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Abstract.

We show that the limit, by rescaling, of the ‘new supersymmetric
index’ attached to the Fourier-Laplace transform of a polarized vari-
ation of Hodge structure on a punctured affine line is equal to the
spectral polynomial attached to the same object. We also extend the
definition by Deligne of a Hodge filtration on the de Rham cohomol-
ogy of a exponentially twisted polarized variation of complex Hodge
structure and prove a E;-degeneration property for it.

§ Introduction

The purpose of this article, mainly concerned with exhibiting prop-
erties of the Fourier—Laplace transform of a variation of Hodge structure,
is twofold.

(1) Let X be a compact Riemann surface, let S be a finite set of
points on X. We will denote by j : U = X\.§ — X the inclusion. Let f :
X — P! be a meromorphic function on X which is holomorphic on U and
let (V,VV) be a holomorphic bundle on U equipped with a holomorphic
connection. We denote by M the locally free &x (xS)-module of finite
rank with a connection having regular singularities at each point of S and
such that My = (V,VV) (Deligne’s meromorphic extension of (V,V%7)).
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In [4], P. Deligne defines a Hodge filtration on the de Rham cohomology
of the exponentially twisted connection Hpp(X,M ® &), ie., that of
the meromorphic bundle M with the twisted connection Y/ + dfA, at
least when the monodromy of (V,VV) is unitary (and thus corresponds
to a variation of polarized Hodge structure of type (0,0)).

This Hodge filtration is indexed by real numbers, and Deligne proves
a E)-degeneration property for the de Rham complex. It has a good
behaviour with respect to duality.

One is naturally led to the following questions:

« In what sense do we get a Hodge filtration, i.e., what are the
underlying Hodge properties?

« Why are the jumps of this Hodge filtration related to the eigen-
values of the monodromy of f around f = oo (more precisely,
the spectrum of f at infinity relative to (V,VV))?

« Is there a possible extension of this construction without the
unitarity assumption, when (V, VV) is only assumed to underlie
a polarized variation of Hodge structure?

In §6, we extend the construction by Deligne of a filtration on the
twisted de Rham cohomology Hjy, (X, M ® €7) when (V,VV) underlies
a variation of polarized complex Hodge structure and give an answer to
the previous questions. However, for simplicity, we restrict to the case
where X = P! = Al U {oo} and f is the coordinate function on Al

(2) Let H be a complex vector space equipped with a positive def-
inite Hermitian form h (that we call a Hermitian metric) and two en-
domorphisms % and 2, where 2 is selfadjoint with respect to h. The
other purpose of this article is to give a relation between polynomials of
degree dim H attached to this situation:

« On the one hand, the characteristic polynomial of 2, denoted
by Susy g pa,2)(T)

« On the other hand, the spectral polynomials. The spectral
polynomial at infinity, as defined in §1.a below, is attached to
the holomorphic bundle with a meromorphic connection hav-
ing a pole of order two associated to % and 2 (cf. §1.d), and
denoted by SP(} , 4, 2)(T). With a supplementary assump-
tion called “no ramification”, one can also define the spectral
polynomial at the origin SP?H,h’%Q) (T) (cf. §1.b).

There is a rescaling operator u}, parametrized by 7 € C*, acting on the
data (H, h, % , 2) (more precisely and more accurately, on the associated
integrable twistor structure, ef. Appendix B).
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The other main result of this article (Theorem 7.1) is to prove,
under some conditions made explicit below (namely, (H, h, % ,2) is the
de Rham cohomology of the exponential twist of a variation of polarized
Hodge structure on a punctured line, in particular, the “no ramification”
condition holds), a relation conjectured by C. Hertling:

im Susy .« (g n,2,2)(T) = SP{ na,2) (1),

T—0

D lim S T) = SP{ T

e usyu;(H,h,%,Q)( ) = (H,h,%,,@)( )-

A similar relation was first proved by C. Hertling (cf. [7, Th. 7.20]) when
the connection V has a regular singularity at z = 0.

The relation between the two approaches (1) and (2) above is made
explicit in Remark 7.2 below. Both questions rely on a detailed analysis
of the Fourier-Laplace transform of a variation of polarized complex
Hodge structure on the punctured affine line.

Remark. In a recent preprint [13], T. Mochizuki extends the limit
theorems 3.1 and 3.5 in the higher dimensional case and gives applica-
tions to a characterization of nilpotent orbits.

Acknowledgements. I thank Claus Hertling for useful discussions on
this subject and for his comments on a preliminary version of this article.
I thank the referee for his careful reading of the manuscript and useful
comments.

§1. Connections with a pole of order two

Let Q be an open disc centered at the origin of C with coordinate z
and let JZ be a Oq-locally free sheaf with a meromorphic connection V
having a pole of order two at the origin and no other pole (one can
consider a more general situation, but we will restrict to this setting). We
will moreover assume that the eigenvalues of the monodromy operator
and of the formal monodromy operator have absolute value equal to one
(so that the V-filtrations below are indexed by real numbers; here also,
a more general situation could be considered, but we will restrict to this
setting).

l.a. Spectrum at infinity

There exists a unique locally free Op: (x00)-module H equipped with
a meromorphic connection V with poles at 0 and oo only, such that oo is
a regular singularity, and which coincides with % when restricted to Q2
(it is called the meromorphic Deligne extension of (#,V) at infinity,
cf. [2]). Let us denote by 2’ = 1/z the coordinate at infinity on P*. For
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any v € R, the y-Deligne extension of I at infinity is the locally free
Op1-module V75 on which the connection has a logarithmic pole at
infinity with residue having eigenvalues in [y, + 1). According to the
Birkhoff—-Grothendieck theorem, VYA ‘decomposes as the direct sum of
rank-one locally free @pi-modules VY3 = Opi(a1) @ -+ ® Opi (ark o22)
with a1 2> a2 > ---. We denote by v, the number of such line bundles
which are > 0 and by v, the difference v, — v5,.

We can express these numbers a little differently. We have a natural

morphism
(1.1) Opr @c T(PL, VI H) — VI

whose image is denoted by 7. This is a subbundle of V7% in the
sense that V7Y3#/ Y7 is also a locally free sheaf of Opi-modules; more
precisely, fixing a Birkhoff-Grothendieck decomposition as above, we
have ¥7 = @i!aizo Op1(a;) (indeed, for any line bundle Opi(k), Opr Q¢
[(P, Opi(k)) — Op(k) is onto if k > 0 and 0 if & < 0) so ¥7
is a direct summand of V75 of rank vy. Restricting to Q, we get
a decreasing filtration 7* of 5 indexed by R. The graded pieces
gry, & = ¥ /¥>7 are locally free On-modules (being isomorphic to
the kernel of 5/¥>7 — /¥7), and vy = rkgr), .

Let us recall the definition of the spectral polynomial SPS, (cf. [17]
or [14, §IIL.2.b]).

Definition 1.2 (Spectrum at infinity). The spectral polynomial
of J at infinity is the polynomial SP3.(T") = [, (T" — v)* with (for
any z, € 1)

vy =tkgry # = dimi; gr), ' =dm V7 /(V77 + (2 ~ 2,) V7).

In the following, we will often use an algebraic version of the previous
construction, which is obtained as follows: set Go = I'(P!, 5#), which is
a free C[z]-module of finite rank; the (decreasing) Deligne V-filtration of
G :=Clz,27Y ®cz Go at z = oo is a filtration V°G of G by C[z/]-free
submodules; in particular, 2’VYG = VY*1Q and 20, +v = —2'8, + is
nilpotent on gr}, G := VYG/V>7G. Then, I'(P!, V'Vj?/) =VIGNGy =:
V7Gy.

When tensored with &p:(xc0) and after taking global sections, (1.1)
is the inclusion morphism

Clz] - V'Gy — Go.
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As Clz] - V'G) is a direct summand in Gy, this inclusion induces an
inclusion of fibres at z, for any z, € C, and so

VY(Go/(z — 25)Go) := V'Go/[(2 — 20)Go N VG]
= [C[z] - V'Go + (2 — 25)Go] /(2 = 25)Go

has dimension v,,. Then we also have

(1.3)
vy (Go) = dimgr(, (Go/(z — 2,)Go)

=dim(Go NVG)/[(Go NVZTG) + ((2 — 25)Go NV G)].

Example 1.4. In [17] (where an increasing version of the V-
filtration is used, hence the change of sign below), this polynomial is
denoted by SPy(G,Gp). Correspondingly, the set of pairs (—7v,vy)
above is called the spectrum (at infinity) of (G,Gp). When Gy is the
Brieskorn lattice attached to a cohomologically tame function on an
affine smooth variety of dimension n + 1 (cf. loc. cit.), the spectrum at
infinity is symmetric with respect to (n + 1)/2 and the numbers —y
belong to [0,n + 1] N Q.

