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Fig. 1. Zigzag pattern and corresponding dimer model 

2.5. To a pattern of zigzags Z = (Z~, ... , Zp) we assign the 2 xp-matrix 

, ... ' 
, ... ' 

displaying the intersection numbers of the zigzags in the pattern with 
the two curves .::1 and .::2. We assume that all intersections of zigzags 
with .::1 and .::2 are transverse. The intersection numbers are visible in 
the pictures as follows. Represent '][' by the unit square with opposite 
sides identified. Then Zj 1\.::2 is the number of times the zigzag Zj crosses 
the right-hand vertical edge from left to right minus the number of times 
it crosses from right to left. Similarly, Zj 1\ .::1 is the number of times Zj 
crosses the top horizontal edge downwards minus the number of times 
it crosses upwards. 
Condition 2.2.1. is equivalent with 

the rank of Bz is 2 and the sum of its columns is 0. 

2.6. From (1) we see: 
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This together with Condition 2.2.2. implies 

And thus, rankBz = 2 if and only if [Zi] f. ±[Zj] for some i,j. 

2. 7. Let Z = { Z1, ... , Zp} be a pattern of zigzags on']['. Pick a point* 
in one of the --cells. To every 2-cell c we associate a row vector in ZP as 
follows. Take any path 'Y on'][' starting at * and ending in (the interior 
of) c, such that 'Y intersects zigzags transversely. Each point in Zj n 'Y 
contributes, depending on the orientation, + 1 or -1 to the intersection 
number Zj I\ "f. Then to c we associate the vector of intersection numbers, 
or briefly intersection vector, [Z11\"(, ... , Zpl\"f]. Choosing another path 
"(1 from * to c changes this vector by a Z-linear combination of the rows 
of the matrix B z. 

It follows from Condition 2.1.5 that at an intersection point of 
zigzags Zi and Zj the vectors for the two cells with unoriented boundary 
and the cell with negatively oriented boundary can be obtained from the 
vector for the +-cell by subtracting 1 from the i-th coordinate, respec
tively 1 from the j-th coordinate, respectively 1 from both i-th and j-th 
coordinate. We can thus capture all relevant information of the pattern 
of zigzags Z in the matrix Bz and two additional matrices Iz and Pz, 
defined as follows. 

2.8. Definition The columns of Iz and Pz correspond with the zigzags 
Z1, ... , Zp. The rows of Iz and Pz correspond with the intersection 
points of pairs of zigzags in Z. The row of matrix I z for a point x E 

Zi n Zj has 1 in positions i and j and 0 elsewhere. Matrix Pz has in the 
row for intersection point x an intersection vector of the +-cell which 
has x in its boundary; see Figures 2 and 10 for examples. 

It is also convenient to have the short notation Qz = Pz -Iz. Then 
matrix Q z has in the row for an intersection point x an intersection 
vector of the --cell which has x in its boundary. 
2.9. Remark Due to the Z2 B2 -ambiguity in the choice of the intersec
tion vectors there is also a Z2 B 2 -ambiguity in the rows of the matrices 
Pz and Q z in Definition 2.8. In the algorithm we start with well-defined 
matrices Pz and Qz. In the course of the algorithm we only delete rows 
and perform the same operations on the columns of the matrices B z, 
Pz, Qz and Iz simultaneously. So the algorithm is also unambiguous. 
It does however happen that rows of Pz (resp. Qz) which correspond 
to the same +-cell (resp. --cell) are not the same, but differ by a vector 
in Z 2Bz. 

In Section 5 we pass to Vj Z2 B z. 
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Bz [~ 1 0 -1 -1 

-~J Iz Pz 1 1 0 -1 

1 2 110000 1 0 0 0 1 0 ......... 
·········~5 100010 1 0 0 0 1 0 

+ 010100 1 0 0 0 1 0 
000110 1 0 0 0 1 0 

2 
101000 1 -1 0 0 1 1 

i 6 

100001 1 -1 0 0 1 1 

+ + 001100 1 -1 0 0 1 1 

3 
000101 1 -1 0 0 1 1 

,_ __,_ 011000 1 0 0 -1 1 1 ......... ......... -·- -·-
4 5 010001 1 0 0 -1 1 1 

001010 1 0 0 -1 1 1 
000011 1 0 0 -1 1 1 

Fig. 2. Pattern of zigzags and the corresponding matrices 

2.10. Notation For a matrix M we denote j-th column as M(:,j), the 
i-th row as M(i, :) and the (i,j)-entry as M(i,j). 

2.11. Definition Let Zj and Zk be two zigzags such that [Zj] = -[Zk]· 
We say that (Zj, Zk) is a +-opposite pair (resp. --opposite pair) if 

Qz(:,j) = -Qz(:, k) (resp. Pz(:,j) = -Pz(:, k)). 

