the word An=- 1 B(am) 
· · · An1 - 1 B(al) (n1, ... , nm;? 1 and a1, ... , am E Z/NZ) to 

Define the coproduct b.* of UJyN by 

(n;? 0 and a E Z/NZ) 
k+l=n,b+c=a 

with Yo,a := 1 if a = 0 and 0 if a -/c 0. For h = Lw:word cw(h)W E 

UJ N + 1 , define the series shuffle regularization 

h* = hcorr · Iry(h) 

with the correction term 
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Definition 2.1 ([R]). For N ~ 1, the set DM R(N, Q) is defined 
to be the set of series h = I: w :word cw (h) W E exp ~ N + 1 satisfying 
c A (h) = c B(o) (h) = 0 and the generalized double shuffle relation 

(2.2) 

For (a,JL) E ZjNZ x Q, the set DMR(a,~J>)(N,Q) is defined to be the 
subset of DM R(N, Q) defined by 

. (2.3) 
N-2k 

CB(ka)(h)- CB(-ka)(h) = N _ 2 {cB(aJ(h)- CB(-a)(h)} 

for 1 ~ k ~ N /2 and 

(2.4) { 

2 

CAB(O)(h) = i4 
CB(a)(h)- CB(-a)(h) =- (Nz-~)M 

if N = 1, 2, 

if N ~ 3. 

In loc.cit. it is shown that DMR(I,o)(N, Q) forms a group and 
DMR(a,~J>)(N, Q) with (a, JL) E (Z/N) x x Qx forms a DMR(I,o)(N, Q)­
torsor. 

Remark 2.2. In [R], DMRD(N, Q) (resp. DMRD(a,~J>)(N, Q)) is 
introduced to be the subset of DMR(N, Q) (resp. DMR(a,~J>)(N, Q)) 
by adding the distribution relation (1.7) in exptgN, = exp~N'+l for 
all N'IN. The series .Pff.z belongs to DMRD(a,~J>)(N,Q) with (a,JL) = 

(-I, 27TH) because regularized multiple L-values satisfy the double 
shuffle relation and the distribution relation (loc.cit). It is shown by 
Zhao [Z] that for specific N's all the defining equations of 
DMRD(a,~J>)(N, Q) do not provide all the possible relations among mul­
tiple L-values. 

§3. Bar constructions 

This section reviews the notion of the reduced bar construction and 
calculates its 0-th cohomology for Mb~) and Mb~). 

We recall the notion of Chen's r~duced bar 'construction [C]. Let 
(A• = EB~0Aq,d) be a differential graded algebra (DGA). The reduced 
bar complex _B•(A) is the tensor algebra EB~0 (A•)®r with A• = EB~0Ai 
where A0 = A1 jdA0 and Ai = Ai+1 (i > 0). We denote a1 ® · · · ® ar 
(ai E A•) by [a1i· · ·lar]· The degree of elements in _B•(A) is given by 
the total degree of A •. Put J a = ( -1 )P-l a for a E AP. Define 

k 

d'[a1l· · ·iak] = l_)-1)i[Ja1i· · ·iJai-1idaiiai+1i· · ·iak] 
i=l 
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and 

k 

d"[a1l· · ·lak] = 2_)-1)i-l[Ja1l· · ·IJai-1IJai · ai+1lai+2l· · ·lak]· 
i=l 

Then d' +d" forms a differential. The differential and the shuffie product 
(loc.cit.) give .B• (A) a structure of commutative DGA. Actually it also 
forms a Hopf algebra, whose coproduct ~ is given by 

r 

~([a1l· · ·lar]) = l:)a1l· ··las]@ [as+ll· · ·lar]· 
s=O 

For a smooth complex manifold M, n•(M) means the de Rham 
complex of smooth differential forms on M with values in C. We denote 
the 0-th cohomology of the reduced bar complex .B•(fl(M)) with respect 
to the differential by H 0 B(M). 

Let Mo,4 be the moduli space {(x1, · · · , x4) E (Pb)4lxi =f. Xj(i =f. 
j)} / PG L2 (C) of 4 different points in P 1 . It is identified with { z E 

Pblz =f. 0,1,oo} by sending [(O,z,1,oo)] to z. Denote its Kummer N-
covering 

Gm \f.LN = {z E PblzN =f. 0, 1, oo} 

by M~~). The space H 0 B(M~~)) is generated by 

wo := dlog(z) and we;:= dlog(z- () (( E f.LN)· 

We have an identification H 0 B(M~~)) with the graded C-linear dual of 
u~N+l, ' 

H 0 B(M~~l) ~ U~]V+ 1 C9 C, 

byExpr:l~N) := Lxi, ···Xi,C9[wi,l···lwi,] E u~N+l@qH0B(M~~\ 

Here the sum is taken over m ;? 0 and i 1, · · · , im E {0} U f.LN and 
X 0 = A and Xc; = B(a) when ( = ('fv. It is easy to see that the 
identification is compatible with Hopf algebra structures. We note that 

the product h . z2 E H 0 B(M~~)) for h, z2 E H 0 B(M~~)) is given by 

l1 ·l2(f) := ~i h(fiil)z2(!Jil) f~r f E U~N+l @C with ~(f)= ~dii)@ 
JJil. Occasionally we regard H 0 B(M~~)) as the regular function ring of 
FN+l(C) = {g E U~N+l@ qg: group-like}= {g E U~N+l@ Cig(O) = 
1' ~(g) = g @ g}. 

