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Abstract. 

Based on the works by Kajiwara, Noumi and Yamada, we pro­
pose a canonically quantized version of the rational Weyl group rep­
resentation which originally arose as symmetries or the Backlund 
transformations in Painleve equations. We thereby propose a quan­
tization of discrete Painleve VI equation as a discrete Hamiltonian 
flow commuting with the action of W(Di1l). 

§1. Introduction 

Let A= [aij]L=o be a generalized Cartan matrix of affine type and 
W(A) be the corresponding Weyl group. We denote the generators by si 

(i=O,··· ,l). Let Fe~:= C(ao,··· ,az,Jo,··· ,j1)bethefieldofrational 
functions generated by commuting variables a0, · · · , az, fo, · · · , fz. Let 
Uij be integers that satisfy 

(i) Uij = 0 if i = j or aij = 0, 
(ii) Uij : Uji = -aij : aji otherwise. 

Theorem 1 (KNY, case APl). For i,j = 0, · · · , l put 

Then these formulas define a group homomorphism W(A} 1l) ---+ Aut(F ct)· 
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This is the typical formula of the affine Weyl group symmetry or the 
Backlund transforation for difference Painleve equation in its symmetric 
form: the case A~1 ) gives the symmetry of the difference Painleve IV 
equation[KNY]. Moreover, this action is a Poisson map with respect to 
the bracket 

(2) 

A naive expect is that there exist a quantization of this representation 
realized as adjoint actions of some suitable operators (quantum Hamil­
tonian action). One of the aim of this note is to answer this problem. 
In the type A case, we introduce the letters F0 , · • • , F1 subject to the 
quantized relation of (2), 

FiFi+l = q-1 Fi+lFi, FiFj- FjFi = 0 (j ;f= i ± 1) 

as well as central letters a0, · · · , al. Let F be the skew field defined by 
these relations. We will construct the affine Weyl group action on F in 
the form 

si(¢) = Si¢Si 1 

for any ¢ E F. The "Hamiltonian" Si is actually given by some infinite 
product which is rather familiar in q- analysis, despite that it involves 
non-commutative letters (Section 2, Theorem 2). It is also shown that 
the construction works for other affine Weyl groups as well (Section 3, 
Theorems 3 and 4). 

Rescent studies of Painleve systems enabled us to understand their 
discrete symmetries (Backlund transformations) and the (discrete) time 
evolution tranformation from the one, namely the affine Weyl group 
actions of the above type [NY1][S]. Based on this knowledge together 
with our quantization of the affine Weyl group action, we can quantize 
discrete (multiplicative) Painleve type equations. In principle, if we 
choose some lattice direction in the affine Weyl group as the generator of 
a discrete time evolution, then this discrete dynamics commutes with the 
simple reflections corresponding to the roots that are perpendicular to 
the evolution direction in the lattice. We apply this idea to quantize the 
q- difference Painleve III equation studied by Kajiwara and Kimura [KK] 
and also to quantize Jimbo-Sakai's q- difference Painleve VI system[JS]: 
See (11), (12) in Section 2 and Theorems 5, 6 for results. 

§2. Quantizing the Weyl group action: Type A case 

Let Q = Zao+· · ·+Zal be the root lattice oftype Af 1l with simple 
roots a 0 , · · · , a 1 and C[Q] = C[e"'0 , • • • , e"'1 ] be its group algebra. The 
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Weyl group action Bi(aj) = aj- aijai gives rise to the action on C[Q], 
and we can identify the previously used letter aj as e<>j: 

Let K be the quotient field of the group algebra C[Q], namely K = 

C(ao, · · · , a1). 

Remark Let 80 , • • · , 81 be the "dual" letters such that 

then we have 

That is, the Weyl group action on K can be realized as adjoint actions. 
This remark applies to the latter cases as well. 

For type A?) case (l > 1), we introduce the cannonically quantized 
letters Fo, · · · , Fz corresponding to (2): 

(3) FiFi+lmodl+l = q-1 Fi+lmod!+lFi, FiFj = FjFi (i- j =/=. ±1). 