1.b. Spectrum at the origin

We now make a supplementary assumption on (4, V). Let us de-
note by #[1/z] the locally free Oq[1/z]-module Oq[1/2]® s, 5, with its
natural meromorphic connection. By the Levelt—Turrittin theorem, the
associated formal module C[z][1/2] ® 4, S€ can be decomposed, after a
suitable ramification of z, as the direct sum of meromorphic connections
which are tensor product of a rank-one irregular connection with a regu-
lar one. Here, we make the assumption that no ramification is needed to
get the Levelt—Turrittin decomposition (cf. Appendix B for the need of
such a condition). One can formulate this condition in terms of Laplace
transforms, in the coordinate 2’ 1= 1/2:

Lemma 1.5. The “no ramification” condition is equivalent to say-
ing that the Laplace transform of the C[z'](8,)-module G associated
with J€ has only regular singularities (included at infinity).

Sketch of proof. This follows from the slope correspondence in the
Fourier-Laplace transform (cf. [10, Chap. V]). We will not distinguish
between the Laplace transform and the inverse Laplace transform. As-
sume that G is the Laplace transform of M. The formal part of M at
the origin produces the formal part of slope < 1 of G at 2’ = co. By
assumption, only the slope 0 can appear, so M is regular at the origin.
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A similar reasoning can be done at each singular point of M by twist-
ing by a suitable exponential term, showing that M has only regular
singularities at finite distance. The part of slope < 1 of M at infinity
produces the formal part of G at 2’ = 0, and as G is regular at 2’ = 0,
only the slope 0 occurs as a slope < 1 for M at infinity. Slopes equal to 1
for M at infinity would produce singular points of G at finite distance,
and not equal to 2/ = 0. There are none. Lastly, slopes > 1 for M at
infinity would produce slopes > 1 for G at 2’ = oco. There are none.
Hence M has to be regular (slope 0) at infinity. Q.E.D.

Let us set 2" = Cz] ® g, S£. When the “no ramification” condi-
tion is fulfilled, the Levelt—Turrittin decomposition for J#"[1/z] already
exists for J#”. There exists then a finite number of pairwise distinct
complex numbers ¢; (i € I') and a finite number of free C{z}-modules 5
with a regular meromorphic connection having a pole of order at most
two, such that

(1.6) H ~ P (A @ £,

i€l
where &¢/# is C{z} equipped with the connection d — ¢;dz/2z2. Each 4%
is equipped with a regular meromorphic connection V. The free
C{z}[1/z]-module #[1/z] has a canonical decreasing Deligne filtration
V*3[1/ 2] indexed by real numbers (by our assumption) so that 20, —+y
is nilpotent on the vector space gr}, [1/z].

Definition 1.7 (Spectrum at the origin). For any i € I, the spectral
polynomial of the regular meromorphic connection % at the origin is
the polynomial SP%, (T) = [L, (T + )k, with

6N VI 1/ 2]
FENVVHEGL 2]+ 256N VIFH[L)2)

iy = dim

and we set SP%.(T) = [], SP% (T).

(The choice T + +y is done in order to have similar formulas for SP°
and SP.)

Example 1.8. When 47 is the analytization of the Brieskorn lat-
tice Go of a cohomologically tame function on a smooth affine variety
(cf. Example 1.4), then 5% = 0 only if —c¢; is a critical value of this func-
tion, and %" is the formal (with respect to 8, = z) local Brieskorn
lattice at this critical value (this follows from [14, Prop. V.3.6] for in-
stance). The set of pairs (v, t;) is the spectrum at this critical value
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(with a shift by one with respect to the definition of [23]): it is symmet-
ric with respect to (n + 1)/2 and the numbers v belong to (0,n + 1).
(See also [23], [22] and [6, Chap. 10-11] and the references therein for
detailed results in the case of a singularity germ.)

Remark 1.9. Assume that V has a pole of order one on J#. Then
SPY%, is the characteristic polynomial of — Res V (residue of the connec-
tion at z = 0). We also have SPS = SPY, (cf. e.g. [14, Ex. IIL.2.6]).
We conclude that in an exact sequence of logarithmic connections, SP%
and SP?%O behave multiplicatively.

1.c. Connection with a pole of order two by Laplace trans-
form

Let us recall the notion of Laplace transform of a filtered C[t](0;)-
module (cf. [14, §V.2.c] or [19, §1.d]). Let A! be the affine line with
coordinate ¢ and let M be a holonomic C[t](9;)-module. We set G :=
M0 = C[t]{8:, 87 ') ®cyiy(a,) M (it is known that G is also holonomic
as a C[t]{d;)-module) and we denote by loc : M — G the natural mor-
phism (the kernel and cokernel of which are isomorphic to powers of
C[t] with its natural structure of left C[t](8;)-module). For any lattice L
of M, i.e., a C[t]-submodule of finite type such that M = C[§] - L, we
set

(1.10) G =" 8, loc(L).

520

This is a C[d; ‘]-submodule of G. Moreover, because of the relation
[t,0; 1 = (87 )2, it is naturally equipped with an action of C[t]. If M
has a regular singularity at infinity, then GSL) has finite type over C[8; ]
(cf. [14, Th. V.2.7]). We have G = C[,] - G{.
Let us now assume that M is equipped with a good filtration F, M.
In the following, in order to keep the correspondence with Hodge theory,
we will work with decreasing filtrations F'* M, the correspondence being
given by FPM := F_,M. Let py € Z. We say that F°*M is generated by
Fro )M if, for any £ > 0, we have FPo M = FPOM +---+ 8¢ FPe M. The
- C[8; ']-module 67° G(()Fpo) does not depend on the choice of the index po,
provided that the generating assumption is satisfied (cf. [19, §1.d]). We
thus define the Brieskorn lattice of the filtration F*M as

(1.11) G(()F) = 8§’°G§)Fp0) for some (or any) index pg of generation.

If we also set z = ;" !, then G((,F) is a free C[z]-module which satisfies
G =Clz,27} ®c[2] G(()F) and which is stable by the action of 220, :=t.
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For any p, we have
(1.12) loc(FPM) c 272G,

Indeed, zPGéF) = > >0 8 I PP foc(FPOM); if p > po, we have
O PO FPM C FPoM, hence the desired inclusion after applying loc; if
p < po, we have FPM = FPo 4 ...+ 9P°"PFPo M and the result is clear.

1.d. Integrable twistor structures

Let H be a finite dimensional complex vector space equipped with
a Hermitian metric A and of two endomorphisms % and 2, with 2
being selfadjoint with respect to h. Let %' be the h-adjoint of % .
Let Qo be an open neighbourhood of the closed disc |z| < 1 in C and
let us set S’ = Oq, ®c H, equipped with the meromorphic connection
V=d+ (2% - 27'2 - %")d=.

We will denote by J = (', 5", %s) the associated twistor struc-
ture (as defined in §2.b below, by taking X to be a point).

We will denote by SPZ(T") or by SP{y 4 4 2)(T') the spectral poly-
nomial at infinity SP%, (T). On the other hand, if V has no ramification
at the origin, we will denote by SP% (T") or by SP?H’,M% 2)(T) the spec-
tral polynomial at the origin SP%,, (7).

§2. A review on integrable twistor Z-modules

In this section and in Section 4, we gather the notation and results
needed for the proofs of the main theorems of this article. We refer to
[16, 19, 18] for details.

2.a. Integrable harmonic Higgs bundles

Let X be a complex manifold and let £ be a holomorphic bundle
on X, equipped with a Hermitian metric h. For any operator P acting
linearly on E, we will denote by P' its adjoint with respect to h.

Let 6 be a holomorphic Higgs field on E, that is, an &x-linear mor-
phism E — QY ®¢, FE satisfying the “integrability relation” § A § = 0.
We then say that (E, ) is a Higgs bundle (cf. [26]).

Let E be a holomorphic bundle with a Hermitian metric h and a
holomorphic Higgs field 8. Let H be the associated C*° bundle, so that
E =Kerd", let D = D'+ D", with D" = d", be the Chern connection
of h. We say, after [26], that (F,h, ) is a harmonic Higgs bundle (or
that h is Hermite-Einstein with respect to (F, 6)) if VD := D+6+6' is an
integrable connection on H. The holomorphic bundle V = Ker(d" + 1)
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is then equipped with a flat holomorphic connection Y/, which is the
restriction of VD' := D' + 6 to V.

We say (cf. [7], see also [16, Chap.7]) that it is iniegrable if there
exist two endomorphisms % and 2 of H such that

(2.1) % is holomorphic, i.e., d"(%) =0,
(2.2) 9" =9,
2.3) 0, %] = 0,
(2.4) D) -10,2]+6 =0,
(2.5) D'(2)+, %" =0.

