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Abstract. 

When we describe string propagation on non-compact or sin­
gular Calabi-Yau manifolds by CFT, continuous as well as discrete 
representations appear in the theory. These representations mix in 
an intricate way under the modular transformations. In this article, 
we propose a method of combining discrete and continuous repre­
sentations so that the resulting combinations have a simpler modular 
behavior and can be used as conformal blocks of the theory. We com­
pute elliptic genera of ALE spaces and obtain results which agree with 
those suggested from the decompactification of K3 surface. Consis­
tency of our approach is assured by some remarkable identity of theta 
functions. 

We include in the appendix some new materials on the represen­
tation theory of N = 4 superconformal algebra. 

§1. Introduction 

Description of string~ propagating on non-compact curved back­
ground is a challenging problem in particular when the space-time de­
velops a singularity. A better grasp of underlying conformal field theory 
(CFT) should shed light on the physics of such space-time. 

When a Calabi-Yau (CY) manifold is non-compact or singular, it is 
necessary to introduce a CFT possessing continuous as well as discrete 
representations in order to describe its geometry. These CFT's have a 
central charge above the "threshold", i.e. c = 3 for N = 2 supersym­
metric case, and are of non-minimal type. We may call these theories 
generically as Liouville type theories. Since continuous and discrete 
representations mix under modular transformations, representations of 
Liouville theories in general do not have good modular properties. Thus 

Received March 4, 2008. 
Revised May 17, 2008. 



126 T. Eguchi, Y. Sugawara and A. Taormina 

it is a non-trivial problem to construct suitable modular invariants de­
scribing the geometry of non-compact CY. 

In this paper we present an attempt at constructing (holomorphic) 
modular invariants for some non-compact CY manifolds. In particular 
we propose the elliptic genera for the ALE spaces which are the de­
generate limits of K3 surface. It turns out that the consistency of our 
approach hinges on the validity of some theta-function identities. These 
non-trivial identities have been proved by D. Zagier and the proof is 
given in Section 2.5. 

This paper is a contribution to the Proceedings of the workshop 
in honor of prof. A. Tsuchiya's retirement from Nagoya University on 
March 2007. It is an expanded version of ref [1] and contains some new 
materials on the representation theory of superconformal algebras, in 
particular on higher level N = 4 character formulas. 

1.1. Bosonic Liouville theory 

We start our discussions by reviewing the simple case of bosonic 
Liouville theory. Its stress tensor is given by 

(1.1) 1 2 Q 2 T(z) = --(8¢) + -8 ¢ 
2 2 

where Q is the background charge. Central charge is given by 

(1.2) 

If we parameterize Q as Q = v'2(b + 1/b), the vertex operator 

(1.3) exp(hb¢) 

has a conformal dimension h = 1. Liouville theory is defined as a theory 
perturbed by this marginal operator (Liouville potential) from free fields. 

Dynamics of boundary Liouville theory became clarified in late 1990's 
by the method of conformal bootstrap [2]. We first reintroduce there­
sult of conformal bootstrap using representation theory and the modular 
properties of character formulas. 

It is known that there are two types of representations in bosonic 
Liouville theory: continuous and identity representation. Their charac­
ter formulas and their S-transformation are given by (q = e21rir) 
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continuous representations; p>O 

(1.4) 

identity representation; h=O 
g:_ 

q- 8 (1- q) 
Xh=o(T) = TJ(T) , 

1 r)Q . . 2np 
(1.5) Xh=o( -~) = 4 Jo dpsmh(2nbp) smh(-b-)Xp(T). 

We identify the LHS of the above equations as describing the open 
string channel and RHS as the closed string channel. We then find that 
open and closed channels have different spectra: 

open 

{ 
continuous rep. 

identity rep. 

closed 

continuous rep. 

Namely, there exist no identity representation in the closed string chan­
nel. This is consistent with the presence of mass gap and the decoupling 
of gravity in non-compact space-time. Indeed the conformal dimension 
of a vertex operator ea</> is given by 

(1.6) 

for continuous representations. Thus there is a gap of Q2 /8 in the spec­
trum of continuous representations. 

Let us next turn to the brane-interpretation of transformations (1.4), 
(1.5). We introduce ZZ and FZZT brane boundary states IZZ), IFZZT) 
and identify the character functions as the inner product 

(1. 7) 

(1.8) 

Xo( _2:_) = (ZZieinH(c) IZZ) 
T 

Xp( _2:_) = (FZZT;p lei1TTH(c) IZZ) 
T 
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where fl(c) = La +La - 1c2 is the closed string Hamiltonian. Using 
Ishibashi states IP)) with momentum p which diagonalize the closed 
string Hamiltonian 

(1.9) 

boundary states are expanded as 

(1.10) 

(1.11) 

IZZ) = 1oo dp Wa(p) IP)) 

IFZZT;p) = 100 
dp'Wp(p') IP')). 

We then have 

(1.12) 
2 . (;:; . y"27rp 

IWa(P)I = 4smh v21rpbsmh -b-, 

(1.13) 

Solving these relations one finds the boundary wave-functions 

(1.14) 1J! ( ) = 2V27rip 
aP (;) -rn2 ' 

r(1 + iv 2pb)r(1 + ¥) 

(1.15) ( ') -1 ( (;:;. ') ( V'iip') ( ') -wp p = ~r 1- v2zbp r 1- -b- cos 27rpp . 
v 27rzp' 

Up to phase factors the above results agree with those of conformal 
bootstrap [2]. 

1.2. N = 2 Liouville theory 

For the sake of applications to string theory let us now consider 
N = 2 supersymmetric version of Liouville theory. In N = 2 system 
possesses two bosons, one of them coupled to background charge and the 
other one is a compact boson, and two free fermions. It is known that 
N = 2 Liouville theory is T-dual to SL(2; ]fg_)/U(1) supercoset model 
which describes the space-time of the two-dimensional black hole [3]. In 
general N = 2 Liouville theory is geometrically interpreted as describing 
the radial direction of a complex cone. 
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In the following we concentrate on the case when N = 2 Liouville 
theory has a central charge 

for the sake of simplicity. We denote this case as the model LN. Here N 
is an arbitrary positive integer. This theory is T-dual to two-dimensional 
black hole with an asymptotic radius of the cigar V2JV. 

Unitary representations of N = 2 superconformal algebra with c = 
1 + ft are given by (4] 

l identity rep. 

continuous reps. p > 0, j = ~ + i"ZI non-BPS states, 

discrete reps. 1 ::s; s ::s; N, j = ~ BPS states, chiral primaries. 

h=O,j=O vacuum, 

Here p and s label continuous and discrete representations of N = 2 

Liouville theory, respectively. N = 2 representations are in one to one 
correspondence with those of level k = N SL(2; lR.)/U(1) coset theory 
with the value of spin j indicated as above. 