Suppose Zj n Zk = 0. Then (Zj, Zk) is a +-opposite pair (resp. 
opposite pair) if and only if there are between Zj and Z k no --cells ( resp. 
no +-cells). Most pictures in this note contain examples of opposite 
pairs. The term 'opposite pair' without± was introduced in [4) §5.3. 

2.12. Definition A good pattern of zigzags Z = (Z1, ... , Zp) is said to 
be very good if it satisfies: 

9. For every homology class [Z] the sequence of all zigzags (Zi, ... , Zi+r) 

(2) 

in homology class [Z] and the sequence of all zigzags (Zj, ... , Zj+s) 
in homology class - [ Z] satisfy: 

for 0:::; t:::; min(r, s): (Zi+t, Zi+t) is a +-opposite pair 
and either: 

for 0:::; t < min(r, s): (Zi+t+l, Zj+t) is a --opposite pair 
or: for 0:::; t < min(r, s): (Zi+t, Zj+t+l) is a --opposite pair 
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§3. The moves in the algorithm 

Gulotta's algorithm transforms in an iterative way a very good pat
tern of zigzags Z into another very good one Z'. In [4] the algorithm is 
mainly described by transforming a drawing of Z into a drawing of Z'. 
We will present the same algorithm by row and column operations on 
the matrices Bz, Iz, Pz. 

3.1. Merging move The basic move in the algorithm merges two 
zigzags Zi and Zj which intersect in exactly one point, as shown in 
Figure 3. It is evident that the merging moves preserve Conditions 1--6 
in 2.2. 

Fig. 3. Merging move 

It was pointed out in [4], that when two zigzags Zi and z1 of a 
pattern Z are merged and become one zigzag Z in Z' then 

(3) 

Actually this means [Z] = [Zi] + [ZJ] and, hence, also the column of 
the matrix Pz' which corresponds with the zigzag Z is the sum of the 
i-th and the j-th columns of Pz. Moreover, as the picture indicates, the 
point of intersection Zi n z1 disappears. The following statement also 
specifies where we put the new zigzag Z in the list of zigzags for Z'. 
Conclusion: The merging of Zi and z1 for Zi 1\ z1 = 1 is given by the 
same column operation on Bz, Iz, Pz, namely: add the j-th column to 
the i-th and subsequently delete the j-th column. It also deletes from Iz 
and Pz the row for Zi n ZJ. 

Merging moves performed on a very good pattern of zigzags need not 
preserve Conditions 2.3.7-8 and 2.12.9. Some repairing may be needed 
in order to turn the pattern of zigzags produced by the merging moves 
into a very good one again. 
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Fig. 4. Repairing move 1 

3.2. Repairing move 1 The first type of repairing move is shown in 
Figure 4. This is used when [Zi] = -[Zj] and ~(Zi n Zj) = 2, while the 
area between the zigzags is just one --cell (as suggested in the picture) 
or one +-cell (interchange + and - in the picture). From this picture 
one immediately comes to the conclusion: 
Conclusion: Repairing move 1 just deletes the rows for the two points 

of Zi n Zj from Iz and Pz. 

3.3. Repairing move 2 The second type of repairing move is shown in 
Figure 5. This is used when [Zi] = [Zj] and ~(Zi n Zj) = 2. In this case 

Fig. 5. Repairing move 2 

one may distinguish three kinds of rows in the matrix Pz, according to 
whether the i-th entry minus the j-th entry is equal tom- 2, m- 1 or 
m, for some integer m (depending on i and j). The rows of the latter 
kind correspond in the picture with +-cells in the area between the two 
zigzags. When the intervals of Zi and Zj between the points of Zi n Zj 
are swopped (as suggested by the right-hand picture) one must add 1 to 
the j-th coordinate and subtract 1 from the i-th coordinate in all rows 
of Pz corresponding with a +-cell in the area between Zi and Zj. One 
must also interchange the i-th and j-th entries in the rows of Iz which 
correspond with intersections with the intervals of Zi and Zj between 



A-determinants and dimer dynamics 357 

the two points of Zi n Zj. And one must delete from Iz and Pz the two 
rows corresponding to the two points of Zi n Zj. 
Conclusion: Repairing move 2 operates on the columns of Pz as fol

lows: Write H(r) = Pz(r,i)- Pz(r,j) and m = maxr(H(r)). Then 

Pz(r, i) ""'* Pz(r, i)- 1, 
Pz(r,i) ""'* Pz(r,i), 

Pz(r,j) ""'* Pz(r,j) + 1 
Pz(r,j) ""'* Pz(r,j) 

if H(r) = m, 
if H(r)-=/= m. 