Let Mo,5 be the moduli space {(x1, · · · , x5) E (Pb)5lxi =f. Xj(i =f. 
j)}/PGL2 (C) of 5 different points in P 1 . It is identified with {(x,y) E 
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G;, I x -1- 1, y -1- 1, xy -1- 1} by sending [ ( 0, xy, y, 1, oo)] to ( x, y) . Denote 
its Kummer N 2-covering 

by M6~l. It is identified with WN/Cx by (x,y) f---7 (xy,y, 1) where 

WN = {(z2,z3,z4) E Gmlzf -1- zf(i -1- j)}. 

The space H 0 B(M6~)) is a subspace of the tensor coalgebra generated 
by , 

WI,i := dlogzi and Wi,j(a) := dlog(zi- ('Nzj) (2 :( i,j :( 4, a E Z/N). 

Proposition 3.1. We have an identification 

H 0 B(M6~)) ~ (Ut~,N )*®C. 

Proof. By [K], H 0 B(W N) can be calculated to be the 0-th co­
homology H 0 .B•(S) of the reduced bar complex of the Orlik-Solomon 
algebra s•. The algebra s• is the (trivial- )differential graded C-algebra 
s• = ffi~0Sq defined by generators 

w1,i = dlogzi and Wi,j(a) = dlog(zi- ('Nzj) (2 :( i,j :( 4,a E Z/NZ) 

in degree 1 and relations 

w· ·(a)= w--(-a) ~,) ],2 ' 

{w1i+w1j+ L w(c)ij}Aw(a)ij=O, 
cEZ/NZ 

w1iA{w1j+ L w(c)ij}=O, 
cEZ/NZ 

Wii A w(a)jk = 0 and w(a)ij A w(b)kl = 0 

for all a, b E Z/ NZ and all distinct i, j, k, l (2 :( i, j, k, l ,::; n). By 
direct calculation, the element 

4 

Ltli®W!i+ L tij(a)®wij(a)E(t4,N)deg=l®S1 

i=2 2(i<j(4,aEZ/ NZ 

yields a Hopf algebra identification of H 0B(WN) with (Ut4,N)* ® C 
since both are quadratic. 
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By the long exact sequence of cohomologies induced from the Gm­

bundle WN --7 M6~) = wN;cx, we get 

and 
(i ~ 2). 

It yields the identification of the subspace H 0 B(M6~)) of H 0 B(WN) 
with (Ut~,N )* Q9 C. , Q.E.D. 

The above identification is induced from 

where the sum is taken over m ~ 0 and J1, · · · , 1m E { (1, i) 12 ,:::; i ,:::; 
4} U {(i,j, a)l2,:::; i < j,:::; 4, a E Z/NZ}. 

Especially the identification between degree 1 terms is given by 

i=2 2~i<j~4 aEZ/NZ 

In terms of the coordinate (x, y), 

a 

+ l::>24(a)dlog(xy- (JV) + Lt34(a)dlog(y- (JV) 
a a 

a 

+ L t34(a)dlog(y- (JV) + L t 24 (a)dlog(xy- (JV ). 
a a 

It is easy to see that the identification is compatible with Hopf algebra 

structures. We note again that the product zl . l2 E H 0 B(M6~)) for 

h, l2 E H0B(M6~)) is given by h ·Z2(f) := Lih(f{i))Z2(!Jil) for f E 

Ut~,N Q9 C with 6.(!) = "Ld{i) Q9 JJi) (6.: the coproduct of Ut~,N ). 
Occasionally we also regard H 0 B(M6~)) as the regular function ring of 

Kf (C) = {g E U t~,N Q9 qg : group-like}. 
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By a generalization of Chen's theory [C] to the case of tangential 

basepoints, especially for M = Mb~) or Mb~), we have an isomorphism 

as algebras over C which sends LI=(i,,··· ,il) cr[wi,,,· · ·lwi1 ] (cr E C) 
to LrcrltJ0 wi, o 000 owi1 • Here LrcrltJ0 wi, o 000 owi1 means the 
iterated integral defined by 
(3.1) 

L CJ r Wi, (r(tm)) 0 Wim-1 (r(tm-d) 0 0 0 0 Wi1 (r(tl)) 
I }O<h< .. -<t,_1<t,<1 

for all analytic paths 1 : (0, 1) --+ M(C) starting from the tangential 

basepoint o (defined by ddz for M = Mb~) and defined by d~ and d~ for 

M = Mb~)) at the origin in M (for its treatment see also [De89]§15) 
and Ia(M) stands for the C-algebra generated by all such homotopy 
invariant iterated integrals with m ~ 1 and Wi 1 , ••• , wi, E H}m(M). 