(Here and in what follows we regard the subscripts as elements in 
Zj(l + 1)Z.) 
Let K(F0 , • · • , Fz) be the K- algebra generated by the above letters 
(3). It can be shown in a standard way that this algebra is an Ore 
domain (cf. [B)). Let F := K(Fo, · · · , F1) be the quotient skew field 
of K(F0 , · · · , F1). The above relations (3) actually quantize the Poisson 
bracket (2). In fact, letting q--+ 1 and think of the Poisson structure 

{ ¢, '¢} := lim - 1- [¢, '¢) 
q-tl q- 1 

on the commutative algebra F mod(q- 1). Then we have 

according to the defining relation (3). 
Note that ai E K is central in F. Let us introduce the following 

multiplication operator 

(4) 
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where z and q are central letters and (x, q)oo := TI:=0 (1 + xqm). The 
right hand side of (4) should be understood in the q- adic completion 
F((q)) of F. We put 

P. ·- e!1rv=Taiai S . •T•(z "')p • .- , i .= ~ 'ri i· 

Note that Pi commutes with the variables Fj, 0 ~ j ~ l.We are in­
terested in the adjoint action of Si, Ad(Si) : ¢ E F((q)) r-+ Si¢Si1 E 

F((q)). 
The statement of the following theorem essentially goes back to (FV]. 

Theorem 2. We have 

(5) Ad(Si)2 = id, 

sisj = sjsi (j ¢. i ± 1), 

(6) 

where the index should read modulo l + 1. Hence si f-t Ad(Si) defines a 
group homomorphism 

(7) 

W(Apl)-+ Aut(F((q))). 

Let us calculate Ad(Si)Fj = SiFisi-l first. We have 

Ad(Si) (Fi+l) 

Ad(Si)(Fj) 

1 + aiFi"' 
+ D ri-b 

ai ri 
ai +Fi 

Fi+1 1 + aiFi' 

Fi (i-j¢.±1). 

In fact these are the defining recurrence relation for the multiplication 
operator (4), that is, one can recover the formula of w(ai, Fi) from these 
modulo pseudo constants. 

Now we can check AdSf = id(5) from these formula. Equivalently, 
since 

Sf= w(ai, Fi)w(ai\ Fi)p;, 

(5) follows from the fact that w(ai,Fi)w(ai\Fi) is a pseudo constant: 
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As for (6), we can do the similar computation to check it as the 
adjoint action on F((q)), namely, compare the result when adjointly 
applied to generaters Fi. However, (6) is satisfied as an identity of 
elements in F((q)). Actually (6) follows from the dilogarithmic identity: 
suppose F and G satisfies FG = qGF, then we have 

(G, q)oo(F, q)oo = (F, q)oo(GF, q)oo(G, q)oo· 

From this we can show ([FV], [Ki]) 

(9) w(x, Fi)w(xy, Fi+l)w(y, Fi) = w(y, FHl)w(xy, Fi)w(x, FHl) 

where x, y are central letters, which is equivalent to (6). 

Introduce the diagram automorphism by 

then w and 8i := Ad(Si) generate the extended affine Weyl group 

W(A~1)) acting on F((q)). As is well known, we have the commuting 
elements 

(10) { 

T1 := 8182 · · · 8zw-1 

T2 := 82 · · · 8zw-1 81 

Tz := 8zW-181···8z-1· 

They are mutually conjugate. If we take T1 as a discrete time evolution 

operator, then the group (8o8I8o, 82, 83, · · · , 8z) ~ W(A~.=!1 ) commutes 
with the T1 action. This gives the quantization of the "q- difference" 
version of type A discrete system with Painleve type symmetry which is 
extensively studied by Noumi and Yamada [NY1][NY2]. 