It operates on the columns of Iz by: 

Iz(r,i) ""'* Iz(r,j), lz(r,j) ""'* Iz(r,i) 
if H(r) = m and lz(r, i) = 1, or H(r) = m- 1 and Iz(r,j) = 1, 

Iz(r,i) ""'* Iz(r,i), Iz(r,j) ""'* Iz(r,j) otherwise. 

Finally, it deletes from lz and Pz the rows for the points of Zi n Zj. 

2 3 4 .................................... 
1- -11' 

+ + 

-l2' 
+ + l3' 

'---1--1---1--.j..._.:.: 4' 
;_ - _i ................................... 

1"' 2"' 3"' 4"' {J"'T .. ~!J"' 
1 + + 1 

l ~-:2"' : ~3"' 
1 + + 1 

L - :4"' '··· ........................ A 

1" 2" 3" 4" 

r········· ···=··· ··:···· ·:·: 1" 

1 _;2" 
+ ~3" 

~ : 4" .. -:-............. ;;; ............ A 
1""' 2"' 3"" 4"" 

~/>
; v-······························11"" 
. - . . . 

i 'l~::::: 
L ..... L_zj,,, 

Fig. 6. Transforming an alternating sequence of opposite 
pairs 

3.4. Example Let (Z1, ... , Z2s) and (Zf, ... , Z~s) be two sequences 
of zigzags in a pattern z(ll such that ~(Zi n Zj) = 1 for all i,j and 
Zi n Zj = z: n Zj = 0 for all i -=!= j and such that (Zj-l, Zj) and 
(Zj_ 1 ,Zj) are (-1)J-opposite pairs for j = 2, ... ,2s. There are two 
well controllable cases in which merging of these two sequences followed 
by repairing moves 2 and 1 yields a sequence of zigzags ( Zf"', ... , Z~~') 
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2 3 4 ....................... -.......... . 
~- -~ 1' 

+ + 

-~ 2' 

+ + l3' 
: ; 4' 
i.-:-:-............. ::-: ............. :-:i 

1111 2"' 3111 4111 

1" 2" 311 411 

~·· ''~''" .......... ~ .... ·~·: 2" 

+ 

-~ 1" 

l4" 
;3" 

i.-:-:-............. ::-: ••••••••••••• ::i 

111111 2111 31111 41111 

Fig. 7. Transforming an alternating sequence of opposite 
pairs 

such that Z{'" n Z'/" = 0 for all i -=/= j and such that (Z'/!!u Zj'") is a 
( -1 )J -opposite pair for j = 2, ... , 2s. 

Case 1: z1 and Zj merge for j = 1, ... , 2s. 

Case 2: z1 and ZJ-(-l)j merge for j = 1, ... , 2s. 

Figures 6 and 7 show this for s = 2 and clearly generalize to arbitrary s. 
In either case let (Zf', ... , Z!}8 ) be the sequence of zigzags in the 

pattern zC2l which results from the merging. Now transform zC2l by 
applying repairing moves of type 2 at the points of Z{' nZ'/ for all i -=/= j for 
which [Z{'] = [Zj']. The result is the sequence of zigzags (Zf", ... , Z!}D 
in the pattern zC3l. Then ZI" n Zj" -=!= 0 only if [ZI"l = -[Zj"]. Next 
transform zC3l by applying repairing moves of type 1 at the points of 
Z/' n Zj" for all i,j. Call the resulting pattern of zigzags zC4l and 
the relevant sequence of zigzags (Zi"', ... , Z~'~'). In this last sequence 
Z/'' n Zj"' = 0 for all i -=/= j and ( Zj'!!_ 1 , Zj'") is a ( -1 )1 -opposite pair for 
j = 2, ... ,2s. 

It is instructive to perform the moves in Figures 6 and 7 also for the 
matrices Bz, Iz, Pz. For the top-left picture Bz, Iz, Pz are given in 
Figure 10. For the other pictures one may follow the description of the 
merging and repairing moves. 
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3.5. Remark In 3.4 we have chosen the labels for the zigzags while 
drawing the pictures. If one uses the matrix operations instead, the al
gorithm determines the labels and it may be necessary to reorder the 
columns of the matrices Pz, Qz, Iz to meet the requirements of Equa
tion (2). Example 3.4 shows that such a reordering is always possible. 