§4. Two variable cyclotomic multiple polylogarithms 

We introduce cyclotomic multiple polylogarithms, Lia(((z)) and 

Lia,b(((x),fJ(y)), and their associated bar elements, li and lr:~),fJ(Yl, 
which play important roles to prove our main theorems. 

For a pair (a,() with a= (a1, 00 
• , ak) E Z~0 and ( = ((1, 00., (k) 

with (i E f.LN: the group of roots of unity in C (1 ~ i ~ k), its weight 
and its depth are defined to be wt( a, () = a1 + · · · + ak and dp( a,() = k 
respectively. Put ((x) = ((1, 00 ., (k-1, (kx). Put z E C with lzl < 1. 
Consider the following complex analytic function, one variable cyclo­
tomic multiple polylogarithm 

( 4.1) Lia(((z)) := L 
rm1 rmk-1 (~' )mk '>1 ... '>k-1 ':,kZ 

O<m1< .. ·<mk 

It satisfies the following differential equation 

if ak -=f. 1, 

if ak = 1, k -=f. 1, 

if ak = 1, k = 1. 

It gives an iterated integral starting from o, which lies on Ia(Mbf\~h. 
Actually by the map p it corresponds to an element of the Q-structure 
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U~]v+ 1 of H 0 B(Mb~l) denoted by l~. It is expressed as 
( 4.2) 

l~ = (-1)k[wo[· · ·[wo [w -t[wo[· · ·[wo [w -1 -1 [wol· · · · · ·[wo[w -1 ... -1]. "-v--' (k "-v--' (k (k-1 (k (, 

By the standard identification fJ ~ Z/ NZ sending (N = exp{ 2nx;=r} M 

1, for a series cp = 2:: w :word cw ( cp) W it is calculated by 

l~ ( cp) = ( -1 )k C Aak-1B(-ek)Aak-1 -l B( -ek -ek_t)···Aa1 - 1 B( -ek -···-et) ( cp) 

with (i = (';J (ei E Z/NZ). 
For a= (a1, · · · , ak) E Z~0 , b = (b1, · · · , bz) E Z~0 , ( = ((1, ... , (k), 

iJ = (771, ... ,TJz) with (i,TJJ E fJN and x,y E C with [x[ < 1 and [y[ < 1, 
consider the following complex function, the two variables multiple poly­
logarithm 

(4.3) Lia,b(((x), iJ(y)) 

O<mt<···<mk 
<nt<···<nz 

(r'' · · · (;;'..':-[' ((kx)mk · 77~ 1 · · · 7]~~1 1 (TJzY)n' 
a 1 ak-1 ak b1 b,_, b1 m1 · · · mk-1 mk · n1 · · · nz-1 nz 

It satisfies the following differential equations. 

d -
dx Lia,b(((x), iJ(y)) 

~Lie a,,··· ,ak-l,ak-1),b(((x), iJ(y)) if ak # 1, 

-;=f-- Li(a1 ··· ak-tl b ( (1, · · · , (k-2, (k-1X, iJ(y)) - (1. + -:=f--) · 
":.k -x ' ' ' x ..,k -x 

Li(a1,-·· ,ak_1,b1),(b2 ,··· ,b1J((1, · · · (k-1, (kTJ1X, 7]2, · · · 'T)Z-1, TJlY) 
if ak = 1, k # 1, l # 1, 

(![_xLib(TJ(Y))- 0 + ([t_x) Li(b1 ),(b2 ,··· ,b1J((17J1x, 7]2, ... , TJZ-1, TJzY) 

if ak = 1, k = 1, l # 1, 

(i:[_x Li(a1 ,. .. ,ak_1),bt ( (1' · · · '(k-1X, TJ1Y) - ( ~ + (i:[_x) · 
Li(a,,. .. ,ak-t,bt)((1, ... '(k-1, (kTJ1XY) if ak = 1, k # 1, l = 1, 

([[_xLib,(TJ1Y)- 0 + ([t_x) Libt((1771xy) if ak = 1,k = 1,l = 1, 

d -
dy Lia,b(((x), iJ(y)) 

{ 
~Lia,(b 1 , ... ,b1_ 1 ,b,-1)(((x), iJ(y)) if bz # 1, 

= 7J[[_YLia,(b1 , ... ,b,_ 1 J(((x),7J1,···,7JZ-2,7Jl-1Y) ifbz = 1,l # 1, 

--d--Lia(C(7J1xy)) if bz = 1, l = 1. 
'11 -y 
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By analytic continuation, the functions Lia,b(((x), fJ(y)), Lib,a(fJ(y), ((x)), 
Lia(((x)), Lia(((y)) and Lia(((xy)) give iterated integrals starting from 

o, which lie on Ia(M6~l). They correspond to elements of the Q­

structure (Ut0 )* of H 0 B(M(N)) by the map p denoted by z((x),fi(y) 
4,N 0,5 a,b ' 

Z~~~J,((xJ, z~<xJ, z2(y) and l~(xy) respectively. Note that they are expressed 
as 

( 4.4) 

for some m E N with c E Q and w E { dx ...!!::£. dy .!!:JL xdy+ydx (( E 
I "1 x ' ( -x' y ' ( -y' ( -xy 

f.lN)}. 