Example Let l = 2. Note that a0a1a2 =: p is invariant under 
W(A~1)), and the same holds for F0F1F2 =: c since c commutes with 
everything. The action of T1 = 8182w-1 is given by 

(11) T1(ao) = p-1ao, T1(a1) = pa1, T1(a2) = a2 

and 

(12) 

This T1 action commutes with (8o8I8o, 82) ~ W(A~1)) and gives a quan­
tization of the qPm system studied in [KK] (where p should be regarded 
as q). 
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In this l = 2 case, the Hamiltonian for the diagram automorphism w 
can be found as follows, so that the above T1 flow is actually a discrete 
Hamiltonian flow. We put 

B(X) := {X, q)00 (qX- 1 , q)00 

and 

where 
[8~,ao] = -1, [8~,a1] = 1, [8~,a2] = 0. 

(Note : If we realize the A~1 ) root system in R 3 EEl R8 by a 0 = e3 - e1 + 
8, a1 = e1 - e2, a2 = e2 - e3, where e1, e2, e3 are the standard orthogonal 
basis of R 3 and 8 the canonical null root so that p = e8 , then 8i stands 
for the derivation corresponding to e1 . ) Then we can easily check 

and therefore 

{13) 

We have 

s1s2n_1 

W(a1, F1)P1 W{a2, F2)P2 · (p-a~ P1P2)-1B{F0- 1 F1)B( qF1)2B{F2- 1 F0- 1) 

W(a1, F1)\ll(a1a2, F2)B{F0- 1 F1)B{qF1)2B{F2- 1 F0- 1 )p8~. 

§3. General case 

If the Dynkin diagram for the genralized Cartan matrix is simply 
laced, the construction in the last section applies to obtain the cor­
responding Weyl group action. As for the non-simply laced case, the 
construction can be reduced to the rank two cases: B2 type and G2 

type (cf. [NY3]). 
As before let K := C(a1, a 2 ) be the quotient field of the group 

algebra C[Q], where Q stands for the rank two root lattice in problem 
and we identify the letter ai with eai E C[Q]. We introduce 8i(j = 1, 2) 
such that [8i, ak] = aik and put Pi := e!1rv'=Iaiai. Then the Weyl group 
action si on K is given by the adjoint action of Pi: 
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B2 case. Let [ ~~~ ~~~ ] = [ _ ~ - ~ ] and define the skew field 

F = K(F1, F2), where 
F2F1 = q2 F1F2. 

G2 case. Let [ ~~~ ~~~ ] = [ -~ - ~ ] and define the skew field 

F = K(F1, F2), where 
F2F1 = q3 F1F2. 

Using these, we have Hamiltonian Weyl group action on F in both 
cases: 

Theorem 3. For type B 2 case, put 

Then we have 

(15) 

Theorem 4. For type G2 case, put 

We have 

(17) 

For example, in the B 2 case we have 

\.l!q(a1, FI)F2'.1!q(a1, F1)-1 

F2 '.!! q( a1, q-2 FI)\.1! q( a1, FI) - 1 

F (F1q-1, q)oo(F1- 1q2, q)oo (a1F1q, q)oo(a1F1-1, q)oo 
2 (a1F1q- 1, q)oo(a1F1-1q2, q)oo (F1q, q)oo(F1-1, q)oo 

F (1 + F1q-1)(1 + F1) (1 + a1F1- 1)(1 + a1F1- 1q) 
2 (1 + a1F1q- 1)(1 + a1FI) (1 + F1- 1)(1 + F1- 1q) 

F2 (a1 + FI)(a1 + F1q-1) . 
(1 + a1FI)(1 + a1F1q-1) 
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The property Ad(S1)2 id can be checked by continuing this com­
putation, or we can conclude it immediately from the pseudoconstant 
property ( 8) . 

In principle we can calculate the expressions for Ad(S1S2S1S2)Fj 
and Ad(S2S1S2S1)F1 (j = 1, 2) also to check (15) at the adjoint level, 
though it is a quite lengthy way. In fact (15) holds as an identity in 
F((q)). Let us introduce a square root of F2 , namely let FJ!2 be the 
letter satisfying 

Then we have 

so that (15) can be reduced to the type A identity (9) . For short, we 
write a1 =: a, a2 =: b, 

or 
'l!a'l!ab'l!abwab2 'lib 'lib = 'lib 'lib 'l!ab2 'l!ab'l!ab'l!a. 
1+-1 +- +-1 +-1 

This can be verified as follows, which uses (9): 'll± w?w~ = 'lli'll~'l11 
as well as w+ 'l!~ = 'l!~ w+. at the underlined places. 