3.6. Repairing move 3 The third type of repairing move is shown 
in Figure 8. It is used for a zigzag Z0 and a sequence of zigzags 
( Z1, ... , Zzs) which satisfy the following conditions. Firstly, Zi n Zj = 0 
for all i > j ~ 1 and (Z1_1 , Z1) is a ( -1)J-opposite pair for j = 2, ... , 2s. 
Secondly [Zo] = ±[Z1] and U(Zo n Zj) = 2 for j = 1, ... , 2s. Reversing 
if necessary the labeling in the sequence (Z1, ... , Zzs) we may without 
loss of generality assume [Zo] = ( -1)J[Zj] for j = 1, ... , 2s. 

Gulotta's instructions ( cf. [4] §5.3) in this situation are to remove 
( Z 1, ... , Zzs) and to insert a sequence of zigzags ( Z~, ... , Z~s) such that 
z; n Zj = 0 for all j > i ~ 0 and such that (Zj_1, Zj) is a ( -1)1-
opposite pair for j = 1, ... , 2s. For notational convenience we write 
here and below Zb = Zo. 

In terms of the matrices Iz and Pz this means that we first delete 
from Iz and Pz all rows which correspond with an intersection point on 
one of the zigzags Z1, ... , Z28 and subsequently replace, for j = 1, ... , 2s, 
the column of Pz which corresponds with the zigzag Zj by (-1)1 times 
the column of Pz which corresponds with the zigzag Z0 . 

Next we expand every row of Iz and Pz which corresponds with an 
intersection point of Z0 and a zigzag Zoo =f. Z0 , Z1, ... , Zzs to 1 + 2s rows 
which correspond with the intersection points of Zoo with Zb, Z~, ... , Z~s 
(see Figure 9). The columns of Iz and Pz are labeled in such a way 
that the column which originally corresponded to z1 now corresponds 
to Zj for j = 0, ... , 2s. 

Thus a row of Iz for an intersection point x of Z00 and Zo is replaced 
by 1 + 2s rows of which the j-th one (for j = 0, ... , 2s) has entry 1 in 
the columns corresponding with the zigzags Zoo and Zj. Of the 1 + 2s 
new rows of Pz the 0-th one is equal to the row of Pz which corresponds 
to x. Figure 9 shows that for odd j the j-th row is obtained from the 
(j -1 )-st one by adding -1 in the column for Zj _1 and + 1 in the column 
for Zj; for even j ~ 2 the j-th row is equal to the (j- 1)-st one. 
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Zo 

/ ""' 
Zu + + / 

Zb =Zo 
Z' + Z1Z2 Z2s-1Z2s 1 
Z' 2 

z~s-1 + 
Z~s 

Fig. 8. Repairing move 3 

Fig. 9. Intersections with alternating sequence of opposite 
pairs 

§4. Running the algorithm 

In this Section we translate the algorithm described by Gulotta in 
terms of pictures, into an iterative process operating on matrices. 

4.1. In order to prepare the input for the algorithm from the set A = 
{ a1, ... , aN} (see §1) we take a 2 x N-matrix BA such that its rows are 
a Z-basis for the lattice { (£1, ... , .eN) E 71P l£1a1 + ... +.eN aN = 0}. 

The aim of the algorithm is to create a very good pattern of zigzags 
Z such that Bz results by permuting and splitting up the columns of BA 
as follows 

(4) column [:] of BA ""' d = g.c.d.(r, s) columns ~ [:] in Bz. 
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4.2. The algorithm starts with a very good pattern of zigzags Z for 
which Bz is the 2 x (2n1 + 2n2)-matrix 

n1 n2 n1 n2 
~ ~ ..---'-.. 

[ 
1. .. 1 0 ... 0 -1···-1 
0 ... 0 1. .. 1 0 ... 0 

----------0... 0 ] ' 
-1··. -1 

where n 1 (resp. n2) is the sum of the positive entries in the first {resp. 
second) row of B.4.. This matrix is realized by a pattern with straight 
lines, n1 vertically down, n1 vertically up, n2 horizontally left-to-right 
and n 2 horizontally right-to-left. To get a very good pattern one takes 
the vertical lines alternatingly down and up, and the horizontal lines 
alternatingly left-to-right and right-to-left. The matrices Bz, Pz and 
Iz for the initial pattern have 2n1 + 2n2 columns. There are 4nln2 
intersection points and, hence, Iz and Pz have 4n1n 2 rows. We build 
Iz and Pz as follows: the +-cells are given by pairs (a, b) in {1, ... , nl} x 
{1, ... , n2}. The rows of Iz which correspond to the four vertices of the 
+-cell (a, b) are have 1 in positions a, b + n 1, resp. a, b + 2n1 + n 2, resp. 
a+ n 1 + n 2, b + n 1, resp. a+ n1 + n 2, b + 2n1 + n2. All other entries 
in these rows of Iz are 0. The non-zero entries of the four rows of Pz 
which correspond to the vertices of the +-cell (a, b) are 1 in position j 
if 1 ::::; j ::::; a or 2n1 + n 2 + 1 ::::; j ::::; 2n1 + n2 + b and -1 in position j if 
n 1 + n2 + 1 ::::; j ::::; n1 + n2 + a - 1 or n1 + 1 ::::; j ::::; n1 + b - 1. Figure 10 
shows an example with n 1 = n2 = 2. 