§5. Proofs of main Theorems 

This section gives proofs of Theorem 0.1 and Theorem 0.2. 

Proof of Theorem 0.1. Let a= (a1, ... , ak) E Z~0 , b = (b1, ... , bz) E 
Z~0 , ( = ((1, ... ,(k) and fJ = (7)1, ... ,rJz) with (i,7/j E f.lN C C 
(1 ~ i ~ k and 1 ~ j ~ l). Put ((x) = ((1, ... , (k-1, (kx) and 
fJ(y) = ( 771, ... , 7/z-1, 7)zY). Recall that multiple poly logarithms satisfy 

the following analytic identity, the series shuffie formula in Io(M6~l): 

Lia(((x)) · Lib(fJ(y)) = L Li~~~~~~,fi(y)). 
uESh'( (k,l) 

Here Sh~(k, l) := U'N=1 {O" : {1, · · · , k + Z} --+ {1, · · · , N}IO" is onto, 
0"(1) < ··· < O"(k),O"(k+1) < ··· < O"(k+l)}, O"(a,b) := (c1,··· ,eN) 
with 

{
as+bt-k ~f0"- 1 (~)={s,t}w_iths<t, 

ci= a 8 1f0"-1 (z)={s} w1ths~k, 

bs-k if 0"-1(i) = {s} with s > k, 

and O"(((x), fJ(y)) := (z1, ... , ZN) with 

{
XsYt-k ~f 0"- 1 (~) = { s, t} w_ith S < t, 

Zi= X8 1f0"-1 (z)={s} w1ths~k, 

Ys-k if 0"-1(i) = {s} with s > k, 

for Xi= (i (i I k), (kx (i = k) and Yj = 7/j (j I l), 7/JY (j = l). Since p 
is an embedding of algebras, the above analytic identity immediately im­
plies the algebraic identity, the series shuffie formula in the Q-structure 



178 H. Furusho 

(5.1) z~(x) . z~(y) = '"' zu(((x),fj(y)) 
L.....t u(a,b) · 

uESh~ (k,l) 

Let (g, h) be a pair in Theorem 0.1. By the group-likeness of h, 
i.e. hE exp~N+l, the product h1,23 ,4h1'2'3 is group-like, i.e. belongs to 
expt2 N· Hence .6.(h1,23,4h1,2,3) = (h1,23,4h1,2,3)@(hl,23,4hl,2,3), where 

.6. is t'he standard coproduct of Ut2,N· Therefore 

z~Cxl .z~CY)(h1,23,4h1,2,3) =(z~Cxl@z~CYl)(.6.(h1,23,4h1,2,3)) 

=l~(xl(h1,23,4h1,2,3) .z~(y)(hl,23,4h1,2,3). 

Evaluation of the equation (5.1) at the group-like element h1,23 ,4h1'2'3 

gives the series shuffle formula 

(5.2) '"' zu((,ry) (h) L.....t u(a,b) 
uESh~(k,l) 

for admissible pairs1 (a,() and (b, fj) by Lemma 6.1 and Lemma 6.2 
below because the group-likeness and (1.3) for h implies c0 (h) = 1 and 
CA(h) = 0. 

By putting Zi' 8 (h) := -T and l~' 8 (h) := l~(h) for all admissible 
pairs (a, (), the series regularized value z~,s (h) in Q [T] (T: a parameter 
which stands for log z. cf. [R]) for a non-admissible pair (a,() is uniquely 
determined in such a way ( cf. [ AK]) that the above series shuffle formulae 
remain valid for z~,s (h) with all pairs (a, (). 

Define the integral regularized value z~,I (h) in Q[T] for all pairs 
(a,() by zp (h) = l~(eTB(o) h). Equivalently zp (h) for any pair (a,() 
can be uniquely defined in such a way that the iterated integral shuffle 
formulae (loc.cit) remain valid for all pairs (a,() with zi,I (h) := -T 
and zF (h) := z~(h) for all admissible pairs (a,() because they hold for 
admissible pairs by the group-likeness of h ( cf. loc.cit). 

1 A pair (a,() with a= (a1, · · · , ak) and ( = ((1, ... , (k) is called admissible 
if (ak, (k) i= (1, 1). 
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Let lL be the Q-linear map from Q[T] to itself defined via the gen­
erating function: 

(5.3) 

Proposition 5.1. Let h be an element as in Theorem 0.1. Then 
the regularization relation holds, i.e. li· 8 (h) = lL(liJ(h)) for all pairs 
(a,(). 