LHS wawab'l!abwab2 wb 'lib 
1 + - 1 - + 

wawabwb wab2 wabwb 
1 + 1 - 1 + 

'lib wabwa wab2 wabwb - 'lib wabwab2 'l!a wabwb 
+ 1 + - 1 +- + 1 - + 1 + 

'lib wab wab2 'lib wabwa 
+ 1 - 1 + 1 

'lib 'lib 'l!ab2 wabwab'l!a = RHS. + - 1 - + 1 

Proof for the G 2 case can be quite similary done as in the B 2 case: we 
use the cubic root ( -=/= 1 of unity and ~ of F2 that satisfies F 1 ~ = 

q- 1 ~F1. We have 
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As before, write a1 =: a, a2 =: b, Wq(a, F1 ) =: W)', \f1qs(a3 , F2 ) =: \ji~ 
and also 

Wq(b, {IF;)=: wg, Wq(b,(±1 {/F;) =: W~ 

for short. Then (17) is equivalent to 

(18) 

This time (9) means wxwxy\jiy = 1.jiY1.jiXY1.jiX fork = 0 ±and 1.jiX 1.jiY \jiZ 
k 1 k 1 k 1 ' 0> +> -

are commuting for any central x, y, z. We have 

LHS of (18) 

§4. Quantizing the discrete Painleve equation 

There is a discretization of the Painleve VI equation proposed by 
Jimbo and Sakai [JS] and later it was reformulated under the affine Weyl 

group symmetry of type D~1 ) : [8], [TM]. Using the ideas in the previous 
sections, here we propose its quantum (non-commutative) version in a 
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quite straightforward way. Let us introduce the Dynkin diagram of type 
D~1) and its numbering: 

0 5 

\ I 
2 3 

I \ 
1 4 

We denote the corresponding generalized Cartan matrix by [aij]L=o 
and the simple roots by { OOi }g. Let q be a formal central letter (or 
a complex parameter, lql < 1). We introduce the field of rationals 
K = C(a0 , · · · , a5 ), where ai = eai as in the previous sections. 

The Weyl group W = W(D~1 )) acts on K by 

One checks that a0a1 a~a~a4a5 =: p is invariant under the action of W. 
Moreover, this action can be extended by the diagram automorphisms 
uo1,0"4s,T: 

(19) 

uo1 : ao +-+ a1\ aj 1-7 aj 1 (j f. 0, 1), 

0"45 : a4 +-+ a5 1, aj 1-7 aj 1 (j f. 4, 5), 

T : a1 +-+ a5~1 (j = 0, · · · , 5). 

We denote the extended Weyl group by W := (W,u01,0"45,T). 

Let F = K(F, G) be the skew field, where 

(20) FG = qGF. 

The action of WonK can be extended to F = K(F, G) as follows. 

Theorem 5. We can extend the automorphisms s1 (j = 0, · · · , 5) 
of K as algebra automorphisms ofF by putting 

-1G 2 
(F) ·= F aoa1 + a2 

32 . -1 2 ' 
aoa1 a2G + 1 

3j(F) := F (j f. 2) 

and 
2 -1p 1 

(G) ·= a3 a4a5 + G ( ) ( .../.. ) 83 . _ 1 2 , 3j G := G j r 3 . 
a4a5 F + a3 

They give rise to a homomorphism W-+ Autskew field(F). 
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Moreover, the action of the diagram automorphisms a 01 , a 45 , T on 
K can be extended as involutive antiautomorphisms on F by 

ao1 : F r-+ q-1 F-1, G r-+ G 

T : F r-+ G, G r-+ F 

so that we have a homomorphism W --+ Autc -lin (F). 