3 

4 

2 

;.-f---t--+--~ 7 
+ + 

;...-+--+--+--~ 8 
+ + 

..... ········· ........................ ... 
5 6 

Bz 
Iz Pz 

10100000 
10000010 
00101000 
00001010 
10010000 
10000001 
00011000 
00001001 
01100000 
01000010 
00100100 
00000110 
01010000 

0 0 -1 -1 
1 1 0 

0 OJ 
0 -1 -1 

0 0 
0 0 

0 0 
0 0 

1 0 
1 0 

00 0010 
0 0 0 0 1 0 

-1 0 0 0 1 1 
-1 0 0 0 1 1 
-1 0 0 
-1 0 0 

0 0 -1 
0 0 -1 
0 0 -1 
0 0 -1 

-1 0 -1 

0 
0 
0 
0 
0 
0 
0 

1 1 
1 1 

0 
0 
0 
0 

01000001 -1 0 -1 0 1 1 
00010100 -1 0 -1 0 1 1 
00000101 1 1 -1 0 -1 0 1 1 

Fig. 10. Pattern to start from 
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4.3. At the beginning of an iteration step we have a very good pattern of 
zigzags Z = {ZI, ... , Zp}· The merging moves are determined from the 
positions of the columns of the matrix BA with respect to the columns 
of the matrix B z. The columns of B z are vectors in the plane JR.2 and 
the ordering by increasing index coincides with the counter-clockwise 
cyclic ordering. In agreement with this cyclic structure we treat the 
first column of B z as consecutive to the last column. 

A column v of BA is either a positive integer multiple of a column 
of B z or there is a unique pair of consecutive columns VI and v2 of B z 
such that v = CI VI + c2v2 with c1, c2 E 1Jbo-

4.4. The algorithm terminates automatically when all columns of 
BA are multiples of columns of Bz. Since the merging moves decrease 
the number of zigzags the algorithm will surely terminate. 

4.5. Cramer's rule explicates the relation v = c1v1 + c2v2: 

(5) 

In the pattern we start with the determinants of consecutive pairs of non
equal columns of B z are 1. The merging of two zigzags in a very good 
pattern Z with exactly one intersection point replaces the corresponding 
columns of B z by their sum. Thus in the next iteration step in the 
algorithm Equation (5) becomes 

det(v1, v2) v = (det(v, v2)- m) VI + m(vi + v2) - (det(v, vi)+ m) v2 

with m = min(det(v1, v), det(v, v2 )). This then gives v either as a 
multiple of VI + v2 or as a positive linear combination of VI and VI + v2 
or of VI+ v2 and v2. Note that det(vi,VI + v2) = det(vi + v2,v2) = 
det(vi, v2). 
Conclusion: In all cases in which Equation (5) is used in the algorithm 
det (VI, v2 ) 1 and the equation actually reads 

(6) 

Column v of BA thus leads to the command that m zigzags of the pat
tern Z in the homology class corresponding with the column VI of B z 
must merge with m zigzags in the homology class corresponding with the 
column v2; herem = min(det(vi, v), det(v, v2 )). 

4.6. As Equation (6) indicates we need the determinants of the 2 x 2-
matrices. with first column from BA and second column from Bz. These 
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are simultaneously given as the entries of theN x p-matrix 

with J = [ _ ~ ~ ] . 

The columns of BA correspond with the rows of S. One can implement 
the discussion in 4.3 and 4.5 for all columns of BA simultaneously as 
follows. Let sc = 8(:, [2: p, 1]) be theN x p-matrix obtained from S by 
cyclically permuting the columns so that the first column comes in the 
last position. Let R be the N x p-matrix with ( i, j)-entry 

Rij = ~(IBijl + ISfji-IBij + Sfji) 
~j = 0 

if Sij < 0, 
if Sij 2 0. 