Proof. We may assume that (a, () is non-admissible because the 
proposition is trivial if it is admissible. Put 1n = (1, 1, · · · , 1). When ...._,._.., 

n 

a = 1 n and ( = In, the proof is given by the same argument to [F3] as 
follows: By the series shuffie formulae, 

k=O 

form:;:::: 0. Here we put l~,s (h) = 1. This means 

In S 
Put f(u) = Ln;?O l1n' (h)un. Then the above equality can be read as 

2)-1)klk~1 (h)uk = d~ logf(u). 
k;?O 

Integrating and adjusting constant terms gives 
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When (a,() is of the form (a'11,('l1) with (a',(') admissible, the 
proof is given by the following induction on l. By (5.1), 

"' zO"(('(x),ll(y)) (h') 
~ O"(a',1 1 ) 

O"ESh,:; (k,l) 

for h' = eT{ t23(0)+t24(0)+t34(o)} h1,23,4h1,2,3 with k = dp( a'). The group­

likeness and (1.3) for h implies c0(h) = 1 and cA(h) = 0 and the group­
likeness and our assumption CB(o)(h) = 0 implies cB(o)n(h) = 0 for 
n E Z>o· Hence by Lemma 6.3 and Lemma 6.4, 

Then by our induction assumption, taking the image by the map IL gives 

Since zf' 8 (h) and zf:' 8 (h) satisfy the series shuffle formula, IL(lF(h)) 

must be equal to l~,s (h), which concludes Proposition 5.1. Q.E.D. 

Embed U~hN into U~N+l by sending Ym,a to -Am-lB(-a). Then 
by the above proposition, 

l~' 8 (h) = IL(lF(h)) = IL(l~(eTB(o)h)) = l~ (IL(eTB(o)ny(h))) 

= l~(exp {-~ l~,I (h) B~)n}. ny(h)) 

_ { 
00 (-1)n } = li(exp -TYl,O + ~ -n-CAn-1B(o)(h)Y1~0 · ny(h)) 

= l~(e-TY,,oh*) 

for all (a,() because li(h) = 0. As for the third equality we use 

(IL ®Q id) o (id ®q l~) = (id ®q l~) o (IL ®q id) on Q[T] ®Q U~N+l· 

Alll~,s (h)'s satisfy the series shuffle formulae (5.2), so the l~ ( e-TY,,o h*) 's 

do also. By putting T = 0, we get that l~ ( h*) 's also satisfy the series 
shuffle formulae for all a. Therefore 6.*(h*) = h/fiJh*. This completes 
the proof of Theorem 0.1. Q.E.D. 
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Proof of Theorem 0.2. The first statement follows from Theorem 
0.1. 

Let (g, h) E Pseudo(a,~)(N, Q) with (a, f-L) E (Z/NZ)x x Q. By 
comparing the coefficient of B(a) in the octagon equation (1.4), 

f-L f-L 
-CB(O) (h)+ 2- CA (h) +cB(O) (h)- N +cA (h)- CB( -a) (h) +cB(a) (h) = 0. 

Thus CB(a)(h)- CB(-a)(h) =(*'-~)f-L. 
Next by comparing the coefficient of B(ka) in (1.4) for 2 ~ k ~ N/2, 

CB((k-l)a)(h)- CA(h) + CB(-(k-l)a)(h) 
f-L 
N + CA(h)- CB(-ka)(h) + CB(ka)(h) = 0. 

Thus CB(ka)(h)- CB(-ka)(h) = CB((k-l)a)(h)- CB(-(k-l)a)(h) + -Kf. 
By combining these equations we get (2.3) and (2.4) for N ~ 3. 

2 

Since we have CAB(g) = i4 forgE M~(Q), we have (2.4) for N = 1, 2 
by CAB(g) = CAB(O)(h). Q.E.D. 

§6. Auxiliary lemmas 

We prove all Lemmas which are required to prove Theorem 0.1 in 
the previous section. 

Lemma 6.1. LethE u~N+l with co(h) = 1 2 and CA(h) = 0. Then 

z~Cxl(hl,23,4hl,2,3) = l~(h), 

z~CYl(hl,23,4hl,2,3) = l~(h), 

z~(xy) (hl,23,4hl,2,3) = l~(h), 

z((x),fJ(y) (hl,23,4 hl,2,3) = z(fJ (h) 
~b ~ 

for any pairs (a, () and (b, iJ). 