The proof is straightforward. Because of the noncommutativity, it 
seems inevitable to define a01 , a 45 , T actions on F as antiautomorphisms. 
For example, if we want to extend the action ofT on K to F by T : F <:-+ 
G (cf. [TM]), this cannot be compatible with the relation FG = qGF if 
we insist T to be an automorphism: T(F)T(G) -=J qT(G)T(F). 

Note that a := a 01a 45 is an automorphism ofF satisfying asj 

Su(j)T, where 

(a(O), a(1), a(2), a(3), a(4), a(5)) = (1, 0, 2, 3, 5, 4). 

We are interested in the action of 

since in the commutative case this recovers the discrete Painleve VI 
system [S]. Put t := a~a4a5 , then tis invariant under (so, s1, s2s3s2 = 

S3S2S3,S4,S5J = VVT3 • 

(21) 

(22) 

Theorem 6. We have 

(T3(ao),T3(a1),T3(a2),T3(a3),T3(a4),T3(a5)) 

= (ao, a1,pa2,p- 1a3, a4, a5), T3(t) = p- 1t, 

This T3 flow allows the symmetry ofVV(Di1l), namely T3 commutes with 

the subgroup (so,s1,s2s3s2 = s3s2s3,s4,s5,ao1,T) c.::' (VV(Di1l),ao1,TJ 
ofW. 



286 K. Hasegawa 

Put Z := tF, Y := ~G, T := (~) 2 and let us use the notation 

T3(X) =: X for any X. We have ZY = qYZ, T = p-2T and the 
formula (21), (22) can be rewritten as follows: 

(23) zz =!!.. y +Tai y +Ta12 
q y + a6 y + a()2 ' 

YY = _!_ Z + Ta~ Z + Ta42 

pq Z + a~ Z + a5 2 · 

This system should be regarded as a quantization of the discrete Painleve 
VI equation. 

Likewise in the previous sections, we have the Hamiltonians for the 
W(D~1))- action written in terms of infinite product \11. Put 

where [8j,ak] = ajkak and pj = e~FI"'i 8i. Then we have Sj = Ad(Sj) 
for j = 0, · · · , 5. 

We can also find a Hamiltonian for the diagram automorphism O" = 

O"oiiJ"4S· Let us introduce the letters 8j by the relation [8j, ak] = 8jk and 
put 

Then we have O" = Ad(L;), that is, L;FL;-1 = p-1, L;GL;-1 = c-1 and 
L;ajL;-1 =a;;(~) hold. Thus we have 

Theorem 7. The quantum discrete Painleve VI equation is a dis­
crete Hamiltonian flow, 

Explicitly, we have 

S2S1SoS2S3S4SsS3I; 

\II( a~, aoa1 1G)P2P1Po \II( a~, aoa1 1G)p2 

x \II( a~, a:; 1asF)P3P4P5 \II( a~, a-;; 1 asF)p3L; 

\II( a~, aoa1 1G)\If( ( aoa1a2)2, a01a1 G)\lf(p2 ( a3a4a5)-2, a4a51 F) 

x\lf(p2a~a32 , a4a5 1 F)B(qFG)e(G- 1 F)B(qF)4p8 , 
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where 8 = ~(8~- 8~) so that p8 tp-8 = tp- 1. Note that we can realize 

the D~l) root lattice in Rb EB Rs = Rb EB Re1 EB · · · EB Res by 

where e1 are regarded as the orthonormal basis. Then we have t = ee3 , 

8 = -8j8e3. The root subsystem pependicular to e3 is generated by 
d . h' t D(l) ao, a1, a2 + a3 = e2- e4, a4, as an 1somorp 1c o 4 . 

As for the classical (commutative) case, the discrete Painleve system 
allows rather simple, so-called "seed" solutions, from which one can 
construct rich explicit solutions via Backlund transformations. In our 
quantized system, it seems however that such seed solutions are difficult 
to find because of the noncommutativity. For such issues as well as the 
consideration of the continuous limit, we hope to discuss elsewhere. 
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