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Abstract.

Based on the works by Kajiwara, Noumi and Yamada, we pro-
pose a canonically quantized version of the rational Weyl group rep-
resentation which originally arose as symmetries or the Béacklund
transformations in Painlevé equations. We thereby propose a quan-
tization of discrete Painlevé VI equation as a discrete Hamiltonian
flow commuting with the action of W(D‘(ll))‘

§1. Introduction

Let A= [aij]ﬁ’ j=o be a generalized Cartan matrix of affine type and
W (A) be the corresponding Weyl group. We denote the generators by s;
(i=0,---,1). Let Foy :== Clao, - ,a, fo, -, f1) be the field of rational
functions generated by commuting variables aq,- - ,ai, fo, -, fi- Let
u;; be integers that satisfy

(i) uj=0ifi=jora; =0,

(11) Ui * Ujs = —045 * Qg otherwise.

Theorem 1 (KNY, case A;l)). Fori,57=0,---,1 put

(1) si(aj) :=aja; *7,  si(f) = f; (%) ’ :

Then these formulas define a group homomorphism W(Agl)) — Aut(Fy).
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This is the typical formula of the affine Wey!l group symmetry or the
Bécklund transforation for difference Painlevé equation in its symmetric
form: the case Aél) gives the symmetry of the difference Painlevé IV
equation[KNY]. Moreover, this action is a Poisson map with respect to
the bracket

(2) {fis iy =wiififys {ai a5} = {as, f;} =0.

A naive expect is that there exist a quantization of this representation
realized as adjoint actions of some suitable operators (quantum Hamil-
tonian action). One of the aim of this note is to answer this problem.
In the type A case, we introduce the letters Fp,--- , F} subject to the
quantized relation of (2),

FiFp =q 'FF, EF,—FF,=0(G#itl)

as well as central letters ag,--- ,a;. Let F be the skew field defined by
these relations. We will construct the affine Weyl group action on F' in
the form
si(¢) = SipS;

for any ¢ € F. The “Hamiltonian” S; is actually given by some infinite
product which is rather familiar in ¢- analysis, despite that it involves
non-commutative letters (Section 2, Theorem 2). It is also shown that
the construction works for other affine Weyl groups as well (Section 3,
Theorems 3 and 4).

Rescent studies of Painlevé systems enabled us to understand their
discrete symmetries (Backlund transformations) and the (discrete) time
evolution tranformation from the one, namely the affine Weyl group
actions of the above type [NY1][S]. Based on this knowledge together
with our quantization of the affine Weyl group action, we can quantize
discrete (multiplicative) Painlevé type equations. In principle, if we
choose some lattice direction in the affine Weyl group as the generator of
a discrete time evolution, then this discrete dynamics commutes with the
simple reflections corresponding to the roots that are perpendicular to
the evolution direction in the lattice. We apply this idea to quantize the
g- difference Painlevé I1I equation studied by Kajiwara and Kimura [KK]
and also to quantize Jimbo—Sakai’s ¢- difference Painlevé VI system[JS]:
See (11), (12) in Section 2 and Theorems 5, 6 for results.

§2. Quantizing the Weyl group action: Type A case

Let Q = Zag+- - -+ Zay be the root lattice of type Al(l) with simple
roots ay, - - -, and C[Q] = Cle*e, -  e™] be its group algebra. The
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Weyl group action s;(a;) = o — a;j04 gives rise to the action on C[@Q)],
and we can identify the previously used letter a; as e®7:

—Qij

si(a;) = a; "“a;.
Let K be the quotient field of the group algebra C[Q], namely K =
C(a'()a DA (ll)-
Remark Let 8, ,9; be the “dual” letters such that

[3]‘, ak] = 6jak - Oéhaj = Qjk,

then we have

eﬂ'\/—la,ﬁi oy e—w\/—lai(h — Si(aj)-

That is, the Weyl group action on K can be realized as adjoint actions.
This remark applies to the latter cases as well.

For type Agl) case (I > 1), we introduce the cannonically quantized
letters Fy,--- , Fj corresponding to (2):

(3)  FiFiyimodi+1 = ¢ Fitimod11 Fy, FiFy = F;F;, (i —j # £1).