We define functions p and>. on {1, ... ,p} by 

N 

p(j) = LRij' .X(j) = p(j- 1) if j > 1' >.(1) = p(p). 
i=1 

Next we define for a homology class of zigzags [Z] in the pattern Z = 
(Z1, ... , Zv): 

p([Z]) 

:X([Z]) 

/1([Z]) 

= max{p(j) I Zj E [Z]}, 

max{>.(j) I Zj E [Z]}, 

U([Z]) - p([Z]) - :X([Z]). 

Then p([Z]) (resp. :X([Z])) is the number of zigzags in [Z] which must 
merge with a zigzag in the homology class immediately after (resp. be
fore) [Z] and /1([Z]) is the number of zigzags in [Z] which must not 
merge with another zigzag. The merging step defined in 4.8 decreases 
the number of zigzags by 

p 

q= :L>-(h) 
h=1 

and uses the map cp: {1, ... ,p} ---t {1, ... ,p- q}, 

(7) . - { j- 2::{=1 )..(h) if j > >.(1) 
cp(J) - - + . - "'j >.(h) 'f . < >.(1) p q J L..Jh=1 1 J - . 

4.7. In order to eventually satisfy Requirement 2.12.9 and to benefit 
from Example 3.4 we permute the zigzags in each homology class as 



364 J. Stienstra 

follows. First we define for each homology class of zigzags [Z] for which 
the opposite class -[Z] also occurs in the pattern Z: 

p([Z]) = min{p([Z]), p( -[Z])), 
jt([Z]) = min{ji([Z]), ji( -[Z])). 

:X([Z]) = min{:X([Z]), :X( -[Z])), 

If -[Z] does not occur in Z we put p([Z]) = :X([Z]) = /t([Z]) = 0. 
Next we write for every homology class [Z] in Z: 

p([Z]) =p([Z])- p([Z]), "X([Z]) =:X([Z])- :X([z]), "Ji([Z]) = ji([Z])- /t([Z]) . 

. The permutation we apply to the zigzags in homology class [Z] is a so
called shuffie. This means that [Z] is split into disjoint intervals which 
are permuted, while inside each interval the ordering is unchanged. The 
shuffie we apply to the zigzags in [Z] is depicted in Figure 11; the num
bers :X([Z]) etc. indicate the length of the interval. 

I :\([Z]) 1/l([Z]) I p([Z]) I X([Z]) I JI([Z]) I p([Z]) 

! ~! 
A([Z]) j:i([Z]) p([Z]) 

Fig. 11. Shuffle within one homology class 

Such shuffies must be applied to each homology class in the pattern 
Z = (Z1 , ... , Zp)· The composite result is the shuffie permutation 

(8) (1: {1, ... ,p}--+ {1, ... ,p}. 

4.8. Definition We define the merging matrix MAz for the set A and 
the pattern of zigzags Z to be the p x (p- q)-matrix with ( i, j)-entry 

(9) (MAz)ij = 1 if j = cp(a(i)), (MAz)ij = 0 if j #- cp(a(i)), 

with cp and a as in (7) and (8). 
The merging step in the algorithm multiplies the matrices Bz, Iz, 

Pz and Qz from the right with the matrix MAz and subsequently 
deletes the rows which correspond to intersection points in the pattern 
Z which disappear in the merging process. These are recognized as the 
rows of Iz MAz with only one non-zero entry (namely 2). 
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Thus the merying Z ---+ Z' is realized by 

{ 
Bz, = Bz MA.z 
fz, = delete rows from Iz MA.z 
Pz' = delete rows from Pz MA.z 
Qz' =delete rows from Qz MA.z· 

365 

4.9. The transformation of patterns of zigzags Z ---+ Z' in (10) has 
been organized so that if Z is a very good pattern, then Z' satisfies the 
Conditions 2.2.1-6, 2.3.7 and the property formulated on the first line 
of Equation (2). However, Z' need not satisfy 2.3.8, i.e. the equality 

need not hold for all pairs of zigzags ( ZI, Zj) in Z'. This equality can 
only be violated if z: results from merging zigzags zil and zi2 from z 
such that Zi1 1\ Zi2 = 1 and (Zi1 1\ Zj)(Zi2 1\ Zj) < 0. Since [Zj] can only 
be the homology class of a zigzag in Z or the sum of two such, this can 
only happen if [Zj] = ±([ZiJ + [Zi2 ]) = ±[Z:J. 