Remark 2.6. Let us note that (% +cId, 2+ X Id) satisfy the same
equations for any ¢ € C and A € R. One way to fix A is to impose
a compatibility condition with a given supplementary real structure.
This would impose that 2 is purely imaginary (cf. [7]). We then de-
note by 2%e this choice, which is the only one among the 2 + A\1d,
A € R, to be purely imaginary. With respect to the symmetric nonde-
generate bilinear form deduced from the Hermitian metric and the real
structure, 27 is skewsymmetric, hence its characteristic polynomial
satisfies Susy(H,h’%,QHe,t)(—T) = (_1)dimH SUSY(HJL’%,QHert)(T).

For any z € X, the Hermitian vector space (H,,h;) decomposes
with respect to the eigenvalues of 2,. However, these eigenvalues, which
are real, may vary with z.

Example 2.7 (Polarized variation of complex Hodge structure). If
% =0 (or = cld), then, according to (2.5) and (2.5)T, D(2) =0
and, working in a local h-orthonormal frame where 2 is diagonal, this
implies that the eigenvalues of 2 are constant. Let HP denote the
eigen subbundle corresponding to the eigenvalue p € R. Then D'H? C
Q% ® H?, D"HP C Q% ® H? and (2.4) implies 0H? C Q% ® H?~*. The
decreasing filtration (indexed by R) defined by FPH = @, H? is
stable by YD”, hence induces a filtration F*V of the holomorphic bundle
V := Ker VD" by holomorphic subbundles, which satisfies YV FPV C
FP='V. Moreover, if we choose a sign €, € {£1} in such a way that, for
any p € R, 541 = —&p, the nondegenerate sesquilinear form & defined
by the properties that the decomposition ®p€R H? is k-orthogonal and
kigr = ephige, is VD-flat. We thus recover the standard notion of a
polarized variation of complex Hodge structure of weight 0, if we accept
filtrations indexed by real numbers, and if we set HP = HP»"P.
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2.b. Variations of twistor structures

The notion of an integrable variation of twistor structures (and,
more generally, that of an integrable twistor 2-module) is a convenient
way to handle integrable harmonic Higgs bundles. It was introduced in
[27]. The presentation given here follows [16], and the reader can also
refer to [11, Chap. 3].

Notation. If X is a complex manifold, X will denote the conjugate
manifold (with structure sheaf &), and Xg will denote the underlying
real-analytic or C*°-manifold. We will denote by P! the Riemann sphere,
covered by the two affine charts ~ A! with coordinate z and 1/z, and
by p: X x P! — X the projection.

The coordinate z being fixed, we denote by S the circle |z| = 1,
by € an open neighbourhood of the closed disc Ag := {|z| < 1} and
by Qo an open neighbourhood of the closed disc Ay, := {|z| > 1}.

We will denote by o : P! — P! the anti-holomorphic involution
z — —1/2Z. We assume that Qs = 0(Q). We denote by ¢ : P — P?
the holomorphic involution z — —z. .

It will be convenient to use the notation 2 for X x Q¢ and Z~ for
X x Q. Let us introduce the notion of twistor conjugation. Let ¢
be a holomorphic vector bundle on Z. Then " is a holomorphic
bundle on the conjugate manifold 2 := X x Q and ¢*#" is a holo-
morphic bundle on Z =X x Qoo (i.e., is an anti-holomorphic family of
holomorphic bundles on Q). We will set " := o* ",

By a C'*° family of holomorphic vector bundles on P! parametrized
by Xgr we will mean the data of a triple (', #°",%s) consisting of
holomorphic vector bundle 5/, 5" on X x Qy and a nondegenerate
Ox xs Qos Oxyg-linear morphism

. / Z 00, an
%S . c}ﬁs ®ﬁs %S > %XRXS7

where €y 75 is the sheaf of C™ functions on Xg x S which are real
analytic with respect to z € S. The nondegeneracy condition means
that s defines a C°*"-gluing between the dual S#' of 5’ and 5#",
giving rise to a €y, Jpi-locally free sheaf of finite rank that we denote
by .

Variations of twistor structures. By a C®° variation of twistor struc-
ture on X we mean the data of a triple (¢, 5", %s) defining a C™
family of holomorphic bundles on P! as above, such that each of the
holomorphic bundles ¢, #" is equipped with a relative holomorphic
connection

1
(2.8) Vv %,(”) - > Qi’{/no QOxxa, c%pl(”)
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which has a pole along z = 0 and is integrable. Moreover, the pairing
%s has to be compatible (in the usual sense) with the connections, i.e.,

d'Cs(m',m") = €s(Vm/,m") and d'Gs(m/,m") = Cs(m/,Vm").
Let us note that we can define V as

V:#" 0L

>
Z /oo Qog K.

If we regard %s as a C°*"-linear isomorphism
. (pOo0,an "o 00, an v
(2'9) %s : Cg){nxs ®67xs %Ts CgXRxS ®6bxxs jfis )

the compatibility with V means that s is compatible with the connec-
tion d’ + V on the left-hand side and VY + d” on the right-hand side,
where d’,d” are the standard differentials with respect to X only.

« The adjoint (¢, 5#",%s)! is defined as (%”,jf’,%g), with
€3 (m",m') :=Cs(m',m").

With respect to (2.9), we can write ‘KST =G5,

«If k € 1Z, the Tate twist (k) is defined by (k) =
(', ", (i272F)Es).

We say that the variation is

« Hermitian if " = ' and €s is “Hermitian”, i.e., €4 = €5,

« pure of weight 0 if the restriction to each z € X defines a trivial
holomorphic bundle on P!,

« polarized and pure of weight 0 if it is pure of weight 0, Her-
mitian, and the Hermitian form on the bundle H := p, 4 is
positive definite, i.e., is a Hermitian metric.

Lemma 2.10 (C. Simpson [27]). We have an equivalence between
variations of polarized pure twistor structures of weight 0 and harmonic
Higgs bundles, by taking P'-global sections.

Remark 2.11. There is a natural notion of a (polarized) vari-
ation of twistor structure of weight w € Z (cf. [27]). We say that
T = (', 7#",%s) is pure of weight w if the restriction to each x € X
defines a bundle isomorphic to Opi(w)?. A Hermitian duality is an
isomorphism . = (8',8") : 7 — Z1(—w). We say that . is a polar-
ization if the Tate twisted object (7, .%)(w/2) is polarized (cf. [16] for
details, see also [11]).
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2.c. Integrable variations of twistor structures

A variation of twistor structure (', 7", %s) is integrable if the
relative connection V on ', 5" comes from an absolute connection
also denoted by V, which has Poincaré rank one (cf. [16, Chap.7]). In
other words, zV should be an integrable meromorphic z-connection on
S, #" with a logarithmic pole along 2 = 0. We also ask for a sup-
plementary compatibility property of the absolute connection with the
pairing in the following way:

‘ z%%(m’,ﬁ) = Gs(2Vo,m',m") — Gs(m',zVs,m").

[Here, we regard %, 5 as the sheaf of germs along X x S of C*° func-
tions which are holomorphic with respect to z; when considering it as
the sheaf of C*° functions which are real analytic with respect to z € S,
one should replace the operator zgaz with sz’—z — E%.]

Lemma 2.10 can be extended to integrable variations:

Lemma 2.12 (C. Hertling {7], cf. also [16, Cor. 7.2.6]). The equiv-
alence of Lemma 2.10 specializes to an equivalence between integrable
variations of pure polarized twistor structures of weight 0 and integrable
harmonic Higgs bundles, i.e., harmonic Higgs bundles equipped with en-
domorphisms % , 2 satisfying (2.1)—(2.5).

Let us indicate one direction of the correspondence. Starting
from (H,h,0,%,2), we construct an integrable variation of Hermit-
ian twistor structures (', 5", %s) by setting # = p*H on %,
with the d”-operator Dy, := D" + 26" and we set #’ = Ker D}, =
", The relative connection (2.8) is defined as the restriction of
D), := D'+ 270 to #’. The absolute connection is obtained by
adding to the relative connection V the connection in the z-variable
d,+ (272U — 2712 — Y T)dz (cf. [7] or [16, §7.2.c] for more details).

Remark 2.13. Given an integrable variation of twistor structure
T = (H', 5" ,%s), we will say that the structure obtained by changing
the action of 22V, on #” to 22Vs, — Az and that on J#” to 22V, — Az
(X € C) is equivalent to the previous one. If the variation of twistor struc-
ture is Hermitian, the equivalent structure is still compatible with . iff
A€eR.