In applications to string theory we consider the sum over spectral 
flows of each N = 2 representation and define an extended character [5] 1 

(1.16) x!:s(r; T, z) = L q~n2 e21ricznch!:s(T; z + nT). 
nEr+NZ 

Here ch!: s ( T; z) denotes an irreducible character of N = 2 superconfor­
mal algebra (inNS sector). Extended characters carry some additional 
label 

(1.17) 

(1.18) 

(1.19) 

1. Identity representations : xtc? (r; T, z ); 

2. Continuous representations: x-:!o~t(P, a; T, z); 

3. Discrete representations: x~; (s, s + 2r; T, z); 

r E ZN, 1 ::s; s ::s; N. 

1 Here the spectral flow is summed over modulo N for the sake of con­
venience. Idea of extended character has been introduced in (6] where the 
irreducible characters of N = 4 algebra are identified as extended characters 
of N = 2 algebra. For related works see (7, 8, 9]. 
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Explicit form of these characters are presented in the Appendix A. We 
also present the form of modular transformation. Here we recall that the 
S transform of these functions has the following pattern 

(1.20) 

(1.21) 

(1.22) 

(continuous rep) ~ (continuous rep), 

(identity rep) ~(discrete rep)+ (continuous rep), 

(discrete rep) ~ (discrete rep) + (continuous rep). 

Namely, a continuous representation transforms into an integral over 
continuous representations while an identity and discrete representation 
transforms into a sum of discrete representation and an integral over 
continuous representations. Such a pattern was first observed in N = 4 
representation theory [6]. 

(1) As in the bosonic Liouville theory, there appear no identity 
representations in the RHS of above formulas. 

(2) While the identity representation disappears after a first S­
transform, it comes back after a 2nd transform: this happens 
when one deforms the contour of momentum integration for 
the sake of convergence and picks up a pole in the complex 
plane corresponding to the identity representation. It is further 
possible to check that 8 2 = C and (ST) 3 = C, where Cis a 
charge conjugation matrix which acts as C : (T, z) -+ (T, -z). 

As compared with the case of minimal theories where only discrete 
representations exist which rotate into each other under the S-transform, 
the above transformation laws (1.20)-(1.22) are much more complex and 
in particular discrete representations mix with continuous representa­
tions. We can check that even under the transformation ST2S- 1 one 
can not eliminate the contribution of continuous representations in the 
transform of discrete representations (ST2 S- 1 is a generator of r(2) 
which is the subgroup of SL(2; .Z) keeping the spin-structure fixed). It 
seems not possible to eliminate the mixing of continuous representations 
under any subgroup of the modular group. 

We have three types of boundary states of N = 2 Liouville theory 
corresponding to each representation. The boundary wave functions are 
again given by the elements of the modular S matrix. We can compare 
our expressions with known results of SL(2; ~)/U(1) theory obtained 
by semi-classical method using the geometry of 2d black hole and DBI 
action. It is found [5, 10] that N = 2 Liouville theory reproduces essen­
tially the correct wave functions of D-branes of 2d black hole [11]. Thus 
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the representation theory seems quite consistent with the semi-classical 
analysis. However, the character formulas themselves do not have good 
modular properties and it is a non-trivial problem to construct confor­
mal blocks with good modular behaviors. 

§2. Geometry of N = 2 Liouville fields 

Let us now consider models of the following type: tensor product of 
N = 2 Liouville theory LN (of c = 1 + ~) and N = 2 minimal model 
Mk with level k [12] 

(2.1) 

If we choose 

(2.2) N=k+2 

the central charge becomes integral 

(2.3) 

and the theory (after ZN orbifolding) describes (complex) 2 dimensional 
CY manifolds. They are identified as the (A-type) ALE spaces which 
are obtained by blowing up AN_ 1 singularities [12]. At N = 1 (without 
minimal model), we have c = 3 and the space-time of a conifold [13]. 
We may as well consider the tensor products of Liouville theories and 
minimal models. These describe other singular geometries like AN_1 

spaces fibered on P 1 etc. [14, 15, 16] 

2.1. Elliptic genus and CY /LG correspondence 
The elliptic genus is defined by taking the sum over all states in the 

left-moving sector of the theory while the right-moving sector is fixed at 
the Ramond ground states; 

(2.4) 

Here J{; denotes the U(1)R charge in the left-moving sector. The trace 
is taken in the Ramond-Ramond sector. At specific values of z we have 

Z(T,Z = 0) = x, 
Z(T, z = 1/2) =a+ O(q), 
Z(T, z = (T + 1)/2) = .Aq-1/4 + O(q1/4), 

Euler number, 
Hirzebruch signature, 
A genus. 
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The elliptic genus is an invariant under smooth variations of the param­
eters of the theory and is useful, for instance, in counting the number of 
BPS states. We compute the elliptic genus of a non-compact CY mani­
folds by pairing the Liouville theory with N = 2 minimal models. 

Before going into the computation of elliptic genera we first recall the 
results of CY /LG correspondence [17]. We consider a Landau-Ginzburg 
(LG) theory with a superpotential 

(2.5) 

which in the infra-red limit acquires scale invariance and reproduces the 
N = 2 minimal theory with c = 1- 2/k. 

In theN = 2 minimal theory MN_ 2 , the contribution to elliptic 
genus comes from the Ramond ground states 

(2.6) 
N-2 

Zminimai(r,z) = L chf,£+1 (r;z). 
£=0 

Here chf,£+1 (r; z) denotes the character of minimal model Mk associated 
to the Ramond ground state labeled by £ = 0, 1, ... , N - 2. See e.g. 
[18, 19] for their explicit expressions. R denotes the Ramond sector 
with ( -1)F insertion. On the other hand as the coupling parameter is 
turned off g--+ 0, LG theory becomes a free theory of chiral field X with 
U{l)R charge= 1/N. Thus the theory possesses a free boson of charge 
1/N and free fermion of charge 1/N- 1. Combining these contributions 
one obtains [20] 

(2.7) 

These two expressions (2.6),(2.7) in fact agree with each other 

(2.8) Zminimal = Z LG · 

We would like to try a similar construction in Liouville sector as in 
the case of minimal models. Ramond ground states corresponds to the 
extended discrete characters; 

(2.9) X~8 (s, s- 1; r, z), s= 1,··· ,N 



Modular forms and elliptic genera for ALE spaces 133 

and the elliptic genus is expressed as their sum, which is explicitly eval­
uated in [21] as follows; 2 

(2.10) 

Here we have introduced the notation of an Appell function /Ck [22, 23] 

(2.11) 
k 2 k _ q 2 n y n 

/Ck (r, z) ='""' , . L...J 1- yqn 
nEZ 

We also use the anti-symmetrized version of Appell function defined as 

~ 1 1 
(2.12) /Ck(r, z) = -2 (JCk(r, z)- JCk(r, -z)) = /Ck(r,.z)- -80 .&. (r, 2z). 2 , 2 

Unlike the theta functions of the minimal models, the Appell function in 
Liouville theory does not have a good modular transformation law [22]. 
Complication comes from the non-trivial denominator of the function 
(2.11) which arises due to existence of fermionic singular vectors in BPS 
(short) representations. 