The merging process in (10) is such that if ZI results from merging 
zigzags Zh and Zi2 from Z, then every zigzag Zj in the homology class 
[ZIJ (resp. in -[ZIJ) is the result of merging a zigzag Zj1 from [ZiJ 
(resp. -[Zi1 ]) with a zigzag Zh from [Zi2 ] (resp. -[Zi2 ]). Since Z 
satisfies Condition 2.3.8. and Zi1 A Zi2 = 1 we have in that case 

Whence if Zj E ±[Z:J and ZI =f=. Zj, then ~(ZI n Zj) = 2. 
Conclusion: For a pair of zigzags (ZI, Zj) in Z' we have: 

!ZI A Zjl =I ~(ZI n Zj) ~ ZI A Zj = 0 and ~(ZI n Zj) = 2. 

4.10. We now transform the pattern of zigzags Z' created in (10) into a 
very good one. First we apply repairing moves 2 (see 3.3) to those pairs 
of zigzags (ZI, Zj) which satisfy [ZIJ = [Zj] and !ZI 1\ Zjl =f=. ~(ZI n Zj) 
and which either both do or both do not belong to a +-opposite pair 
(cf. Definition 2.11). Next we apply repairing moves 1 (see 3.2) wherever 
possible. See also Example 3.4 and Remark 3.5 for the effect of repairing 
moves 2 and 1 on alternating sequences of opposite pairs. Thus with 
repairing moves 2 and 1 and possibly a permutation of columns in fz,, 
Pz,, Qz' we now have a pattern of zigzags which satisfies also the second 
half of Equation (2) and in which two zigzags Zi, Zj with [Zi] = ±[Zj] 
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do not intersect unless one is member of an opposite pair and the other 
is not. 

Finally we apply repairing moves 3 (see 3.6) as follows for all homol
ogy classes [Z] and -[Z] which have resulted from merging and which 
satisfy U([Z]) > U( -[Z]) > 0. In these circumstances the zigzags in -[Z] 
and the first ij( -[Z]) zigzags in [Z] form a sequence (Z1, ... , Z2s) as in 
the beginning of 3.6. For the zigzag Z0 in 3.6 we take the zigzag in [Z] 
with the highest index. Note that while performing repairing move 3 we 
have first deleted from the matrices Iz, Pz and Qz all rows which cor
responded with intersection points on one of the zigzags in the sequence 
( Z1 , ... , Z2s). Subsequently we have inserted rows for intersection points 
of a zigzag in the new sequence ( Zi, ... , Z~s) with a zigzag which also in
tersects Zb = Z 0 . The previously applied repairing moves 2 had already 
removed all intersection points of Z0 with the zigzags in [Z] which were 
not in (Z1 , ... , Z2s). So after applying repairing moves 3 two zigzags in 
[Z] U (-[Z]) do not intersect. 

4.11. After the above merging and repairing moves we have produced 
a very good pattern of zigzags and now return to 4.6 for the next 
iteration. 

§5. From Bz, ]z, Pz, Qz to Kz and back 

5.1. The conversion works for every good pattern Z of, say p, zigzags. 
Condition 2.12.9 is not needed here. The rows of Pz and Qz must be 
taken modulo the row space of Bz. This is achieved by multiplying Pz 
and Qz from the right by a p x (p- 2)-matrix Az with entries in Z, 
such that rank(Az) = p- 2 and Bz Az = 0. 

The rows of Pz Az represent points in fZPJ;;z2 Bz. We denote the set 
of these points by ~' because these are in fact the black nodes in the 
dimer model. In the zigzag pattern these are the +-cells. Similarly, we 
denote the set of rows of Qz Az by ®. These are the white nodes in 
the dimer model and the --cells in the zigzag pattern. 

5.2. Definition(cf. [5] Definition 8.2, [6] Definition 1) The generalized 
Kasteleyn matrix Kz(z, u) of a good pattern of zigzags Z = (Z1 , ... , Zp) 
is defined as follows. The rows of Kz(z, u) correspond 1 : 1 with the 
elements of~ and the columns correspond 1 : 1 with the elements of®. 
The entries of Kz(z, u) are polynomials in two sets of variables z and u. 
The variables in u = { u1, ... , Up} correspond 1 : 1 with the zigzags in 
Z, and, hence, with the columns of Bz, Iz, Pz and Qz. The variables 
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in z = {ze} correspond 1 : 1 with the intersection points e of Z and, 
hence, with the rows of Iz, Pz and Qz. 

For an intersection point e we denote by b( e) the element of 123 which 
"is" the e-th row of Pz Az. Similarly, w(e) E mJ "is" the e-th row of 
Qz Az. Finally, i(e) and j(e) are such that fz(e, i(e)) = Iz(e,j(e)) = 1. 