(Here and in what follows we regard the subscripts as elements in
Z/(l+1)Z.)
Let K{Fp,---,F;) be the K- algebra generated by the above letters
(3). It can be shown in a standard way that this algebra is an Ore
domain (cf. [B]). Let F := K(Fy,---,F;) be the quotient skew field
of K(Fy,---, F;). The above relations (3) actually quantize the Poisson
bracket (2). In fact, letting ¢ — 1 and think of the Poisson structure

. 1
on the commutative algebra F mod(q — 1). Then we have
1
{F, Fia} = ;J“:T(FiFi+1 —FipF) = —-FiFi
according to the defining relation (3).

Note that a; € K is central in F'. Let us introduce the following
multiplication operator

AR N . (quv q)oo(Fi_l,Q)oo
@ Do B2) = Wole Fa) o= (24Fy, @)oo (2F; ", @)oo
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where 2 and g are central letters and (,q)co := [In_o(1 + 2¢™). The
right hand side of (4) should be understood in the g- adic completion
F((q)) of F. We put

pPi == G%F\/:Iaiai, Sz = \I/(Z,F»,,)pz

Note that p; commutes with the variables F;, 0 < j < [.We are in-
terested in the adjoint action of S;, Ad(S;) : ¢ € F((q)) — Si¢S; ' €
F((q)).

The statement of the following theorem essentially goes back to [FV].
Theorem 2. We have

(5) Ad(8:)* = id,

SiS; =8;8; (j#£i+1),

(6) SiSi418; = Si415iSit1

where the index should read modulo I + 1. Hence s; — Ad(S;) defines a
group homomorphism

W(A®M) = Aut(F((q))).

Let us calculate Ad(S;)F; = S;F;S;* first. We have
‘ 1+ a;F;

Ad(Sz)(FZ—l) = @ T Fz Fi—l?
a; + F;
(7) Ad(S)(Fivr) = P

Ad(5:)(F;) Fy (i-j#+£1).
In fact these are the defining recurrence relation for the multiplication
operator (4), that is, one can recover the formula of ¥(a;, F;) from these
modulo pseudo constants.

Now we can check AdS? = id(5) from these formula. Equivalently,

since
57 = U(a;, F;)V(a; ", Fy)p?,

(5) follows from the fact that ¥(a;, F;)¥(a; ", F;) is a pseudo constant:

(8) U(as, F3)¥(a; ', Fy) = U(a;, gF;) ¥ (a; ', qF;).
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As for (6), we can do the similar computation to check it as the
adjoint action on F((q)), namely, compare the result when adjointly
applied to generaters F;. However, (6) is satisfied as an identity of
elements in F((g)). Actually (6) follows from the dilogarithmic identity:
suppose F' and G satisfies FG = ¢GF, then we have

(G, @)oo (F, Qoo = (F, @)oo (GF, 0)oo (G, @)oo
From this we can show ([FV], [Ki])
9) Uz, F)V(zy, Fiy1)¥(y, Fi) = Uy, Fipr) ¥(ay, Fi)¥(z, Fit1)
where z,y are central letters, which is equivalent to (6).
Introduce the diagram automorphism by
w:a; = aip1,  Fi Figtmodirt,

then w and s; := Ad(S;) generate the extended affine Weyl group
W(Afl)) acting on F((q)). As is well known, we have the commuting

elements

T, :=8189 - slw’l

Ty :=89--- Slw~181
(10)

T = sw sy 8_1.

They are mutually conjugate. If we take T} as a discrete time evolution
operator, then the group (sgs150, 82,83, ,81) =~ W(Agl“)l) commutes
with the T} action. This gives the quantization of the “g- difference”
version of type A discrete system with Painlevé type symmetry which is
extensively studied by Noumi and Yamada [NY1][NY?2].

Example Let | = 2. Note that agaias =: p is invariant under
W(Agl)), and the same holds for FoF1F, =: ¢ since ¢ commutes with

everything. The action of 77 = 5150wt is given by
(11) Ti(ao) = p~tag, Ti(a1) = pa1, Ti(az) = az
and

14a Ft 1 1+ay'Fo
12 Ty (Fy) = c—r-—r—, T, () =c—————.
(12) oT1(Fb) 1+a by (R 1+ag'Fy!

This 7T} action commutes with (sgs15g, $2) ~ W(Agl)) and gives a quan-
tization of the qPry; system studied in [KK] (where p should be regarded
as q).