The Appell function is closely related to the function used by Miki 
in [8]: they are transformed to each other by spectral flow. The Appell 
function corresponds to an expression in R sector while Miki's function 
is in NS sector. 

When we couple minimal and Liouville theory to compute elliptic 
genera of AN-l spaces, we may use the orbifoldization procedure [24] 

2Precisely speaking, in [21] we adopt a slightly different convention for 
the 'boundary contribution (s = 1, N + 1)' of discrete representations, which 
yields the anti-symmetrized Appell function (2.12) 

rather than (2.10). However, the difference drops off in the orbifold procedure 
(2.13) [21]. Namely, one may replace IC2N(r,z) with JC2N(r,z) in (2.13). 
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and we find (21] 

(2.13) ZALE(AN_l)(T,z) 

= ~ L qa2 e47riaz Zminimat(T, z +aT+ b)ZLiouvme(T, z +aT+ b) 
a,bEZN 

_ 1 '""' a 2 21riaz( 1)a+b{h(T,NN1(z+aT+b)) - -- ~ q 2 e - -'-----<-:1----....,...,--
N b., lh(T,-N(z+aT+b)) 

a, Ea..N 

1 i81(T,z) 
x K2N(T, N(z +aT+ b)) ry(T)3 

In the special case of N = 2 we have (y ;::::: e21riz) 

(2.14) 
nq!n(n+l)yn+! i01(T,z) 

ZALE(Al)(T, z) =-~( -1) 1 _ yqn ry(T)3 

( = ch~(I = O;T,z)). 

This formula coincides with a massless character of N = 4 algebra (6]. 
Unfortunately these formulas do not have well-behaved modular prop­
erties and we must make a suitable modification. 

The elliptic genus is associated with a conformal field theory defined 
on the torus and hence it must be invariant under SL(2; Z) or under one 
of its subgroups. Since we are dealing with superconformal field theory, 
it seems natural to demand invariance under the subgroup r(2) which 
leave fixed the spin structures 

r(2) = { ( ~ ~ ) E S£(2; Z), a= d = 1, b = c = 0 mod 2}. 

It is known that r(2) is generated by T 2 and ST2S- 1 . In the following 
we construct elliptic genera which are invariant under r(2). 

§3. Elliptic genera and a theta-function identity 

3.1. Elliptic genus of K3 

A hint for our construction comes from the study of elliptic genus 
of K3 surface (we denote ei(T) = ei(T, 0)) 
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This formula can be easily derived by orbifold calculation on T 4 /71.2 [25] 
or by using LG theory and LG/CY correspondence. One can check 
ZK3(z = 0) = 24, ZK3(z = 1/2) = 16 + · · ·, ZK3(z = (T + 1)/2) = 
-2q- 114 + ... and ZK3 reproduces classical topological invariants, x = 24, 
CJ = 16 and A = -2. For the later convenience, we also introduce the 
'elliptic genus in the NS sector', which is defined by the 1/2-spectral flow 
z f-----1- z' = z- (i + ~) in the standard way; 

In the case of K3 surface the manifold has a hyperKiiler structure 
and the CFT possesses an N = 4 symmetry. Thus one can use the 
representation theory of N = 4 superconformal algebra [6]. 

At c = 2 N = 4 theory contains an SU(2) current algebra at level 
1. Unitary representations of N = 4 algebra in the NS sector are given 
by 

(3.3) 

(3.4) 

· NS h-l 83(T, z) 2 
mass1ve rep.: ch (h,I = O;T,z) = q 8 TJ(T) 3 , 

massless rep.: chf/8 (I = O;T,z), chf/8 (I = 1/2;T,z). 

Massive representations exist only for isospin I = 0 and are analogous to 
continuous representations of N = 2. The I= 0 and I= 1/2 massless 
representations are analogues of identity and discrete representations. 
There exists a relation among them 

(3.5) chf/8 (I = 0) + 2chf/8 (I = 1/2) = chN8 (h = O,l = 0) 

which shows that the (non-BPS) massive representation becomes re­
ducible as h -+ 0 and splits into a sum of massless (BPS) representa­
tions. 

There are various ways of writing the massless characters , however, 
particularly convenient expressions for our discussion are given by [25] 
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where the functions hi(7), i = 2,3,4 are defined by 

1 qm2 /2-1/8 

h3(7) = 7}(7)03(7) L 1 + qm-1/2' 
mEZ 

(3.9) 

1 q=2 /2-1/8(-1)m 
h4(T) = TJ(T)04(7) L 1- qm-1/2 ' 

mEZ 

(3.10) 

1 qm2 /2+m/2 

h2(7) = 7}(7)02(7) L 1 + qm 
mEZ 

(3.11) 

We note that hi's obey identities [26] 

(3.12) 

Now using (3.6-3.8) we can rewrite K3 elliptic genus Z~8)(7,z) 
(3.2) as 

If one considers the product of TJ( T) times the sum of hi ( T) functions 

one finds that the coefficients an of q-expansion are positive integers. 
Then using the relation (3.5) we can rewrite z~S) into a sum of irre­
ducible characters 

00 

+ LanchN8 (h=n;7,z). 
n=1 

Under the spectral flow from NS to R sector the I = 0 and 1/2 
representations turn into the I= 1/2 and 0 representations, respectively. 
Thus the coefficient -2 in front of ch{J8 (I = 0) in the above formula 
comes from the multiplicity of the ground states of Ramond I = 1/2 
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representation in the right-moving sector. Therefore the net multiplicity 
of I = 0 massless representation is 1. Hence in the NS sector the theory 
contains 

1 I = 0 rep. 

20 I = 1/2 reps. 

oo of massive reps. (h = 1, 2, · · ·) 

I = 0 NS representation corresponds to the gravity multiplet and I = 
1/2 NS representation corresponds to matter multiplets (vector in IIA, 
tensor in liB). This is the well-known field content in the supergravity 
description of string theory compactified on K3 [27]. Note that the 
values of the dimension h of massive representations are quantized at 
positive integers. This is consistent with the T-invariance of the elliptic 
genus. 