Proof. Put Ut~ N the universal enveloping algebra of t~ N· Con­

sider the map M6~l ~ M6~) induced from M 0 ,5 -t Mo,4 : [(x~, · · · , x5)] 
f--7 [(xl,x2,X3,X5)]. This yields the projection P4: Ut~N- u~N+l 
sending t14 , t24 (a), t34 (a) c--+ 0, t12 f--7 A and t 23 (a) f--7 B(a) (a E Z/NZ). 
Express l~ as (4.2). Since (p4 181 id)(ExpO~N)) = ExpOiN)(x) E 

2The symbol c0 (h) stands for the constant term of h. 
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~ 0 -(M(N)) 0B-(M(N))*~ H 0 B-(M(N)) .. d h U'JN+l®QH B 0,5 c::: H 0,4 ®c 0,5 , It m uces t e 
map 

p* : H 0 B(M(N))---+ H 0 B(M(N)) 4 0,4 0,5 

which gives P4([d:D = [d;J and P4([(t~z]) = [(t':.xl· Hence 

P4(lr) = zr(xl. 

Then zr(x\hi,23,4hi,2,3) = zf.(P4(hi,23,4hi,2,3)) = zf.(h) because P4(hi,23,4) 

= 0 by our assumption cA(h) = 0. 

Next consider the map M6~) ---+ M6~) induced from Mo,5 ---+ 
Mo,4: [(xi,··· ,x5)] r-+ [(xi,x3,x4,x5)]. Thisinducestheprojectionp2: 
Ut~ N --» U'JN+I sending ti2, t 23 (a), t24 (a) r-+ 0, ti2 + ti3 + t 23 r-+ A and 

t34 (,a) r-+ B(a) (a E Z/NZ). Since (p2 ® id)(ExpD~N)) = ExpD~N)(y) E 

U'JNH@qH0 B(M6~)) c::: H 0 B(M6~))*0c H 0 B(M6~\ it induces the 
map 

p* : H 0 B(M(N)) ---+ H 0 B(M(N)) 2 0,4 0,5 

which gives P2([dzz]) = [d;J and P2([(t~z]) = [(t~Y]. Hence 

p; (lr) = zr(y). 

Then zr(y) (hi,23,4hi,2,3) = zf.(P2(hi,23,4hi,2,3)) = zf.(h) because P2(hi,2,3) 

=0. 
Similarly consider the map M6~) ---+ M6~) induced from M 0 ,5 ---+ 

Mo,4: [(xi,··· , x5)] f--7 [(xi, x2, x4, x5)]. This induces the projection 
P3 : Ut~ N --» U'JN+I sending ti3, t23 (a), t34 (a) f--7 0, ti2 f--7 A and 

t 24 (a) r--+,B(a) (a E Z/NZ). Since (p3 ®id)(ExpD~N)) = ExpD~N)(xy) E 

U'JN+I@qH0 B(M6~)) c::: H 0 B(M6~))*0cH0 B(M6~l), it induces the 
map 

which gives p*([dz]) = [dx + dy] and p*([~]) = [xdy+ydx]. Hence 
3 z x y 3 ('jv~z ('jv~xy 

p;(lr) = zr(xy). 

Then zr(xy)(hi,23,4hi,2,3) = zf.(P3(h1,23,4h1,2,3)) = zf.(h) becausep3(h1,2,3) 

= 0 by our assumption cA(h) = 0. 
Consider the embedding of Hop£ algebras i1,2,3 : U'JN+l '---+ Ut~,N 

sending A r-+ t 12 and B(a) r-+ t 23 (a) along the divisor {y = 0}. Since 
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(i1,2,3 ® id)(ExpO~N)) = ExpO~N)(z) 1 • 2 • 3 E Ut~ N®qH0 B(M6~)) 
H 0 B(M6~))*®cH0 B(M6~)), it induces the map' , 

i* : H 0 B(M(N))-+ H 0 B(M(N)) 1,2,3 0,5 0,4 

h . h . '* ([dYJ) ~ '* ([ dy ]) ~ '* ([xdy+ydx]) ~ O E w 1c giVes z1,2,3 Y ~ z1,2,3 (J:.r-y ~ z1,2,3 (J:.r-xy ~ . xpress 

zrC~),fi(y) and z£Cxy) as (4.4). In the expression each term contains at 

le~st one dy , j'ady or xtJ!+ydx . Therefore we have 
y 'N-y N-xy 

i* (z((x),fi(y)) = 0 and i* (z((xy)) = 0. 
1,2,3 a,b 1,2,3 a 

Thus zC:Cx),fi(y)(h1·2·3) = i* (zC:Cx),fi(y))(h) = 0 and z£Cxy)(h1·2·3) 
a,b 1,2,3 a,b 

ii,2,3(Z£(xy))(h) = 0. 
Next consider the embedding of Hopf algebras i1,23,4 : U'JN+1 '---+ 

Ut~ N sending A f--7 t12 + t13 + t23 and B(a) f--7 t24 (a) + t34 (a) (geomet-

rically caused by the divisor {x = 1}.) Since (i1,23 ,4 ® id)(ExpO~N)) = 
ExpO(N)(z) 1•23•4 E Ut0 ® H 0 B(M(N)) c:::- H 0 B(M(N))*®cH0 B(M(N)), 4 4,N Q 0,4 0,5 0,4 
it induces the map 