Remark 2.14 (Tate twist and integrability). The effect of the Tate
twist (k) (with £ € $Z) on the action of 220, is a shift between ¢
and " by 2kz. In this article, it will be convenient to choose a nonsym-
metric shift, namely, the action on S#” is unchanged, and that on s#’
is changed into 220, — 2kz.
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Remark 2.15. In the previous correspondence, we identify the bun-
dle E on X with the restriction 5" /25¢". Then % is induced by the
action of 22Vp,. If % = 0 (the case of a variation of Hodge structure),
then 5#” is stable by 2Vy,, and the characteristic polynomial of 2 is
equal to that of the restriction of —~2Vy, to E.

2.d. The ‘new supersymmetric index’

We assume in this paragraph that X is a point, so we work with
twistor structures.

Definition 2.16 (cf. [1] and [7]). Let F = (', 5#”,%s) be an
integrable polarized pure twistor structure of weight 0 with polarization
& = (Id,Id). Let %, 2 be the associated endomorphisms of the corre-
sponding finite dimensional complex vector space with positive definite
Hermitian form. The endomorphism 2 is called the ‘new supersym-
metric index’ attached to 7. We denote by Susy & (T') its characteristic
polynomial.

It will be convenient to extend to any weight the previous definition.

Definition 2.17. Let = (J¢',5¢",%s) be an integrable pure
twistor structure of weight w with polarization .. We set

Susy o (T") := Susy g (4 /2)(T)-
Similarly, we define the spectral polynomials:

Definition 2.18. Let .J = (', #",%s) be an integrable twistor
structure (not necessarily pure or polarized). We define (if the “no
ramification” condition is fulfilled, for SP°):

SP%(T) = SP%.(T) and SP%(T) = SP%. (T).

According to Definition 2.17 and to Remark 2.14, we have, for any
ke 3z,

(2.19)  Susygyuy =Susyy, SPZy) =SPZ, SPYq) =SPY.

2.e. Twistor Z-modules

In order to allow singularities in variations of twistor structure, we
have introduced in [16] the notion of polarizable twistor Z-module (see
also [11] for an extension of this notion with parabolic weights). We will
briefly recall this notion.

We first introduce the sheaf Z 4 of differential operators, locally
isomorphic to Og (0z,,...,0z,), by setting 0, = 20,,. A left Za-
module is nothing else but a &g -module with a flat z-connection.
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The category %- Triples(X) consists of triples (.4, .# " %s), where
M, M" are left Z a-modules and Fs : //l{s ®os M" — Dbx,ys/s is

a Za|s ®o\s Za|s linear morphism with values in the sheaf Dbx, «s/s
of distributions on X x S which are continuous with respect to z € S.
There is a natural notion of morphism. This category has Tate twists by
£7Z, and a notion of adjunction (cf. [16, §1.6]). Restricting .#" or .#"
to z = 1 gives left Zx-modules, while restricting them to z = 0 gives
Ox-modules with a Higgs field.
, There is a notion of direct image, hence of de Rham cohomology
when taking the direct image by the constant map.
Supplementary properties are introduced in order to define the no-

tion of polarized twistor Z-module of some weight. We will not recall
them here and refer to [16] for further details.

2.f. Specialization and integrability (the tame case)

In the remaining part of Section 2, we assume that X is a disc
with coordinate  and we denote by j : X* < X the inclusion of the
punctured disc X ~ {0} in X.

Let 7 = (', #",%s) be aregular twistor Z-module of weight w
on X polarized by & = (S’ = (—1)¥S", 8") (cf. [16]) with only singular-
ity at x = 0, so that J]x~ is a polarized variation of twistor structures of
weight w, which has a tame behaviour near the singularity, in the sense
of [25] (cf. [16, 11]).

For any 8 € C with Re € (—1,0], the nearby cycle functor! ¥#?
sends such a triple J to a triple W57 € %-Triples({0}), equipped
with a morphism 4 : V8T € Z-Triples({0}) — WAT(-1) €
Z- Triples({0}). If M, denotes the monodromy filtration, then the
graded object gr’M WA.7 | equipped with the morphism gr™, .4, is a
graded Lefschetz twistor Z-module of weight w and type e = —1.
Moreover, ¥2.% induces, by grading, a polarization of this object.

We have a similar result for vanishing cycles: (grM ¢,;*7, gr™M, A)
is an object of MLT® (X, w;—1) and ¢, 1% induces, by grading, a po-
larization (this follows from [16, Cor. 4.1.17]). ‘

Let us moreover assume that (7,.¥) is integrable (cf. [16, Chap. 7],
where one should modify (7.1.2) by using the operator z8/0z — 20 /0%
(standard conjugation) on the left-hand side, as (7.1.2) was mistakenly
written there for distributions which are holomorphic with respect to z),
so that, in particular, the corresponding variation is integrable on X*.

n [16] it is defined with the increasing convention for the V-filtration. Here
we use the decreasing one. The correspondence is ¥4 = ¥, , with 8 = —a — 1.
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Then from loc. cit. we know that W5.# # 0 only if 3 is real, so that
B % z = Bz above, there is no difference between the notations ¥%.7
and 957 of loc. cit., and moreover, usmg the induced action of 224,
VA7 remains 1ntegrable Going then to gr)! VA7 we get an integrable
polarlzed twistor structure of weight w + £ (cf. [16 Lemma 7.3.8]). The
action of 220, on gr WA.#" is the actlon naturally induced by 229,
on #". A similar result holds for gr)! ¢-1.7.

2.g. Specialization and integrability (the wild case)

We keep the notation of §2.f, but we will consider the more gen-
eral case of a polarized wild twistor P-module 7 = (A', #",%s) of
weight w with polarization .#, for which we refer to [20, 12]. We will also
assume that the “no ramification” condition is fulfilled, that is, we as-
sume that [20, Prop. 4.5.4] holds with ramification index g equal to one.
Therefore, setting A4 = .#' or A", we have a formal decomposition

(DEC") M DZ) © E4F), g exT'ClrTY.

Let us also notice that, When we restrict to z = 0, the decomposition
holds at the level of ./ /2.4 (cf. [20, Rem. 4.5.5]).

For any ¢ € 7 C[z~!] and any 8 € C with Re 3 € (—1,0], we set
Wf’ﬁjzz \Ifg(jlv@) &~%/%). We can then define the objects \I!f’ﬁ/j/,
equipped with 4" : W%8 T - \Ilfﬁ:?(—l). The condition of being a
polarized wild twistor Z-module of weight w at © = 0 means that, for
all ¢, as above, (grM 0P T g™, #), equipped with the naturally
induced sesquilinear duality, is a graded Lefschetz twistor structure of
weight w, in the sense of [16, §2 l.e]. As a consequence, if ¢ = 0, the
vanishing cycles (gr™M ¢%—1.7, g™, ¥) are of the same kind.

For any ¢ € z71C[z1], the exponentlally twisted Z g [z~ ]-module
M ® E~%/* remains integrable, if M is 80, hence, according to [16
Prop. 7.3.1], so are the modules ¥¢5.4 (3 € (—1,0]) and ¢%~1.7.
Moreover, the formal module M is clearly integrable.

Lemma 2.20. Each Z entering in the decomposition (DEC") is
integrable.

Proof. Firstly, the irregular part .//xﬁr of AN (i.e., corresponding
in (DEC") to the sum over the nonzero ;) remains integrable, as, near

any z, € (o, it can be realized as the intersection [, V(’;O)JZﬁ\, where

V'™ is the V-filtration of 4" (defined near z,), and we know that
each step of the V-filtration is integrable ([16, Prop. 7.4.1}).
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Let ip € I be such that ¢;, = 0. We claim that ,@;’(\) is integrable:
because of the previous remark applied to M@ EF* for i # io,
(220, + ¢i) %}, —hence 220, %;,—has no component on the regular part
of A" @ &7%/%, that is, on %); thus %] is stable by 2%8,. The same
result applies to any é-’\, by globally twisting M by &~ %i/% hence the

?

lemma. Q.E.D.

By assumption on /Z(V, each %71’\ is strictly specializable. Applying
[16, Lemma 7.3.7], we find that U¢A.# # 0= B € R.

§3. Specialization of the new supersymmetric index

In this section, X denotes a disc with coordinate z and j denotes
the inclusion of the punctured disc X* := X ~ {0} into X.

3.a. The tame case

In this subsection, we keep the setting of §2.f and we assume that
(Z,.5) is integrable.

Theorem 3.1. We have the following correspondence between Susy
polynomials:

(3.1)(%) lim Susy , (T) = 11 Hsusyngg(T).
Be(~1,0]1£20

Remark 3.2. If J]x+ consists of a polarized variation of Hodge
structures of weight w, then Susy 5 (T') is constant (cf. Lemma 5.4 be-
low). In general, however, the eigenvalues of 2, do vary (see the example
in [7, (7.115)] for instance).