Now let us throw away the gravity multiplet so that we can de­
compactify K3 into a sum of ALE spaces; it is known that K3 may 
be decomposed into a sum of 16 A1 spaces [28]. Decompactification 
corresponds to dropping I = 0 massless representation. I = 0 represen­
tation comes from q- 118 piece in (3.14) which in turn originates from 
the (B2 (T,z)/(h(T)) 2 term in (3.1). This suggests the elliptic genus of 
the decompactified K 3 

(3.16) 

3.2. Elliptic genera of ALE spaces 

We now propose the following formula for the elliptic genus of the 
A1 space 

(3.17) 
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Note that in the NS sector we have the decomposition 

(3.18) (NS} (- 1 -1 7 1 ) ZA1 (7,z) =q4y ZA1 (7,z-(2+2)) 

= ~ [ ( 0~~(~~)) 2- ( 0~~(~~)) 2] 
NS 1 83(7, z)2 

= ch0 (I= 1/2; 7, z)- -17(7) (h3(7) + h4(7)) ( )3 2 17 7 

00 

= ch~8 (I = 1/2;7,z) + LbnchN8 (h = n;7,z). 
n=1 

Here we have introduced the expansion 

(3.19) 

and one can check by Maple that the expansion coefficients bn are pos­
itive integers for lower values of n. Actually one can prove that bn are 
positive integers for all values of n.3 

We also propose that elliptic genera of AN-1 spaces are simply (N-
1) times that of A1 

(3.20) Z ( ) = (N _ 1)~ [(03(7,z)) 2 (04(7,z)) 2
] 

AN-l 7' z 2 83(7) + 84(7) · 

Above construction (3.18) of Z~~s) suggests that instead of using the 
irreducible character chf/8 (I= 1/2) by itself we should use its combina­
tion with (an infinity of) massive representations defined by the R.H.S. 
of (3.18), which has a good modular property and is in fact invariant 
under r(2). We call this combination as the r(2)-invariant completion 
of the massless representation and consider it as a conformal block in 
non-compact CFT. 

3.3. Theta-function identity 
It is a non-trivial problem to show that for a given BPS representa­

tion of a superconformal algebra, it is possible to define its r(2)-invariant 
completion uniquely by adding a suitable amount of non-BPS represen­
tations. According to our analysis this seems possible when we impose 
suitable additional conditions: all the massive contributions have their 

3T. Eguchi and M. Jinzenji, 2008 
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conformal dimensions above the gap, i.e. h = n with n = 1, 2, · · · and 
also occur with multiplicities of a definite sign. 

The r(2)-invariant completion is the selection of a topological part 
of massless representations; this may be easily seen from the formula in 
the R sector. For instance we consider the decompositions 

(3.21) hit(I = 0 ) = (03(7,z)) 2 h ( ) (01(7,z)) 2 
C 0 ,7,Z 03(7) . + 3 7 7J(7) ' 

(3.22) = (04(7,z)) 2 + h4(7) (01(7,z)) 2 

04(7) 7J(7) 

We see at z = 0, the 2nd terms of (3.21), (3.22) vanish while the 1st 
terms give the Witten index= 1. Thus the 1st terms of (3.21) and 
(3.22) carry the topological information of the massless representation. 
Our prescription is to identify the r(2)-invariant completion as 

(3.23) [ hit(I = O· )] = ~ [(03(7,z)) 2 (04(7,z)) 2] 
C 0 ' 7 'Z inv 2 83(7) + 84(7) · 

Here we take the ( GSO) projection ( (03( 7, z) /03( 7) )2+( 04( 7, z)/04( 7) )2) /2 
since in Ramond sector q-expansion is necesarily integer-powered. We 
do not adopt (02(7, z)/02(7))2 since in this case associated massive rep­
resentations start from h = 0, i.e. below the threshold. 

One of the most interesting examples of our analysis will be the case 
of the Appell function: It turns out that the desired completion is given 
by 

(3.24) 

Derivation will be given in Appendix B. 
One can then plug the expression (3.24) into the orbifold formula 

(2.13) and represent the elliptic genera for AN-l spaces as 
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where Za,b = z + ar + b. 
This appears to be a somewhat complicated formula. It turns out 

that rather strikingly this orbifold summation agrees exactly with our 
proposed expression for ZAN-l 

(3.26) 

We have proved this identity for N = 2 using the addition theorem of 
theta functions and have checked its validity by Maple for lower values 
of N. Mathematical proof for all values of N has been given by Zagier 
[29]. Thus our approach seems altogether consistent: we have arrived at 
the same expression (3.26) starting either from the decompactification 
of K3 or the pairing of N = 2 minimal and Liouville theories. We have 
managed to construct holomorphic modular (f(2)) invariant for a class 
of non-compact CY manifolds. 

Actually the above identity (3.26) is a special case of identities of 
theta functions 

( 3. 27) _l_ "' q a; e21fiaz ( -1 t+b 
2N L.J 

a,bEZN 

i = 2,3,4. 

We note that the above identities (3.27) fori = 2, 3, 4 transform into each 
other under S and T transformations (more precisely under S£(2; Z)/ 
f(2) = 83)· 

A mathematical proof of these identities (3.27) has been found by 
D. Zagier [29]. We present his elegant proof using residue integrals in 
the next section. 

3.4. Proof of the theta-function identity 

Throughout this subsection we fix r E lHI (i.e. Im r > 0) and 
N 2 2. Also, for convenience we abbreviate O(z) = 01(r,z)/0i(r,O) 
and fi(z) = Oi(r, z)/Oi(r, 0) (i = 2, 3, 4). We have O(z + ar +b) = 
(-l)a+bq-a 2 12 y-a0(z) and similarly for fi(z), but with (-l)a+b being 
replaced by ( -l)b, 1 or ( -l)a fori= 2, 3 or 4, respectively. The identity 
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(3.27) can therefore be rewritten as 
(3.28) 
_!__ '""'8((N- 1)w) 8(2w) l( )2N_2 = (N _ 1) fi(z) 2 

2N L..... 8(Nw) 8(w) 3 • w 8(z)2 
w 

(i = 2, 3, 4), 

where the sum is over w = (z +aT+ b)/N with a, b E ZN, or more 
invariantly over wEB,.= !Cj(7L.T + Z) with Nw = z. 

The proposed identity (3.28) is a special case of the more general 
ones: 

(3.29) 

for any a, b, c, d ::=:: 0 with a + b + c + d = N - 1. 
If we write p(z) for p(z; T) and observe that fi(z) 2 /8(z)2 = p(z) -ei 

where e2 = p(1/2), e3 = p((T + 1)/2) and e4 = p(T/2), then we find 
that this identity (3.29) follows from (and is in fact equivalent to) the 
following proposition: 

Proposition 3.1. For N ::=:: 1, let FN be the even elliptic function 

F ( ) = 8((N -1)w) 8(2w) 8(w)2N-5 

N w 8(Nw) ' 

and P(X) = eoxN-1 + c1xN-2 + O(xN-3) be a polynomial of degree 
::; N - 1. Then 

(3.30) 
1 

2N L FN(w) P(p(w)) = (N -1) Co p(z) + c1 . 