'* Ho -(M(N)) oB-(M(N)) 21 23 4 : B o 5 -+ H o 4 
' ' ' ' 

h . h · '* ([dx]) ~ 0 '* ([ dx ]) ~ [ dz ] '* ([dYJ) ~ w lC g1ves z1,23,4 x ~ ' z1,23,4 (J:.r-x ~ (J:.r-z ' 21,23,4 y ~ 

[dzl i* ([___!}Jj__]) ~ [___!k_] and i* ([xdy+ydx]) = [rNadz_z]. As is 
z ' 1,23,4 (J:.r-y ~ (J:.r-z 1,23,4 (J:.r-xy , 

same to the proof of [F3] Lemma 5.1, 

i* (z(Cx),fi(y)) = zC:ii and i* (zC:Cxy)) = zC: 1,23,4 a,b ab 1,23,4 a a 

can be deduced by induction on weight. Thus zr~~),fi(y) (h1·23·4) = l~~(h). 
Let t5 be the coproduct of H 0 B(M(N)). Express o(z(Cx),fi(y)) = "'.l' ®l" 0,5 a,b u~ 'L 2 

with deg l~ = m~ and deg l~' = m~' for some m~ and m~' such that 
m~ + m~' = wt(a, () + wt(b, fj). If m~' -=1- 0, Z~'(h 1 • 2 • 3 ) = 0 because 
[ 11 is a COmbination of elements of the form [5..(x),Jl(y) and [iJ(xy) for 

2 c,d e 

some pairs (c),), (d, p;) and (e, D). Since o(Zr;~),fi(y))(1 ®h1·23·4h1·2·3) = 

o(z(Cx),fi(y))(h1,23,4 ® h1,2,3) it follows that zC:Cx),fi(y)(h1,23,4h1,2,3) = 
a,b ' a,b 

l:i Z~(h1 · 23 · 4 ) ® Z~'(h 1 · 2 · 3 ) = zr;~),fi(y)(h 1 · 23 ,4) = l~~(h). For the second 
equality we use the assumption co(h) = 1. Q.E.D. 
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Lemma 6.2. Let (g, h) E U~2 x U~N+l be a pair satisfying co(h) = 
1, cA(h) = 0 and (1.3). Suppose that (a,() and (b,i]) are admissible. 
Then 

zii(y),((x)(h1,23,4h1,2,3) = zii((h) 
b,a ba · 

Proof. It follows c0 (g) = 1 by our assumptions c0 (h) = 1 and 
(1.3). Consider the embedding of Hop£ algebra i2,3,4 : U~2 '---+ Ut~,N 
sending A r--+ t 23 (0) and B r--+ t 34 (0) (geometrically caused by the ex­
ceptional divisor obtained by blowing up at (x, y) = (1, 1)). Since 

(i2,3,4 Q9 id)(ExpO~N)) = Expn~N)(z) 2 · 3 ·4 E Ut~,Ni§qH0 B(Mo,4) 

H 0 B(Mb~l)*i§cH0 B(M0 ,4), it induces the morphism 

·* 0 - (N) 0 -
z2,3 ,4 : H B(M0 ,5 ) ---+ H B(Mo,4) 

which gives i2,3,4([d:]) = 0, i2,3,4([ 1~x]) = [d:], i2,3,4([(t:x]) 0 

(a f= 0), i2,3,4([;]) = 0, i2,3,4([1~y]) = [1~z] and i2,3,4([(t~Y]) = 0 

(a f= 0), i2, 3 , 4 Wt~~;,~x]) = 0 (a E Z/NZ). In each term of the expres-

. ziiCYl,t:Cxl "' [ 1 1 l th fi t t · SlOn b,a = Dl=(irn,-·· ,il) CJ Wirn · · · Wi 1 , e rs componen Wirn 1S 

always one of dx, dy, r:!x and rady for a f= 0 because both (a,() and 
X y '>N-X '>N-y 

(b, 7]) are admissible. So i2, 3 , 4 (l~) = 0 unless m~ = 0. Therefore 

z~;!)/:(x) (l·3,4h1,23,4 h1,2,3) = 2.: z~ (g2,3,4) Q9 z~' (h1,23,4 h1,2,3) 

by eo (g) = 1. So by our assumption, 

zii(y),((x) (h1,23,4hl,2,3) = zii(y),((x) (l·3,4h1,23,4h1,2,3) 
b,a b,a 

= z~:!),((x\h1,2,34h12,3,4). 