Proof of Theorem 3.1. For simplicity, we will assume w = 0 (this
can be obtained by a Tate twist (w/2)) and that £’ = .#" and & =
(Id,1d). Let us fix 8 € (—1,0]. By assumption, (grtM W7 4) is a
graded Lefschetz twistor structure which is polarized and of weight 0
(cf. [16, §2.1.¢]). It thus corresponds to a Hermitian vector space H
with a SLy(R)-action (cf. [16, Rem. 2.1.15]), hence a graded vector space
H = @, H, with a nilpotent endomorphism of degree —2. We denote the
standard action of the generators of slo(R) by X, Y, H, so that H, is the
eigenspace of H for the eigenvalue £. Then, for £ > 0, a basis e , , of the

primitive subspace PH, defines a global frame of Pf M o=PgMUP g,
which is orthonormal for Péﬁ %s (the sesquilinear form of P grM ¥5.7)
and in which the matrix of 229, takes the form P%3 , — P25 2 — p%ﬁ;r 222
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We can assume that P23, is diagonal, being selfadjoint with respect to
the positive definite Hermitian form on P H,.

The construction done in [16, §5.4.c] extends this family of frames
first to a frame e ,, (£ €N, k=0,...,£) of gr}t 5, WA.# and then to
a local frame eg of VP.# (the local construction near each z, done in
loc. cit. is not needed here as the V-filtration is globally defined with
respect to z, cf. [16, Rem. 3.3.6(2)]).

The action of 228, leaves the V-filtration invariant (cf. [16,
Prop. 7.3.1]), as well as the lift of the M-filtration on each V' (cf. [16,
Lemma 7.3.8]). Therefore, the matrix B of 220, in the frame e, which
is holomorphic, is “triangular” up to powers of x with respect to M, V*°,
i.e., can be written as

(33) B=0@ [Bﬁ,ﬁ,o ® Bsp<1® D Bﬂ’,ﬂ]
E pr6

with Bgs g/ holomorphic if ' < 8, and where the index j in Bg g ; de-
notes the weight with respect to H, so that [H, Bg g ;] = jBgg,;. More-
over, the matrix Bg g can be written as %ﬁ,ﬁ,o—gﬁ,g,oz—%gﬁyozz, and
is block-diagonal with respect to the previous decomposition (¢, k) of the
frame eg, and the diagonal (£, k)-block of 2 a0 is P2+ (—k+£/2)1d.
In particular, the characteristic polynomial of @gc(_q o Zs,8,0 is the
right-hand side in (3.1)(x).

Let us denote by A(z,z) the matrix Pge(_1) |z|PL(x)1/2, with
L(z) = |log|z|?|. By [16, Lemma 5.4.7],% there exists on X* x Qg
(up to shrinking X and g, as defined in §1.d) a matrix S(z,z) with
limy—0 S(z, 2z) = 0 uniformly with respect to z, such that the frame

e:=e- Az, 2) " (Id+S(z, 2))

is an orthonormal frame for %. The matrix of 229, in this frame will
enable us to compute the left-hand side in the theorem.
This matrix is equal to

(Id+S)"*ABA~'(Id +S) + (Id +8) "1 A2%0,[A~1(Id +5)).

The second term is a multiple of 22 and will not contribute to 2.
Let us note that the block (ABA™)a 5 (8" # ) is equal to

(3.4) |2|% ~PL(2)"/2 By gL(z) /2,

?In loc. cit., the matrix A is multiplied by e~*%; this is in fact not needed
in the argument.
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and tends to 0 when z — 0 (since, when 8’ < 8 and 3,8 € (-1,0],
Bg g/ is locally bounded and 1+ 8" — 8 > 0). Then so does its
conjugate by Id +S5.

A similar reasoning can be done for AgBj, ,g,g_lAgl, which gives a
decay at least like L(x)~'/? when z — 0.

Now, AﬁBﬂ’ﬁ’OAlgl = Bg g, and the coefficient of —z is 2g g0,
which is thus equal to lim,_,o 2,. This gives the conclusion. Q.E.D.

3.b. The wild case

We now consider the setting of §2.g. We then have the following
generalization of Theorem 3.1:

Theorem 3.5. Let 7 = (M', . H#",%s) be a wild twistor Z-module
of weight w polarized by .7, satisfying the “no ramification” condition.
We have the following correspondence between Susy polynomials:

(3.5)(x) ;11% Susy 5 (T') = H H H Susy,.m w8 o (T).

pex~1C[z—1] B€(—1,0] £20

Proof. As in the proof of Theorem 3.1, we will assume w = 0,
M = A" and ¥ = (Id,Id). We will make an extensive use of
[20, §85.2&5.4]. As in the tame case, we start with a frame ef, 5,
of PPP 4 .= PgrM WP 4 which is orthonormal for P$?%s, for any
@, 8,£. The matrix of 220, in this frame takes the form Y p8,6 —

D, 8,02 — w]/; s, ,2%. The constructions of loc. cit. produce a frame € of

/Z/T x+ which is orthonormal with respect to %s (cf. [20, Cor. 5.4.3]), and
we wish to compute the matrix of 220, in this frame. Let us recall the
steps going from e to €.

(1) We first lift, exactly as in the tame case, each of the frames eJ, 8
to a frame (€,, 3)p of /. Arguing as in the tame case, the matrix B
of 228, in the frame € takes the form GBZ Bm, where B“ decomposes
as in (3.3). As remarked in §2.g (after (DEC")), we can assume that,
when restricted to z = 0, the frame €|, is a frame of M /z/// and
is compatible with the corresponding (-decomposition, so Bu (z,0) is
convergent.

(2) We then work locally with respect to z, and in small sectors
in the variable . Let w : Y — X be the real oriented blow up of X
at the origin, with S' = 771(0), and let us set # =Y X Q. Let us
denote by o the sheaf of C'°° functions on % which are holomorphic
with respect to z and holomorphic on X™* x Qg. We then lift the frame
€ to a Ay ¢, .,-frame, for any &, € S* and 2, € Qo, and we get frames
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“g(for20) — (“’e&i"’z"))i. We can assume that, when restricted to z = 0,
the frame “’el(f":’g) comes from a frame of .# /z.# compatible with the
-decomposition. The matrix “Bé:%) of 229, satisfies the following
properties (according to [20, Lemma 5.2.6]):

(a) if 4,7 € I are distinct, the term "’Bffc"z") is infinitely flat
along S x Qg in a neighbourhood of (£,, z,) and, for z, = 0,
“B{%%(2,0) = 0,

(b) for any i € I, the term “"Bgf"’z") has an asymptotic expansion
equal to B;; when z — 0 near the direction &,, uniformly with
respect to z € nb(z,) and, for z, = 0, ‘Z’Bi(f"’o) (z,0) does not
depend on &, and is holomorphic with respect to z (it takes
the form (3.3) at z = 0).

It is then clear (after the tame case) that the limit, when  — 0in the
neighbourhood of the direction &, and z € nb(z,), of the characteristic
polynomial of the coefficient of —z in “B(ée:%°) ig equal to the RHS
in (3.5)(%).

(3) We now define the local untwisted C™ frame g(¢°%0) = “g(£0:20) .
A7Y(z,z), where A = @D, A;; and each A;; is as in the tame case. Let
“B(ée:%0) be the matrix of 228, in this frame. The non-diagonal blocks
°°Bi(§°’z°) for ¢ # j remain infinitely flat when z — 0 in the direction &,,
as A and A~! have moderate growth. Moreover, the z-constant term
“B0) (z,0) of “B2:0)(z, 2) still satisfies “B&0)(z,0);; = 0 if i # 7,
as A is diagonal with respect to the @-decomposition. Moreover, as
in the tame case, ~ B0 (z,0);(z,0) has a limit when z — 0. Then
the same argument as in the tame case shows that the limit of the
characteristic polynomial of the coefficient of —z in “B(e:%°) is the same
as for “B(éo:?o)  hence is equal to the RHS in (3.5)(x).

(4) We globalize the construction, by using a partition of unity
with respect to &, and by using the argument of [16, Lemma 5.4.6]
(cf. [20, Lemma 5.2.11]), to get a frame e. The base change from any
gléor%0) to e takes the form Id+R(0%°)(z,z), with R(&%) satisfying
lim, o L(x)? R(>*2) = 0 uniformly with respect to z € nb(z,), for some
§ > 0. We also note that we can achieve R(¢>9(x,0) = 0 in the base
[(E":’g) is-already globally defined with respect to &,
and so does the frame é:!(f;’g); moreover, the argument of [16, Lemma
5.4.6] gives a contribution equal to Id at z, = 0 for the base change.
Therefore, the conclusion of (3) holds for the matrix "B of 228, in the

frame €.

change, as the frame “e
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(5) Now, the base change from € to € given by [20, Prop. 5.4.1 and
(5.3.2)] takes the form

E=¢-(Id+S'(z,2)) 1 (d +Up(x)) " diag(e”® 1d),

where S’(z,z) is continuous and holomorphic with respect to z on
X* x nb({z < 1}), and satisfies S'(z,0) = 0, and Up(z) is continuous
with respect to z € X, Up(0) = 0, and Up is diagonal with respect to
the ¢-decomposition. As we are only interested in the coefficient of —z
in the matrix “B of 220, in the frame €, and as the matrix of the base
change is holomorphic with respect to z, it is enough to consider the
corresponding coefficients in the conjugate matrix

diag(e=** 1d)(Id +Up (z))(Id +8'(z, 2)) - “B(z, 2)
-(Id +8'(z, 2)) " (Ad +Uy(x)) ! diag(e*# Id).