Nw=z 

Proof. Set ((z) = 8'(z)/8(z). This function satisfies ((z +aT+ 
b) = ((z) - 2nia for a, b E Z. If we write the beginning of the Taylor 
expansion of 8(z) at 0 as 8(z) = z + Az3 + O(z5) with A = A(T) (A 
is a multiple of E 2(T)), then we have ((z) = z-1 + 2Az + O(z3) and 
('(z) = -z-2 + 2A + O(z2 ) = -p(z) + 2A. Fix z E IC (with Nz =1- 0 in 
E 7 ) and define a function t( w) by 

1 
t(w) = 2 {((z + Nw)- ((z- Nw)} - (((N- 1)w) - ((w). 
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From the transformation law of ( we find that t( w) is elliptic. Therefore, 
by the residue theorem, we have 

L Resw=a(FN(w) P(g;J(w)) t(w) dw) = 0, 
aEE-r 

where the sum is over all singularities a E C/(Zr+Z) of FN(w)P(g;J(w))t(w). 
These singularities occur only at Nw = ±z or w = 0. (The func­
tion FN(w) has further simple poles at Nw = 0, w =f. 0, but t(w) 
vanishes at these points, and the function t( w) has simple poles at 
(N- 1)w = 0, w =f. 0, but FN(w) vanishes at these points.) Since the 
residue oft(w) at a point w with Nw = ±z is 1/2N and FN(w)P(g;J(w)) 
is even, the identity above becomes 

1 
N L FN(w) P(g;J(w)) + Resw=o(FN(w) P(g;J(w)) t(w) dw) 0. 

Nw=z 

But for w -+ 0 we have 

FN(w) 

~ 2(N; 1) w2N-4 (1 + A[(N-1)2 +22 +2N-5-N2]w2 +0(w4 )) 

N-1 
= ~w2N-4 + O(w2N), 

P(g;J(w)) =co ( ~ + O(w2))N-l + c1 ( ~ + O(w2 ))N-2 + O(~)N-3 
w w w 

_ ~ + _c_1_ + 0(-1-) 
- w2N-2 w2N-4 w2N-6 ' 

t(w) = N('(z) w - 1 - 2A(N- 1)w - _!_ - 2Aw + O(w2) 
(N -1)w w 

N 
=- N _ 1 w-1 - Ng;J(z)w + O(w2), 

and hence Resw=o(FN(w) P(g;J(w)) t(w) dw) = -2(N- 1)cog:J(z)- 2c1 . 

Q.E.D. 

§4. Summary 

When we consider a string theory on non-compact CY manifolds it 
is described by a CFT possessing continuous as well as discrete repre­
sentations. Characters of representations of such CFT transform in a 
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peculiar manner under S transformation as 

discrete ~ L discrete + J continuous 

con muous ---+ continuous t . 8 J . 
Mathematical nature of such transformation is currently not well under­
stood. We have found an empirical method of constructing conformal 
blocks which have good modular behavior and obtained elliptic genera 
of some non-compact CY manifolds. Our method of construction of 
conformal blocks, however, is still provisional and needs further studies. 

From the geometrical point of view it is often difficult to define topo­
logical invariants for non-compact manifolds unambiguously and results 
tend to depend on the choice of boundary conditions. By our proposal 
(3.17), topological invariants of the A1 space is predicted to be x = 1, 
a- = 1 and A = 0, respectively. These are more or less the standard 
values except that A1 space is topologically a cotangent bundle over 8 2 

and the Euler number may be considered as x(S2)=2. 
In our construction discrete representations describe homology classes 

of H 2 with compact support while the identity representation corre­
sponds to the classes Ho, H4. When we decouple gravity, we are left 
with one compact 2-cycle in the case of A1 space and obtain x=L We 
may take the point of view that our proposal is to impose good modular 
properties to fix the ambiguity of boundary conditions. In the case of 
complex 2-dimensions considered here the requirement of good modular 
behavior fixes the results uniquely. We may, for instance, consider an al­
ternative expression for the topological part of 7C (3.24) where we replace 
(03(7, z)/03(7)?CN-l) + (04(7, z)/04(7))2CN-l) by some symmetric poly­
nomial in 83 and 04 , such as, (03(7, z)/03(7))2CN-2l(04(7, z)/04(7))2 + 
(04(7, z)/04(7))2CN-2l(03(7, z)/03(7)?. Such an ambiguity disappears 
after orbifold summation (3.25) according to Zagier's formula (3.29) and 
we obtain the same elliptic genera ZAN-l (3.26). 

In the case of complex 4-dimensions, however, some ambiguity seems 
to remain. In complex 3-dimensions, on the other hand, elliptic genera 
are known to be given by the product of the Euler number times an 
universal function [25, 24] and this continues to be the case in non­
compact manifolds [21]. 
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§ Appendix A: N = 2 extended characters 

We first list the irreducible characters of N = 2 theory ( q = e21rir, 

y = e27riz): 

(1) continuous representations: 

(A.1) chNS(h Q·r z) = qh-ci/yQ(}3(r,z) 
, , , ry(r)3 

(2) discrete representations: 

(h> 1.21) 
2 

( ) NS( . _ ~-cg-1 Q 1 03(r, z) 
A.2 chdis Q,r,z)-q Y 1 +ysgn(Q)ql/2 ry(r)3 

{3) identity representation: 

(A.3) 
NS _c-1 1-q 03(r,z) 

chid (r, z) = q 8 
( 1 + yql/2)(1 + y-lql/2) ry(r)3 

Here y = e21riz and Q denotes the U(1) charge of N = 2 algebra. 

Extended characters are given by the sum over spectral flow of irre­
ducible characters (1.16): 

(1) continuous representations: 

NS P 2 2z 03(r,z) 
(A.4) Xcont(p,a;r,z) = q 2 6a,N(r, N) ry(r)3 

(2) discrete representations: 

(A.5) x~:(s,s+2r;r,z) 
s-1 

( N(m+~ )) l'T 
'"""' yq 2

N 2(m+2r+l) N(m+~)2 (}3(T, z) 
= ~ y 2N q 2N 

1 + yqN(m+2;"tl) ry(r)3 
mEZ 
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(3) identity representations: 

xt?(r;T,z) = q-4~ L qN(m+N) 2+N(m+ 2;;~/)y2(m+N)+l 

mEZ 

(A.6) 
1- q 83(T,z) 

X ~------------~~------------~--~~ 
( 1 + yqN(m+ 2;j:/)) ( 1 + yqN(m+ 2;}/)) rJ(T)3 

Here ek,N(T, z) is the theta function 

(A.7) ek,N(T,z) = L qN(m+lNl2yN(m+2tl. 

mEZ 

Range of parameters r, s are 

(A.8) r E ZN, 1 ~ s ~ N, (s E Z). 