280 K. Hasegawa

In this [ = 2 case, the Hamiltonian for the diagram automorphism w
can be found as follows, so that the above T flow is actually a discrete
Hamiltonian flow. We put

0(X) := (X, 0o (aX ", @)oo

and
— - _ -1 _a
Q= (9(F0 1F1)9(QF1)29(F2 1Fo 1)) x p~% p1pa,

where
[ /1,040] = —1, [ /1,041] = 1, [8’1,(12] =0.

(Note : If we realize the Agl) root system in R*®& R6 by ag = ez —e; +
4,1 = e1 —eg, g = e — €3, Where eq, e, e are the standard orthogonal
basis of R® and 4 the canonical null root so that p = e’, then 04 stands
for the derivation corresponding to e;. ) Then we can easily check

Qa;:27" = ait1moas, QFQ " = Fiy1mods
and therefore
(13) Ty = Ad(S,5,Q71).
We have

SngQ_l
U(a1, F1)p1¥(az, Fa)pa - (07 % p1p2) 1 0(Fy " F1)0(qF1)20(Fy “Fyt)
‘I!(al, Fl)\I!(alag, F‘z)@(ﬁb_l.Fl)0((]}711)26(}7{1]‘71(;1)2761 .

83. General case

If the Dynkin diagram for the genralized Cartan matrix is simply
laced, the construction in the last section applies to obtain the cor-
responding Weyl group action. As for the non-simply laced case, the
construction can be reduced to the rank two cases: Bj type and Go
type (cf. [NY3]).

As before let K := C/(a1,a2) be the quotient field of the group
algebra C[Q)], where @ stands for the rank two root lattice in problem
and we identify the letter a; with e* € C[Q]. We introduce 9;(j =1, 2)
such that [0, ax] = a;r and put p; = e3™V=1239; Then the Weyl group
action s; on K is given by the adjoint action of p;:

. _ -1 o o—aje —1
sj{ag) = ap — ajra; = PiCkp; si(ag) = a; tak = pjarp; .
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a21 G2 -2 2
F = K(F1, Fy), where

B> case. Let [ 0u 012 } = [ 2 -1 ] and define the skew field
F2F1 - q2F1F2.

az1 G2 -3
F = K(F, F,), where

G5 case. Let on 012 ] = [ 2 —; ] and define the skew field

FoF, = ¢*F\F;.

Using these, we have Hamiltonian Weyl group action on F in both
cases:

Theorem 3. For type By case, put

(14) Si = U4(ar, F1)p1, So:=V,2(a3, F»)ps.
Then we have

Ad(S;)? = id,
(15) 51525152 = 52515251.

Theorem 4. For type G2 case, put

(16) Sy = Uy(ar, F1)p1, S = (a3, Fy)pa.
We have

Ad(S;)? = id,
(17) 515951555189 = 59515557595 .

For example, in the B, case we have

S1FS7 = Wu(ar, F)FaV,(aq, Fy) 7t
= BV, (a1,q %)V, (ar, F)™!

, (Fia Y, Qoo (FT ', @)oo (0114, @) o0(a1 FT ", @)oo
(01 F107 Y, Q)oo(01F1 6%, @)oo (F10, @) (F1 5 @)oo
: A+ FigHA+F) (Q+aFYHYQA+aF )
(I+aiFig )1+ aFy) (14 F7Y) (14 F )

(a1 + F1)(a1 + Fig™t)
O+ e F)A +a Fig )
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The property Ad(S;)®> = id can be checked by continuing this com-
putation, or we can conclude it immediately from the pseudoconstant

property (8).

In principle we can calculate the expressions for Ad(S525152)F;
and Ad(52515251)F; (j = 1,2) also to check (15) at the adjoint level,
though it is a quite lengthy way. In fact (15) holds as an identity in
F((q)). Let us introduce a square root of F», namely let /—F5; be the
letter satisfying

2
V-F =-F, FV-F=q'WV-EBF.
Then we have '
U2 (a3, Fo) = Yg(az, vV —F2) ¥y (a2, —V/—F),

so that (15) can be reduced to the type A identity (9) . For short, we
write a1 =: a,as =: b,

Uola, Fh) = UF, U (b, F) =: U, W, (b, £/~ Fp) = V4.
Then 57525153 = 52515257 is equivalent to
VU U s = v wstus,

or
AR Gl g TR LA LR R R e g T i

This can be verified as follows, which uses (9): ¥ U{¥0Y = OYO¥ T
as well as U2 UY = @Y U at the underlined places.