By the same arguments to the last two paragraphs of the proof of 
Lemma 6.1, 

(6.1) i* (lij(y),((x)) - 0 
12,3,4 b,a - ' 

i* (z((xy)) = 0 12,3,4 a ' 

i* (lij(y),((x)) - zii( i* (z((xy)) - zZ: 1,2,34 b,a - b,a' 1,2,34 a - a 

for admissible pairs (a,() and (b, i]), from which we can deduce 

zii(y),((x)(h1,2,34h12,3,4) = zii((h) 
b,a ba · 

Q.E.D. 
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Lemma 6.3. LethE U:JN+ 1 with c0 (h) = 1 and cA(h) = 0. Then 

z~(x) (eT{t23 (0)+t24 (0)+t34 (0)} h1,23,4h1,2,3) = z~,I (h), 

z~(y) ( eT{ t 23 (O)+t24 (O)+t34 (0)} h1,23,4 h 1,2,3) = z~,I (h), 

z~(xy)(eT{t23 (0)+t24 (0)+t34 (0)} h1,23,4h1,2,3) = z~,I (h), 

zC(x ),TJ(y) (eT{ t 23 (O)+t24 (0)+t34 (o)} h 1,23,4 h1,2,3) = zCTJ,I (h) 
a,b ab 

for any pairs (a, () and (b, r;). 

Proof. By the arguments in Lemma 6.1 and our assumption 
CA(h) = 0, 

z~(x) ( eT{ t 23 (O)+t24 (0)+t34 (0)} h 1,23,4 h 1,2,3) 

= z~(p4 (eT{t23 (0)+t24 (o)+t34 (o)}h1,23,4h1,2,3)) = l~(eTB(O)h) = zF(h), 

z~(y) ( eT{ t 23 (O)+t24 (0)+t34 (0)} h 1,23,4 h 1,2,3) 

= l~(p2 (eT{t23 (0)+t24 (0)+t34 (0)}h1,23,4h1,2,3)) = l~(eTB(O)h) = z~,I(h), 

z~(xy) ( eTW3 (O)+t24 (O)+t34 (0)} h 1,23,4 h 1,2,3) 

= l~(p3 (eT{t23 (0)+t24 (0)+t34 (o)}h1,23,4h1,2,3)) = l~(eTB(O)h) = zF(h). 

By c0 (h) = 1, 

zC(x) ,TJ(y) ( eT{ t 23 (O)+t24 (0)+t34 (0)} h 1 ,23,4 h 1,2,3) 
a,b 

= zC(x),fJ(y) (eT{t24 (0)+t34 (0)} h1,23,4) = zCTJ (eTB(O) h) = zCTJ,I(h) 
a,b ab ab · 

As for the last equation, we use the following trick: 

eTt23 (O) eT{ t 24 (O)+t34 (o)} h1,23,4 h1,2,3 = eT{ t 24 (O)+t34 (o)} eTt23 (o) h 1,23,4 h1,2,3 

= eT{ t 24 (0)+t34 (o)} h 1,23,4 eTt23 (o) h 1 ,2,3. 

Q.E.D. 

Lemma 6.4. Let (g, h) E U:J2 x U:JN+ 1 be a pair satisfying co(h) = 
1, cA(h) = CB(o)n(h) = 0 for all n EN and (1.3). Suppose that (a,() is 
admissible. Then 

zTJ(y ),[,(x) (eT{ t 23 (O)+t24 (0)+t34 (0)} h 1,23,4 h 1,2,3) = zTJC (h) 
b~ ~ . 
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Proo1. Express o(zii(v),((x)) = "'.l' Q9 l" with deg l' = m~ and b,a L...tt 2 2 2 2 

deg l~' = m~' for some m~ and m~' such that m~ +m~' = wt( a, () +wt(b, iJ). 
Since (a,() is admissible, i~, 3 , 4 (ZD is of the form a[ 1cizzl···l 1clzz] with 
a E Q. But by our assumption CB(o)n(h) = 0, i~, 3 , 4 (ZD = 0 unless 
m~ = 0. Thus 

zfl(y) ,(,(x) ( eT{ t 23 (O)+t24 (O)+t34 (0)} h 1,23,4 h 1 ,2,3) 
b,a 

= lbfj(y) ,(,(x) (g2,3,4eT{ t 23 (O)+t 24 (O)+t34 (0)} h 1,23,4 h 1,2,3). 
,a 

By (1.3), 

By (6.1), 

g2,3,4eT{ t 23 (O)+t24 (0)+t34 (0)} h 1 ,23,4 h 1,2,3 

= eT{ t 23 (O)+t24 (0)+t34 (0)} g2,3,4 h 1,23,4 h 1,2,3 

= eT{ t 23 (O)+t24 (0)+t34 (0)} h 1,2,34 h 12,3,4 

= eT{ t 23 (O)+t24 (0)} eTt34 (0) h 1,2,34 h 12,3,4 

= eT{ t 23 (O)+t24 (o)} h 1,2,34eTt34 (O) h 12,3,4. 

zfl(y),(,(x) ( eT{ t 23 (O)+t 24 (0)} h 1,2,34eTt34 (0) h 12,3,4) 
b,a 

= zfl(y),(,(x) ( eTW3 (O)+t24 (o)} h 1,2,34) 
b,a 

= l~i(eTB(O)h) = [~~1 (h) = l~i(h). 

The last equality follows from the admissibility of (a, () 
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