If we go to the Ramond sector with (-1)F insertion, one has 

(A.9) X~s(s, s + 2r; T, z) 

r now takes half-integer values. We find discrete representations 1 < 
s ~ N with r = -1/2 carry a non-zero Witten index 

(A.10) X~s(s,s -1;T,Z = 0) = -1. 

Now we discuss S-transformation of extended characters. S-transform 
of continuous representations remains essentially the same as the Fourier 
transformation 

(A.ll) Xcont (p, m; -~) 

= {"i; L e-2ni~~~ 100 
dp' cos(2npp') Xcont(P1, m'; T). 

m'EZ2N O 
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S-transformation of discrete representations is given by 

(A.12) 

XN_s (s m· _.!_) = _1_ "'"" e-211"i2N' 
d•s ' ' T ..j2N ~ 

m'EZ2N 

1oo cosh (21rN-(s-l)p1) + e271"i2' cosh (21r s-l p1) 

d I .j2jii .j2jii . NS ( I I ) 
X p 2 Xcont p ' m ; T 

0 2lcosh7r(j¥p1 +i~')l 
. N 
z "'"" "'"" 2 .(s-l)(s1 -l)-mm1 NS( 1 1 ) + N ~ ~ e 11"• 2N Xdis s 'm ; T 

s'=l m'EZ2N 

e-211"i2N'XNS (pi= 0 mi·T) 
cont ' ' ' 

where m = s + 2r. The transformation of the identity representation is 

(A.13) 

Xid (m; _.!_) =-1 L 
T ..j2N 'EZ m 2N 

2 ·mrn1 

e- 11"'?:N 

100 
1 sinh(1rQp1)sinh(21r~) 1 1 

X dp I h (E. ·m' )12 Xcont(p 'm; T) 
0 cos 7f Q + ZT 

2 "'"" ~ (1r(s1 -1)) 2 ·=<•'+2r1) + N ~ ~ sin N e- 11"• 2N Xdis(s1,r1;T). 
r'EZN s 1=2 

We refer the reader to [5, 21] for more complete discussions. 

§ Appendix B: r(2)-invariant completion of Appell function 

Let us consider the representation of N = 4 theory at general values 
of central charge c = 6k where k is an arbitrary positive integer. This 
theory possesses an affine SU(2) current of level k which is given by a 
diagonal sum of level k- 1 bosonic SU(2) current and level 1 current 
made of fermion bilinears. When we try to generalize the formula (3.21), 
(3.22) for a general level, we expect an expansion of the form 
(B.1) 

R _ _ (B3(T,z)) 2k ~ (k-1) B1(T,z)2 
ch0 (I-0,T,z)- 03 (T) +~A3,j(T)Xj (T,z) TJ(T)3 
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where XJk) denotes the SU(2)k character for spin j /2 representation 
(B.2) 

X(k)(T, z) = 8j+l,k+2(T, 2z)- 8-j-l,k+2(T, 2z) = 2 e)~tk+2(T, 2z) . 
3 i81(T,2z) i01(T,2z) 

It turns out that expansion coefficients A3 ,j are given by 

(B.3) A ·( ) _ 2H~(2(k+l))( ) + (k+l)( ) 
3,J T - j+l T aj+l T (j = 0, 1, ... 'k- 1), 

where 

(B.4) 
H(k) ( ) q~n(n+l)+(n+~ )s 

H~(k)( ) = s T H(k)( ) " 
s T - ( ) ' s T = ~ -'--1---.,-k(:-n-+..,...,_21 )-88 .Is. T,T q 

•2 nEZ 

and a)~il) is expressed in terms of values of theta functions and SU(2) 
charactersatspecialpointsz=r/2(k+l), (r=l,··· ,2k+l). Weshall 
prove the decomposition formula (B.l) below. 

Similarly, one has the expansion 

A4,j(T) is determined from A3,j(T) by taking the T-transformation; 

(B.6) 

We keep the 1st terms of (B.l), (B.5), take the average and obtain 
·the r(2)-invariant completion 

If one recall the relation 

one finds 
(B.9) 

[chb"s(I= ~,T,z)Lnv = ~ [(-l)k ( 0~~~~~)rk + (e~~~~~)rk]· 
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Taking the half spectral flow z r-+ z- ~ - !, we can rewrite !((B.1) 
+(B.5)) as 

(B.10) 

k-1 CXl 

= ch~8 (I = k/2; r, z) + L L bj,n chN8 (hJ0) + n,jj2;r, z), 
j=O n=O 

where the coefficients bj,n are defined by the q-expansion4 

(B.ll) 
h(o)_i~H2~- k2 CXl n (-1)k+H1 

q i 4 k+l 4(k+l) L bj,nq = 2 (A3 ,k_1_j(r) + A4,k-1-j(r)), 
n=O 

and the N = 4 massive character of conformal weight h, spin j /2 is 
given by 

(B.12) NS . . ) _ z? {k-1) Og(r, z)2 
ch (h,J/2,r,z =q Xj (r,z) TJ(r) 3 , 

- p2 j(j + 2) k2 
h = 2 + 4(k + 1) + 4(k + 1)" 

We again note that bj,n are non-negative integers as in (3.18). We have 
explicitly checked this for the cases k = 2, 3, 4 by Maple. 

Let us next study the relation of N = 4 character and Appell func­
tion. Explicit form of N = 4 massless character in Ramond sector is 
given by 
(B.13) 

hR(k I= O· ) =- i01(r, z)2 "'1 + yqn (k+1)n2 2{k+1)n 
c o ' 'r, z ( )30 ( 2 ) L..q n q y . 

'TJ T 1 r, Z nEZ - yq 

4h)0l in (B.ll) is found to take the following values; 

hJ(O) = { ~ 
H.! 

2 

(j = k (mod2)) 
(j = k -1 (mod2)) 
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(This expression is obtained by slightly rewriting the original formula in 
[6]. See (C.7) in Appendix C.) Thus 

R( ifh(7, z) 2 ( ) 
ch0 k,I = 0; 7, z) =- 1?(7)381 (7, 2z) IC2(k+lJ(7, z)- IC2(k+l)(7, -z) 

i81(7, z) 2 ~ 
(B.l4) = -2 17(7)381 (7, 2z) /(2(k+l)(7, z). 