Finally, for b E 123 and w E mJ we define: 

(11) the (b, w)-entry of lKz(z, u) is L ZeUi(e)Uj(e). 

e: b(e)=b, w(e)=w 

5.3. Example For the pattern of zigzags in Figure 2 the generalized 
Kasteleyn matrix is: 

Z2U1U2 + Z3U4U5 

Z6Ul U6 + Z7U3U4 

Z1QU5U6 + Zu U2U3 

Z4U2U4] 
ZsU4U6 · 

Z12U2U6 

5.4. Definition (cf. [6] Definition 3) The complementary generalized 
Kasteleyn matrix IK~(z, u) of a good pattern Z of p zigzags is 

][{~(z, u) = u1 · ... · uplKz(z, u!1 , ... , u; 1). 

5.5. Remark The information in IKz(z, u) is in fact equivalent with 
that in Bz, Iz, Pz. By Theorem 9.3 and §3.7 in [5] the columns of 
Bz are the primitive vectors along the sides of the Newton polygon of 
det!Kz(z, u) w.r.t. u1, ... , up. One recovers Pz and Iz as follows. Let 
P and Q, respectively, be the sets of exponent vectors of the monomials 
in u1, ... , up which appear in the first columns of the matrices 

lKz(z, u) (!Kk(z, u) IKz(z, u) r resp. (!Kk(z, u) IKz(z, u) r+l 
for n E Z>o· Translations on ZP by vectors in Z2 Bz preserve p and Q. 
Now take-a 'fundamental domain' P* c P for the Z2 Bz-action on P. 
For each vector a in 'P* let Qa be the set of vectors (3 in Q such that 
a - (3 has precisely two non-zero entries and these are both 1. The rows 
of Pz resp. Iz are a resp. a- (3 with a E 'P* and (3 E Qa. 

§6. The principal A-determinant 

6.1. The principal Az-determinant for a good pattern of zigzags 
Let Z = (Z1 , ... , Zp) be a good pattern of zigzags and let Az denote 
the set ofrows of the matrix Az (see 5.1). Let~ be the homomorphism 

~ : Z[ze I e intersection point in Z] --+ Z, 
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The principal Az-determinant is defined in [2] and Theorem 3 in [6] 
states that it is equal to 

(12) t(det!Kz(z,u)). 

The relation 

Iz = Pz- Qz 

is precisely the one required in Condition 2 of [6]. 

6.2. Concluding remark about the principal A-determinant 
For the principal A-determinant of the set A = { a1, ... , aN} in the 
Introduction we may have to make some slight adaptations to formula 
(12), which reverse in a sense the transformation from BA to Bz in 4.1. 

In (12) the variables in u = (u1 , ... , up) correspond 1 : 1 with the 
columns of B z. Take a new set of variables v = ( v1, ... , v N) which 
correspond 1 : 1 with the columns of BA. Recall that Bz is obtained 
from BA by permuting and splitting up columns as in (4). Then, to 
reverse the transformation from B A to B z one must set Ui = dk Vk if 
the i-th column of Bz comes from the k-th column of BA; here dk is 
the g.c.d. of the two entries in the k-th column of BA. 

References 

[ 1 ] A. Dickenstein and B. Sturmfels, Elimination theory in codimension two, 
J. Symb. Comput., 34 (2002), 119-135; arXiv:math/0102204. 

[ 2] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Re
sultants and Multidimensional Determinants, Birkhauser Boston, 1994. 

[ 3] I. M. Gelfand, A. V. Zelevinskii and M. M. Kapranov, Hypergeometric 
functions and toral manifolds, Funct. Anal. Appl., 23 (1989), 94-106. 

[ 4] D. Gulotta, Properly ordered dimers, R-charges and an efficient inverse 
algorithm, J. High Energy Phys., 10 (2008), 014; arXiv:0807.3012. 

[ 5] J. Stienstra, Hypergeometric systems in two variables, quivers, dimers and 
dessins d'enfants, In: Modular Forms and String Duality, (eds. N. Yui, H. 
Verrill and C. F. Doran), Fields Inst. Commun., 54, Amer. Math. Soc., 
Providence, RI, 2008, pp. 125-161; arXiv:0711.0464. 

[ 6] J. Stienstra, Chow forms, Chow quotients and quivers with superpotential, 
In: Motives and Algebraic Cycles, a Celebration in Honour of Spencer J. 
Bloch,(eds. R. de Jeu and J. Lewis), Fields Inst. Commun., 56, Amer. 
Math. Soc., Providence, RI, 2009, pp. 327-336; arXiv:0803.3908. 



A-determinants and dimer dynamics 

Mathematisch Instituut 
Universiteit Utrecht 
the Netherlands 
E-mail address: J. Stienstra@uu. nl 

369 