Let us set B(z,2) = “BO(z) — 2"BM(2) + --- and S'(z,2) =
28'M(z) + ---. On the one hand, we know that ~B©)(z) is diagonal
with respect to the ¢-decomposition and has a limit when z — 0, and
the limit when z — 0 of the characteristic polynomial of “B() is the
RHS in (3.5)(x).

On the other hand, S’ defines a continuous map X — Maty(L%(S)),
and, as such, S’(0) = 0 (cf. [20, Prop. 5.4.1]). Therefore, the (Fourier)
coefficient S'()(z) is a continuous function of z and has limit 0 when
z — 0. We thus have

(Id +Uo(2))(Id +8'(z, 2)) - "B - (Id+8"(z, 2)) " 1d +Up(z)) ="
= (Id +Up(z)) "B (Id +Us(z)) !
— 2 (IJd+Up(2)) ("BW + [BO, 'O (Id +Up(z)) ™2 + - --

As the z-constant term above is diagonal with respect to the -
decomposition, it commutes with diag(e*#i1d) and therefore is not
altered by the conjugation by this matrix. It follows that the coeflicient
of —z in B is

(Id +Uo(z)) ("BY + "B, 8'M]) (1d + U (2)) ~*.

As lim,_o["B©, §'(M] = 0, the limit, when 2 — 0, of its characteristic
polynomial (that is, the LHS in (3.5)(x)), is thus equal to the limit, when
x — 0, of the characteristic polynomial of “B()(z), which we know to
be the RHS in (3.5)(x).

Q.E.D.
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§4. A review on exponential twist and Fourier—Laplace trans-
form

In this section, we review some results of [19]. The base manifold X
will be P! with its two affine charts having coordinates t and t'. We will
denote by £ the corresponding manifold 2 as in the notation of §2.b.

4.a. De Rham cohomology with exponential twist for
twistor Z-modules

Although we do not gain much by simply attaching a polarized vari-
ation of twistor structure to a polarized variation of Hodge structure, the
advantage is clearer when we apply an exponential twist and integrate.

De Rham_cohomology with exzponential twist. Let M be a Zpi-
module and M = M(*00). The exponentially twisted de Rham co-
homology is the hypercohomology on P! of the complex

—t ~ V—dt 5
DRIM® &™) ={0 — M ——— M — 0},
that we denote Hpyg (P, M®E™?). If we assume M to be Zp1-holonomic,
then M := I'(P!, M) is a holonomic C[t](d;)-module and the previous
hypercohomology is the cohomology of the complex

_‘?t__l_,M_.)()

(4.1) 0— M
and has cohomology in degree one only, this cohomology being a finite
dimensional C-vector space. Its dimension is computed in [10, Prop. 1.5,
p- 79]. If M has a regular singularity at infinity, this dimension is equal
to the sum (over the singular points at finite distance) of the dimension
of vanishing cycles of DR M.

Ezxponential twist of a twistor Z-module. 'We will use the notation
of §2.b. Let .# be a left Zz:-module (£ = P! x Qy). We denote by
M the localized module Rp1(x00) @ ,, M. We set E7HZ = O g1 (x00)
with z-connection zd — dt. The exponentially twisted R 1-module £
is &~t/* ®6 41 (x00) M equipped with its natural z-connection.

It is useful to introduce the category %- Triples(P!), whose objects
(M', ", %s) consist of Z z1(+00)-modules with a pairing taking values
in the sheaf of distributions on (P! \ {c0}) x S which have moderate
growth at {oco} x S (i.e., which can be extended as distributions on
P! x S) and depend continuously on z € S. L

If we remark that, for z € S, the C* function e /% g7t = g7t-t/z
has moderate growth as well as all its derivatives with respect to ¢,
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when t — oo, we can associate to an object I = (A, .#",%s) of
28- Triples(P!) the object £7 = (Ea', Eat", e**~t/*%z) of %- Triples(P!).

Let now 7 be a polarized twistor Z-module on P!. Then the previ-
ous construction can be refined to give an object £7 = (4, Eat", ¥€s)
of #- Triples(P'). The regularization F%s of e**~*/*%s is obtained by
specializing #%s, whose construction is recalled in §4.b, at 7 = 1. Let a
be the constant map on P!. The following is proved in [15] (and its
erratum): ’

Theorem 4.2 (Exponentially twisted Hodge theorem). If (7 ,.%)
is a polarized reqular twistor P-module of weight w on P, then s#°a FT
is a polarized twistor structure of weight w.

4.b. - Fourier-Laplace transform (cf. [16, Appendix])

We continue to work with the projective line P! equipped with its
two charts having coordinates ¢t and ', and we consider another copy of
it, denoted by P!, having coordinates 7,7/. We will set co = {t' = 0}
and o0 = {7/ = 0}. We consider the diagram

P! x P!

(4.3) / \ﬁ

P! P!,

Let .# be a good Zgi-module (in the sense of [16, §l.1.c]). We
set T# = pt.H(+x30) @ E7H/% (cf. [16, §A.2]). We know (cf. [16,
Prop. A.2.7)) that % is a good % (x35)-module, where Z = P! x P!
and & = Z x Q. Taking direct images, py Z# is a coherent % 51 (+00)-
module.

Let F = (A", M4",%s) be an object of Z-Triples(P'), such that
M, M" are Bpr-good. Then 77 is defined as (F#', 74", 7%s), where
TH',ZH" are as above and F€5 is defined in [16, p. 196] (note that the
twist for %s needs some care). The fibre at 7 = 1 (suitably defined
as nearby cycles) of %7 is identified with £. The Fourier-Laplace
transform 7 of 7 is defined as the direct image of 7 by p.

Let us assume that 7 is integrable. Then (cf. [16, Rems. A.2.9 &
A.2.15]), 77 is also integrable.

Lemma 4.4. The action of 220, on F# = pt. i (+%) © &7/
satisfies, for any local section of A,

(220, + 18, )(m @ &V/%) = (220,m) @ £/~
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Proof. This directly follows from the definition of the actions

(cf. [16, A.2.2 & A.2.3)). Q.E.D.
Let us also notice that one gets a similar relation with the coordi-
nate 7' by using the relation 70, = —70;.

4.c. Fourier—Laplace transformation of twistor Z-modules

Let (7,.%) be a polarized regular twistor Z-module of weight w
(in the sense of [16] or [11]) on P!. The Fourier-Laplace transform
(9 S ) is an object of the same kind on the analytic affine line A with
coordinate 7, after [15] and [18]. Moreover, it is smooth on the punctured
line Al \. {7 = 0}, and its restriction at 7 = 1 is naturally identified with
I 0(1+F9 .

In [18, Cor. 5.20 & Prop. 5.23], we also show an “inverse stationary
phase formula” computing the nearby and vanishing cycles of FTatt=0
in terms of the nearby cycles at ¢/ =0 of 7.

Let us moreover assume that (7,.%) is integrable. Recall that a
denotes the constant map P! — pt. The basic comparison result [18,
Cor. 5.20 and Prop.5.23], together with Lemma 4.4, gives (cf. §2.f for
the notation):

Proposition 4.5. We have natural isomorphisms of integrable po-
larized pure twistor structures of weight w+£ (£ € Z, 8 € (—1,0) for
the first line):

(gt \P’Gﬁ 228, + B2) ~ (gr)! \Ilgﬂ,zzaz),

(4'5)(*) —1 2 M ,0 2
(g1 o7 ﬂ,z 0. —z) ~ (gr,” ¥y T ,2°0;)

and we also have
(4.5) (%) PeM 10T, 220,) ~ (#°a, T, 2%0,).