By comparing (B.14) with (B.7) we obtain the invariant completion of 
Appell function 

Proof of the relation (B.l) Let us now prove the identity (B.l). 
Written in terms of the Appell function (B.l) is expressed as 

As an intermediate step we first show the following decomposition for­
mula 

(B.17) Kk(7, z) = Gk(7, z) + Fk(7, z) . 

(B.l8) 
G ( ) = iry(7) 3 82(7, z) kiT-l 84 (7, -z + ·0 

k 7 'z ~ 81(7,z) 82(7) fi=O 84 (7, t) . 
k-l 

(B.l9) ""' ~(k) Fk(7, z) = 0 Hs (7)88 ,~ (7, 2z). 
s=l 

(B.l7) is proved by checking that Kk( 7, z)- Fk( 7, z) has the same quasi 
periodicity and has the same zeros and poles in z as the function G k ( 7, z). 
It is easy to see that both sides of (B.l7) have the same quasi-periodicity 
property. We also note that the function Gk(7, z) has poles at z = n7+m 
while Fk ( 7, z) is regular. These poles correspond to the zero of t~e 
denominators of the Appell function. We can check that Gk and Kk 
have the same residues at these poles. 
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Let us next show that Kk(T, z)-Fk(T, z) vanishes at zeros ofGk(T, z), 
i.e. z = Zt = ~ + ~, £ = 0, · · · , k - 1. First using the identity 

we can rewrite Kk as 

(B.20) Kk(r,z) = ~~"'{~n,s(r,z) _ ~n,-s(r,z)} 
2 ~ ~ 1 _ ykqkn 1 _ y-kq-kn 

s=OnEZ 

where 

(B.21) 

By setting z = Z£ = ~+~'we obtain 

(B.22) c (r z) = e211"i~qfn(n+1)+s(n+!) 
~n,s ' £ ' 

and thus, 

(B.23) Kk(T,Z£) 

1 k-1 { qfn(n+1)+s(n+!) ·ls qfn(n+l)-s(n+!) ·ls} 
= - "' "' e2n•T - . e-2n•T 

2 ~ ~ 1- qk(n+!) 1- q-k(n+!) 
s=O nEZ 

k-1 
1 L H(k)( ) ( 27ri~ -27ri~) =- r e k-e k 2 8 

s=1 

We also note 
(B.24) 

s 2 L 2 · ts 2 · ts 8 8 !£ (r, 2zt) = q2k ~n s(T, Zt) = e nT88 !£ (T, 2zo) = e 7r'T88 !£ (r, T). 
'2 ' '2 '2 

nEZ 

Hence we obtain 

(B.25) 

where we used the identity H~k)(r) = -Hf~}.8 (r). Thus the difference 

Kk(T, z)- Fk(T, z) in fact vanishes at z = Z£. 
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Formula (B.16) can then be derived by modifying the function Gk 
in (B.17) so thatit has a multiple zero at z = 1/2+7 /2 instead of simple 
zeros at { ze}. Modification can be made by using a formula 

(
03(7,z))2(K-1) 

(B.26) 03(7) 
K-1 o ( _j_) o ( _j_) II 4 7, z + 2K 4 7; z - 2K 

j=1 04 (7 , 2k) 
K-2 2 

_ "' (K)( ) (K-2)( )81(7,z) 
- L...t a£+1 7 Xc 7, z (7)3 

£=0 ry 

where x~K-2)(7, z) denotes the spin £/2 character of SU(2)K-2· Expan­

sion coefficients a~!£ ( 7) are determined below. 
By combining (B.17) and (B.27) we arrive at (B.16), (B.1). 

Determination of coefficients a~K). Expansion coefficients 

a~K)(7) can be determined by comparing both sides of (B.27) at K- 1 
points. By choosing the reference points z = ~ + 2"i (r = 1, · · · , K- 1) 
which are the zeros of G2 K we obtain a set of linear equations; 

(B.27) 
K-1 O ( r )2(K-1) ( )3 
"'a(K)(7) (K-2) (7 _!_) = 2 7, 2i( r] 7 
L...t s XK-1-s '2K 0 ( )2(K-1)0 ( __r_)2 
s=1 3 7 4 7 ' 2K 

= br ( 7) ( r = 1, ... , K - 1). 

Therefore, by means of the Cramer's formula we obtain 

(B.28) 
(K) det B(j) ( 7) 

aj (7) = detB(7) (j = 1, ... , K- 1), 

where B(7), B(j)(7) are (K- 1) x (K- 1) matrices defined by 

(B.29) B(7) =- (Br,s(7)) 1::;r,s::OK-1 , Br,s(7) =- xif-~~s (7, 2~) , 

B(j) (7) =- (Br,1 ( 7), · · · , Br,j-1 ( 7), br( 7), Br,J+1 ( 7), · · · , Br,K-1 ( 7)) 

We can simplify (B.28) as follows; First we note 

(B.30) 
(K-2) 7 !_ :do 28~~k (7, R) _ 8s,K(7) 

Xs-1 ( 'K)- .0 ( .r_) -ar,s () , 
~ 1 7, K 9r 7 
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where we set 

(B.31) 

(B.32) 

sin (n~) 
a = K r,s - . ( r) sm nK 

gr(T) = 81. (T, ~) = q1/8 ft (1- qm)(1- e2nixqm)(1- e-2nixqm). 
2 sm ( 1fK) m=1 

Therefore, 

(B.33) B ( ) _ E>K-s,K(T) _ (- 1)r-s E>K-s,K(T) 
r s T -arK-s ( ) - ar s ( ) , ' ' gr T ' gr T 

and the factor 6 K-s,K is factorized from the determinant; 
9r 

(B.34) 
K-1 ( ) 

det B(T) = ( -1) (K-l)2(K- 2 ) II 8 K-s,K T det B 
r,s=1 gr(T) 

= (-1)(K-1)2(K-2) ( TJ(T) )21f (E>s,K(T)) detB' 
TJ(KT) s=1 TJ(T) 

where B = (ar,s)· In the second line we have used 

K-1 

We similarly obtain 
(B.35) 

II gr(T) = TJ(T)K-3TJ(KT)2. 
r=1 

detB(j) = (-1)(K-1)2(K-2) ( TJ(T) )21f (E>s,K(T)) detiJ(j)' 
TJ(KT) s=1 TJ(T) 

bA • ( ) = b ( ) . ( -1 y-1 gr ( T) 
r,J T - r T E> ( ) - K-j,K T 

( -1y-1e2 (T, iK )2(K-1) TJ(T)3 
(B.36) 

83(T) 2(K-1)84 (T, 2~ ) 2 E>K-j,K(T) 

In this way we finally obtain a simplified formula; 

(B.37) 
(K) det fJ(j) ( T) 

a. (T)= A 

1 detB 

e1 (T, i) 
2sin (ni) · 
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§ Appendix C: Modular property of N = 4 characters at higher 
level 

Let us recall the formula introduced by Miki [8] which is closely 
related to the Appell function, 

(C.1) I(K a b· T z) = "'""' e21riar (yqr)b YKr qKr2 /2. 
' ' ' ' L...t 1+ r 

rEZ+l/2 yq 

Its S-transform is given by 

(C.2) i -iK"z2I(K b· -1 z) -e r ,a,,--
T T, T 

i "'""' · 2 · ( K b) 1 - yq8 K K 2 + 2 L...t e-""ae "'" -,-- s 1 + yqs Y sq-,-s . 
sEZ+l/2 
8(a,s)=0 

Here 8 (a, s) is a real number determined by the conditions 

(C.3) o(a,s)=a-Ks (mod Z), o::;o(a,s)<l. 