LHS = U$u2uobus®’ vl gt
S i il A T T
= VLUstwl v Oty = 04wt e’ vl uste,
= VLUPe gbyys
= UL Ul us byt es — RHS.
Proof for the G4 case can be quite similary done as in the By case: we

use the cubic root ¢ # 1 of unity and /F; of Fy that satisfies Fy &/ F =
g 1 YILF,. We have

U,s(ad, By) = 0, (az, {/17’2) T, <a2,C\3/F_‘2) v, (az,g—l : Fg) :
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As before, write a1 =: a,a2 =: b, Uy(a, F1) =: U, U s(a?, ) =: U}

and also
\IJ‘I(bv SV FQ) = \ng \Ilq(b, Cil 3\/ ) =: \Ill:)i:
for short. Then (17) is equivalent to
(18)  wewLtw Y we ue’wh = whuet wg ug Y ugb s,

This time (9) means YUY TY = YW YUY for k = 0,+ and ¥E, UY, U=
are commuting for any central z,y, z. We have

LHS of (18) = Wswwawebys™ gat’ gab’ po¥’ pat gt ot vl
—_— —N—_——
= PRt wP P gt by’ gyt get’ vl vl
S 1 7 0 e G L R T O R LA 4
—_— — — ———
= VR w e’ gyt gt gt gt gat pityt
—— N ——’
S 73 530 T S i Sl (1 L e G i
= Wuetes whwet peust b’ weh gt petyt
—_— | —
= THUL U uugtet’ pett g gat gt weted
S~~~ S————

2 3 2.3 2 2
S 135 A s i 7 S i S i i
- N N——

S 7550 T T e e R s G e
SR 13 A0 S T Tl T A el Tl il
S 358 Tl T 4 A il R G Rl e
S 13 A4 58 T T T T T il il el
= WLyt gab’ o't yabye — RHS of (18)

§4. Quantizing the discrete Painlevé equation

There is a discretization of the Painlevé VI equation proposed by
Jimbo and Sakai [JS] and later it was reformulated under the affine Weyl
group symmetry of type Dgl) : [S], [TM]. Using the ideas in the previous
sections, here we propose its quantum (non-commutative) version in a
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quite straightforward way. Let us introduce the Dynkin diagram of type
Dél) and its numbering:

We denote the corresponding generalized Cartan matrix by [a,’j]?’jzo
and the simple roots by {a;}3. Let ¢ be a formal central letter (or
a complex parameter, |¢] < 1). We introduce the field of rationals
K = C(ag,- - ,as5), where a; = e*¢ as in the previous sections.
The Weyl group W = W(Dél)) acts on K by
si(a;) = a; *a;.

One checks that aga;a3a?asas =: p is invariant under the action of W.
Moreover, this action can be extended by the diagram automorphisms
001,045,T ©

0g1 . Qg < al_l,aj — (Lj_l (] 75 0, 1),
(19) 045 @ Qg < agl,aj — (l;»_l (] 75 4, 5),
Tiaj¢razl; (j=0,--,5).

We denote the extended Weyl group by W := (W, 0oy, 045, 7).
Let F = K(F,G) be the skew field, where
(20) FG = ¢GF.

The action of W on K can be extended to F = K (F, Q) as follows.

Theorem 5. We can extend the automorphisms s; (j =0,---,5)
of K as algebra automorphisms of F by putting

apay G + a?

sy(F) = p 204 0
2(F) apa; ta3G + 1

si(F):=F (j #2)

and
a3asaz ' F + 1

s3(G) =
3( ) a4a5_1F+a§

G, $;(G) =G (j#3).

They give rise to a homomorphism W — Autskew fiela (F').
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Moreover, the action of the diagram automorphisms og1,045,T 0N
K can be extended as involutive antiautomorphisms on F by

oo : Fe=qg'FL GG
o5 F= F, G q'G™!
T:F—G G— F

s0 that we have a homomorphism W — Autg_,,, (F).

The proof is straightforward. Because of the noncommutativity, it
seems inevitable to define 0¢1, 045, T actions on F' as antiautomorphisms.
For example, if we want to extend the action of 7 on K to F by 7: F <
G (cf. [TM]), this cannot be compatible with the relation FG = ¢GF if
we insist 7 to be an automorphism: 7(F)71(G) # qr(G)T(F).