In Appendix A (Theorem A.1), we show that the Fourier-Laplace
transform 7 on Al naturally extends as a wild twistor Z-module (in the
sense of [20], cf. also [12]) near 5 € P! and we relate the correspond-
ing nearby cycles with the vanishing cycles of J at its critical points
(“stationary phase formula”):

Corollary 4.6 (of Theorem A.1, (A.11) and (A.12)). Foranyc e C,
we have natural isomorphisms of integrable polarized pure twistor struc-
tures of weight w+ £ (£ € Z, B € (—1,0) for the first line):

(e} WP T 220, — (B+1)2) = (gn)' W}, T, 2°0.),

(46)(*) e/T'0 5 2 M -1 2
(et O T 220, — 2) ~ (g} ¢1, T, 220, — 2).
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§5. Twistor structures and Hodge structures

In this section, we make explicit the functor Tw which associates to
any polarized complex Hodge structure (resp. variation of Hodge struc-
ture, resp. polarized complex mixed Hodge structure) an integrable po-
larized twistor structure (resp. ...). In this section, Y will denote a com-
plex manifold, X will denote a disc with coordinate z and X* will denote
the punctured disc X ~ {0}.

5.a. The integrable variation attached to a polarizable
variation of Hodge structures

Let (V,YV) be a holomorphic vector bundle with an integrable holo-
morphic connection on a complex manifold Y. Let us assume that
(V, V) underlies a polarized variation of Hodge structures of weight w.
The C*°-bundle H associated to V comes equipped with a flat C°° con-
nection D = V<7 4- d” and a decomposition H = ®pHPY P indexed by
integers. There is a D-flat sesquilinear pairing & on H such that the
decomposition is k-orthogonal, and the sesquilinear pairing A such that
the decomposition is h-orthogonal and h = i~*(—1)Pk on HP¥7P ig
Hermitian positive definite. As usual, we set FPV =D, H"*™".

For any j € 1Z, the Tate twist is defined as

(V,Y,F*V, k,w)(5) == (V, V7, F*V,i" ¥k, w — 27).

We denote by 5’ = RV, 7" = RpV, the Rees modules asso-
ciated to F[w]*V := F¥**V and F*V, that is:

H' = @ FlulPz™ = @2 "H" 2],
D r

(5-1) H' =@FP2 P =@z "H"™ "[2].
Y4 T

We denote by Rpk the map naturally induced by k on Rp(w)V ®c|z,2-1]

RrV with values in €°[z, z~1]. We associate to this variation the triple

T =(Rpj)V, RFV, Rrk). Weset & =(5",8") with §', 58" : A" — ',

S" is the multiplication by z* and S’ by (—z)¥.

The integrable connection V is defined as YV + d.. We note that
Rp/V and Rp#V are stable by 2Vj, (reflecting the fact that % = 0).
In particular, the action of 220, enables one to recover the grading of
RrV, hence the filtration F'*V. The following is easy:

Lemma 5.2. The object
Tw(V, F*V,k,w) := (7 = (RppV, RFV, Rrk), #, 2%0,)

is an integrable polarized variation of twistor structures of weight w.
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Remark 5.3. According to the convention made in Remark 2.14,
the functor T'w is compatible with Tate twist (that is, [Tw(V, F*V, k, w)](5)
is canonically isomorphic to Tw[(V, F*V, k,w)(j)].

Lemma 5.4. Let (7,.%) be the integrable polarized twistor struc-
ture of weight w attached to a polarized Hodge structure of weight w (in
particular, the “no ramification” condition is fulfilled). Then

SP%(T) = Susy &(T) = SP%(T).

Proof. According to (2.19) one can assume w = 0. On the one
hand, = 0, so 2 is conjugate to the opposite of the residue at z =0
of 9, acting on RpV. As 20, acts as —pId on FPz~P we find that
Susy #(T) = [I,(T — p)¥=&F.

We now have G = Clz, 27| ®c H and VPG = 2z PC[z ! ®c H (for
the V-filtration at z = 00). Then (5.1) shows that (using the notation in
Definition 1.2) v, = dim HP»~P = dim gr%,, hence the first equality. On
the other hand, the V-filtration at z = 0 is given by VPG = 2PC[z]®c H
and G has a regular singularity at z = 0, so there is no nontrivial
exponential term in the decomposition (1.6). We then have (using the
notation in Definition 1.7) pop, = dim H PP, hence the second equality.

Q.E.D.

5.b. Integrable twistor structure attached to a polarized
complex mixed Hodge structure
Let V,, be a complex vector space equipped with a filtration F*V,,
a nilpotent endomorphism N, and a sesquilinear pairing k,. We denote
by M, the monodromy filtration of V,, associated to N,. Let w € Z.
We say (cf. [24, 9]) that (V,, F*V,, ko, N,) is a polarized complex mixed
Hodge structure of weight w if the following conditions are fulfilled: '
(1) ko is (—1)¥-Hermitian and N, is skew-adjoint with respect to
(2) N,F*V, C F*~1V,,
(3) if we set FPV, = (Fw-?P+1V,)L (which also satisfies NFPV, C
FP=1V,), then (F*V,, F*V,,M.) is a mixed Hodge structure of
weight w,
(4) the object (P gr}! V,, F*P gr)' V,,, ko(s, N+)) is a polarized com-
plex Hodge structure of weight w + £.
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Remark 5.5 (cf. [22, Lemma 2.8]). If (V,, F*V,, k., N,) is a polar-
ized complex mixed Hodge structure of weight w, then there exists an
increasing filtration E.V, which is opposite to F*V, (i.e., V, decomposes
as @, FP N F, ») and which satisfies N, F.V, F._lV (in particular,
F.V, is stable by N,). Indeed, V, is bigraded by Deligne’s 174 (cf. [3])
with

P9 = (FP A Wpye) N (Fq N Wotg + 2551 Fa-in Wp+q—j—1)v

where W := My 4, and F?V, = @, D, 174, We can set ﬁpVo =
@p’<p 69q 1P

Definition 5.6. For a polarized complex mixed Hodge struc-
ture (V,, F*, ko, N,) of weight w, we set Tw(V,, F*, k,,No) =
(7,5, N, 2%9,) with

(1) 7 = (RppwVo, RFVs, Rrk,) (an object of Z- Triples(pt)),

(2) & = ((—2)*,2") (a sesquilinear duality of J of weight w),

(3) N :T — F(—1) defined as A = (2N,, —2zN,),

(4) 220, is the natural derivation on R Fiw) Vo, RFVo.

Lemma 5.7. If (V,, F*, ko, N,) is a polarized complex mized Hodge
structure of weight w, the monodromy filtration of zN, on RpV,
is such that gry(ZN") RrpV, = Rp gry(N”VL. Moreover, the object
(grM 7, et .#) is a graded Lefschetz twistor structure of weight w
(cf. [16, §2.1.e]). Last, we have a canonical isomorphism of objects of
weight w+£ (£>0):

Per) Tw(V,, F*, ko, No) — Tw[P grd(V,, F*, ko, N,)].

Proof. Let us indicate the proof for the last part. We can reduce
to weight 0 by twisting by w/2, and also to . = (Id,1d). The left-hand
side in the formula is by definition (cf. [16, Example 2.1.14]) given by

= ((2No)‘RrP g1y Vo, ReP g1y Vo, Rrko), 72 = ((2No)", (—2N,)%),

and the action of 228, is the natural one. According to Lemma 5.2, the
right-hand side is given by

= (RF[Z]Pgr?/I %7RFP grg/l ‘/OJRFkO(%Ng'))a %: ((_Z)Zyzf),

and the action of 228, is the natural one.. If one notices that
RpqP gry? V, = 2°RpP gri! V,, then one checks that ¢ := ((—N,)¢,1d) :
(e, ) — (T4, &) is an isomorphism. Q.E.D.
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Let us note that, by definition, for (J,.%, 4, 220,) as in Def-
inition 5.6, the object (grM 7,grM.7 g™, 4#,2%0,) is a polarized
graded Lefschetz twistor structure of weight w and type —1 (cf. [16,
§2.1.e]). For such an object, there is a reduction to weight 0 and
type 0 (cf. loc. cit.) giving rise to a polarized (graded Lefschetz) twistor
structure of weight 0 (and type 0). This structure remains integrable
and therefore comes equipped with a Susy polynomial. We denote it by

SUSY 1y (v, F* ko, No) (T)-

Lemma 5.8. Let (V,,F* k,,N,) be a polarized complex mized
Hodge structure of weight w. Then

SPEy v, 7o ks Ny (T) = SUSYrg (v, 7o oo o) (1) = SPhgv, 7o ko iy (1)

Proof. Each gl F comes equipped with a polarization .% defined
from that on the various Pgr% J by using the Lefschetz decomposi-
tion, making it a polarized twistor structure of weight w + £ (cf. [16,
Rem. 2.1.15]), and one has

SUSYTW(VO,F’,kO,ND)(T) = H Susygry Tw(Vo,F‘,ko,No)(T)'
LEZ

On the other hand, because each gr) RpV, is a free C[z]-module (being
equal to Rp grg/[ V,) we have such a product formula for SP? and SP*,
according to Remark 1.9. Then Lemma 5.4 applies. Q.E.D.