We also recall the higher level N = 4 massless character of spin R../2 
(R.. = 0, 1, ... , k) [6] given by 

(C.4) ch{j8(k,f..j2;T,z) 

_ -6k/24 R/2 err (1+yqn-!)2(1+y-lqn-!)2 

- q q Y n=l (1 _ qn)2(1 _ y2qn)(1 _ y-2qn-l) 

1 ( m+.l)2(k-Hl) 
X L q(k+l)m2 +(Hl)my2(k+l)m - yq 2 

1 

m (1 + yqm+., )2 
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which may be rewritten as 

. 83(7, z? 
= - ~ ----;--:-;:-'":--;-'--.,-

TJ(7)381(7, 2z) 
1 ( m+l)2(k-H1) 

"""'q(k+1)m2 +(H1)mH/2+1/4-k/4y2(k+l)mH+1 - yq 2 
1 

~ (1 + yqm+2 )2 

. 83(7,z? 
= - ~ ----;--:-;:-'":--;-'--.,-

TJ(7)381(7, 2z) 
1 ( m+l?(k-£+1) 

"""'q(k+l)(m+1/2)2 Y2(k+1)(m+1/2)(yqm+1/2)C-k - yq 2 
1 • 

~ (1 + yqm+2)2 

(C.5) 

Here the factor (yqm+ 112)C-k is extracted so that we can apply Miki's 
formula. The last term in (C.5) can be expanded as 

(C.6) 
1 _ (yqm+~)2(k-C+1) 

(1 + yqm+~)2 

Thus altogether the massless characters are written as 

NS . 83(7, z)2 
(C.7) ch0 (k,£;7,z) = -~ ( )38 ( ) 

TJ 7 1 7, 2z 

2(k-C)+l ( )i ( m+1/2)i+C-k 
X"""' q(k+1)(m+l/2) 2 Y2(k+1)(m+1/2) """' ...:..-_1'----'-y'--q---,~::---
~ ~ 1+yqm+1/2 
m z=O 

Terms in the 2nd line above have exactly the same form as the functions 
I(2(k + 1), a, b; T, z) and we have 

(C.8) ch[/8 (k,£)2;T,z) 
2(k-R)+1 

~ I(K=2(k+1),i,i+£-k;T,z). 
i=O 

Now we can apply the modular transformation law (C.2). We first 
note that the factor 6( a, s) of ( C.3) vanishes 

(C.9) 6(a,s)=a-2(k+1)s=O mod Z 

where s =1/2+integer. Therefore only the 1st (continuous rep) and the 
3rd term remain in (C.2). 
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We also note that the 3rd term has exactly the from as the I! = k 
representation 
(C.10) 

1 m+l/2 
3rd term= ( -l)a+b+k+l""" - yq y2(k+l)(m+l/2lq(k+l)(m+l/2)2 • 

L...t 1 + yqm+l/2 
m 

Therefore we arrive at the result: under the S-tranformation N = 4 
massless characters produce only I! = k massless representation besides 
the continuous ones. 

(C.ll) ch{{8 (k,l!/2; -1/T,zjT) 

=continuous reps+ ( -1)£(k- £ + 1)ch{{8(k, k/2, T, z). 

Let us next examine the part of the continuous representations. We 
introduce the notation 

(C.12) 
-271'(-p +i-r ) Xr = e y2(k+ll 2(kHl . 

Continuous representations contained in (C.8) are given by 

(C.13) 

After the sum over i 

(C.14) 

(C.13) is written as 

(C.15) 
r 

-271'(1!-k) (____E___+i-r -) 1 j e y2Ck+ll 2(k+ll v2 

X X 2 q 2 dp. 
v2(k + 1) [ -27l'(__E.___+i-r-)l 1 + e y'2(k+ll 2(k+ll 
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Then by summing over r modulo 2(k + 1) the above formula is trans­
formed to 

(C.16) 
2k+l (-1)1 
~ J 2(k + 1) [8j,k+l(T, 2z)- 8-j,k+l(T, 2z)] 

J e -211:(£-k) ( y'2C~+l) +i 2(kj+l)) p2 

X 2 q2 dp 

[ 1 + e -211:( ~+i2Ck~ll) l 
= t( -1)j ~ [8j,k+l(T, 2z)- 8-j,k+l(T, 2z)] 

J=l 

. j e - 211:(£-k) ( y'2c~+1l +i2Ckj+ll) .10. 
x zim 2 q 2 dp. 

[ 1 + e -211: ( y'2C~+ll +i 2(/+ll) l 
If one restores the overall factor (}3 ( T, z? j ry( T )3 01 ( T, z), we recognize the 
combination (8j,k+1 (T, 2z)- 8-j,k+l(T, 2z))/B1 (T, 2z) as the level k -1 
SU ( 2) character. Thus ( C .17) has the form of an integral over N = 4 
continuous representations. 

Then the modular transformation of massless representation is given 
by 

(C.17) ch{18 (k, C/2; -1/T, z/T) 

=e 2~';z 2 
[ L 100 dp'S(CJp',C')chNS(k,p',C'j2;T,Z) 

O:S£' :Sk-1 -oo 

+(-1)£(k-C+1)ch{18 (k,k/2;T,z) ] 

where the massive character is defind as in (B.12) and the coefficient 
S(CJp',C') is given by 
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(C.18) 
21f k-£+2 p' ( ) 2 k-£+1 ' 2 k-£ ' 

e y'2(k+l) s k-1 + 2e 1f y'2(k+l)p s<k-1) + e 1f y'2(k+l)p s<k-1) 
C,C' C-1,£' C-2,£' 

12 cosh 1r ( ~ + i 2z~t~l) 14 

(k-1) 
Here sC,C' y';f;. sin ( 1r (H~tc~ +1)) is the modular coefficients of 

SU(2h-1· 
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