Note that o := 091045 is an automorphism of F satisfying os; =
S5(4)T; Where

(0(0),0(1),0(2),0(3),0(4),0(5)) = (1,0,2,3,5,4).
We are interested in the action of
T3 = 5281805200153545553045 = $2515052538485830 € W,

since in the commutative case this recovers the discrete Painlevé VI

system [S]. Put ¢t := a3a4as, then ¢ is invariant under (s, 51, S25382 =
T

535283, 84, 85) = W5,

Theorem 6. We have

(T3(ao0), Ts(a1), T3(az), T3(as), Ts(as), Tz(as))

= (ao,a1,pas, p~tas,as,a5), Ts(t)=p ¢,

G+tp~ta? G+tp~lay? o
G+t~'pad G +tlpay?
F+ta} F+tag?
F+t-la F4t-lag?’

(21) T3(F) = ¢ *p?t™2

b

(22) T;74G) = ¢t 26

This T3 flow allows the symmetry of W(Dfll)), namely T5 commutes with

1
the~3ubgroup <80,81,828382 = 538283,84,85,0'()1,T> ~ <W(D§1 )),0'01,7'>
of W.
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2
Put 7 := tF)Y = %G,T = (%) and let us use the notation

T3(X) =: X for any X. We have ZY = ¢V Z, T = p~2T and the
formula (21), (22) can be rewritten as follows:

(23) 7z LY FTA Y +T0r” o 1 Z47Taf Z+Ta,”
¢ Y+a2 Y+a3? ' pg Z+a2 Z4az’’

This system should be regarded as a quantization of the discrete Painlevé
VI equation.

Likewise in the previous sections, we have the Hamiltonians for the
W(Dél))- action written in terms of infinite product ¥. Put

Sy 1= W(a3, a0 'G)pa, Ss:= V(a3,asa; F)ps, S;:=p; (1 #2,3),

where [0, ar] = ajray, and p; = 3V =129 Then we have s; = Ad(S;)
for 7 =0,---,5.

We can also find a Hamiltonian for the diagram automorphism o =
001045. Let us introduce the letters 8;- by the relation [8;, o) = 0% and
put

Y= 0(gFG)O(G1F)0(qF)*
X e%\/rf(a‘)’*‘o‘l)(3{)4'3{)eﬂ'\/:TOtzaéeF\/—_locsaéeg—\/:-l(aél—l—ag,)(@"l—}-c’)é) )

Then we have o = Ad(X), that is, FE~! = F~1 $G%~! = G~ and
Ya; Y"1 =a-}, hold. Thus we have
J o(5)
Theorem 7. The quantum discrete Painlevé VI equation is a dis-
crete Hamiltonian flow,

T3 = Ad(5251505253515553%).

Explicitly, we have

5251505253545553%

= U(a3,a0ay ' G)p2p1p0¥ (a3, a0ai ' G)p2
x‘;[!(ag,a;1a5F)p3p4p5\If(a§,a;lag)F)ng

= V(a3 a0a; 'G)¥((aga1az2)?, ag ' a1G)¥(p*(azasas) 2, asas ' F)
x¥(p2a3a3?, asa5 FYO(qFG)O(G™IF)0(qF)*p°,
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where 9 = (8} — 8}) so that pPtp~@ = tp~!. Note that we can realize
the Dél) root lattice in R6@® R® = RS @® Re; ® - -- @ Res by

ap =0 —e; —ez, ] =e; — ey, Qg = €3 — €3,

Q3 =€3 — €4, Qg = €4 — €5, A5 = €4 + €5,

where e; are regarded as the orthonormal basis. Then we have t = e°3,
0 = —0/0e3. The root subsystem pependicular to es is generated by

. . 1
Qp, 01, Qg + i3 = eg — €4, Q4, @5 and isomorphic to Dfl ).

As for the classical (commutative) case, the discrete Painlevé system
allows rather simple, so-called “seed” solutions, from which one can
construct rich explicit solutions via Bécklund transformations. In our
quantized system, it seems however that such seed solutions are difficult
to find because of the noncommutativity. For such issues as well as the
consideration of the continuous limit, we hope to discuss elsewhere.
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