Definition 5.9 (Vanishing cycles, cf. [9, Prop.2.1.3]). Con-
sider a polarized complex mixed Hodge structure (V,, F*, k,,N,) of
weight w. The vanishing cycle polarized complex mixed Hodge struc-
ture (170, F* k,, ﬁo) of weight w + 1 attached to it is defined as follow:

‘70 =N,V,, ﬁ‘ = NoF.a EO(NOJ«‘,W) = ko(maN—OZ)’ NU = NOtVD'

5.c. Extension of Tw through a singularity

Let (V,VV) be a holomorphic bundle with connection on the punc-
tured disc X* underlying a polarized variation of Hodge structure of
weight w. We are in the situation considered in §5.a. According to
Lemma 5.2, ( = (RFpV, RrV, Rpk), ) is a polarized variation of
twistor structures of weight w on X*. We will indicate how to extend it
as a polarized twistor Z-module on X. _

According to Schmid [24], the &x [z~!]-submodule M of 5,V con-
sisting of sections whose h-norm has moderate growth at the origin is
locally free and the connection V extends to it with regular singularities.
We denote by M the Zx-submodule of M generated by local sections v
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whose h-norm is bounded by C|z|~1*¢ for some C > 0 and ¢ > 0. It is
known that M is a regular holonomic Zx-module, which coincides with
the minimal extension of M, so DRM is the intermediate extension (or
intersection complex) of the local system Ker V7 on X*. Moreover, the
filtration F*V extends to a filtration of M by holomorphic locally free
Ox-modules, and then to a filtration of M, which is a good filtration
when we consider it as an increasing filtration. Lastly, the flat sesquilin-
ear form k defined from the metric h extends as a Px Q¢ Dx-linear
pairing k : M ®c M — Dbx.
We can apply the Rees construction Rp to these data.

Proposition 5.10 (cf. [19, §3.g]). The object
(7 = (RrjwM, REM, Rrk), %)

s an integrable polarized twistor P-module of weight w on X

Definition 5.11. We will call such an object a polarized complex
Hodge 2-module of weight w.

5.d. Nearby and vanishing cycles

We will set FPVAM := FPM N VAM. In particular, for any &k > 0,
zFFPVAM C FPVA+EM. :

Assume that (M, F*M) underlies a polarized complex Hodge Z-
module (cf. Definition 5.11), then (cf. [21, §3.2] and [19, §3.d])

VB>—-1,YpeZ FPVAM = j*FPNVPM
(5.12) M= @Frtiv>Tim,

Jj=0
In particular, as a consequence of the first line of (5.12), we have
(5.13) VB> —-1,Yp, Vk >0, zFFPVAM = FPVA+EM.

Moreover, 20, : gre. M — grf, M strictly shifts the filtration F'* by —1.
It is an isomorphism if 8 # 0.
As a consequence of the results recalled in §2.f, we find:

Corollary 5.14. If (F,.) is a polarized complex Hodge 2-module
of weight w then, for any B € (—1,0],
(2)  This equality is compatible with the natural actions of 228, on
both terms, and therefore 28, acts on V8T .
(3) (Y8Z,¥B7 , 4,2%0,) is a polarized complex mized Hodge
structure of weight w.
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Let us notice that 5.14(3) can be regarded as a reformulation of The-
orem (6.16) in [24], and is similar to Corollary 1 of [21] on a punctured
disc. Notice also that, compared to [21], the choice of the behaviour of
weights by taking nearby/vanishing cycles is not the same here and in
[16], as we are working with complex Hodge structures, and we can use
Tate twists by half-integers (see also the vanishing cycles below, which
also has to be compared with Corollary 1 of [21]).

For vanishing cycles (cf. [16, §3.6.b]) we find:

Corollary 5.15. For (7, as above, (7T, 95 S, N, 220, —2)
s a polarized complex mized Hodge structure of weight w.

Sketch of proof. According to [16, Cor.4.1.17] (and to an easy
consequence of §4.2 of loc. cit. for the polarization), the object
(¢71T(~1/2),¢;1#(~1/2),.#) is isomorphic to the image of
N T — T(-1) and gives rise, after grading with respect to
the monodromy filtration, to a graded Lefschetz twistor structure of
weight w + 1. In order that the morphism %an of [16, Lemma 3.6.21]
is compatible with the action of zd, (giving the grading), we should
equip ¢; 17 (—~1/2) with the shifted naturally induced action 20, — 1.
Then (¢;1T(-1/2),¢7; % (—1/2),.#) is isomorphic to Tw of the
vanishing cycles (as defined in 5.9) of the polarized complex mixed
Hodge structure Tw™ (V87 WA 4. Applying a Tate twist (1/2)
we find, according to our convention on Tate twist (Remark 2.14),
that (¢;1 T, ¢ S, N, 220, — 2) is (isomorphic to Tw of) a polarized
complex mixed Hodge structure of weight w. Q.E.D.

5.e. Exponential twist of an integrable twistor Z-module

Starting from a variation of polarized Hodge structures (V, F*V) on
U ¢ Al, Proposition 5.10 produces a complex Hodge Z-module I =
((Rp[w]M, ReM, Rpk), 5’) Localizing away from oo and taking global
sections produces a filtered C[t]{d;)-module (M, F*M) with a pairing
taking values in tempered distributions on A! depending continuously
onz€S.

As integrability is preserved by direct images (cf. [16, Prop. 7.1.4]),
we can apply Theorem 4.2 together with Proposition 5.10:

Corollary 5.16. If (7,.%) is a polarized complex Hodge P-module
of weight w on P, then #%a,tT is an integrable polarized twistor
structure of weight w.

Although we did not give the precise definition of the direct image
functor a4 (cf. [16, §1.6.d] for more details), one can notice that, ac-
cording to the strictness property of polarized twistor Z-modules, the
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restriction to z = 1 commutes with taking a4. In other words, the vector
space corresponding to the polarized pure twistor structure #%a.. £ is
the cokernel of 8; —1: M — M.

Another expression of the exponentially twisted de Rham cohomol-
ogy. One can give a more explicit expression for s#%a, 7 considered
in Corollary 5.16. We will recall it below. For simplicity, we will assume
that w = 0.

We can extend the correspondence of §1.c to objects with a sesquilin-
ear pairing as follows. Let (M, F*M) be as in §1.c and let us moreover
assume that M comes equipped with a C[t](d;) ®c C[t](d;)-linear pairing
k:M®cM — #'(A') with values in the Schwartz space of temperate
distributions on Al. To (M, F*M, k) we associate a Hermitian twistor
structure (', 5, 6s):

. we set S = G(()F)’am (the analytization of the object defined
by (1.11));

. composing k with the Fourier transform of temperate distri-
butions with kernel eﬁ_”%dt A dt induces, by restriction to
S = {|7]| = 1} = {]z] = 1}, a sesquilinear pairing %s :

e}ﬁls ®0|S jﬁ,s — ﬁfs
Moreover, this twistor structure is integrable (by using the action of
2 (F)
t=2%0, onGy ).

Lemma 5.17 (cf. [19, Lemma 2.1 and §2.c]). The twistor structure
(', ', 6s) is the exponentially twisted de Rham cohomology of the

object (RpM, Rp M, Rpk) of %- Triples(P!).

In the case where (M, F* M, k) comes from a polarized variation of
Hodge structures of weight 0 on U as explained at the beginning of this
paragraph, we get from Corollary 5.16:

Corollary 5.18 (cf. [19, Cor.3.15]). Under the previous as-
sumption, the integrable twistor structure (', 7', €s) associated to
(M, F*M, k) is pure of weight 0 and polarized.

Remark 5.19. The previous description makes it clear how to com-
pute the conjugacy class of the endomorphism % of §2.a: indeed, this is
the conjugacy class of the restriction of 228, to S#'/2.#". It is therefore
equal to the conjugacy class of ¢ acting on GE)F) / zGéF)‘ Its eigenvalues
are the singular points of M (at finite distance). Therefore, in general, it
is not a multiple of Id, and the integrable twistor structure (¢, 5#”, €s)
does not correspond in the usual way to a polarized Hodge structure.
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5.f. Fourier—Laplace transformation of variations of polar-
ized Hodge structures

We will make explicit the behaviour of the functor Tw under Laplace
transform. We will work with the associated C[t]{d;)-modules.

Let (M, F*M) be a regular holonomic C[t]{d;)-module with good
filtration. Let us consider the Rees module Rrp M, which is a CJt, 2](8;)-
module, and its Laplace transform Rz M, which is a Clr, 2](0,)-module.
Recall that ITF]\\Z[ = RpM as a C[z]-module and that 7 acts as 8; and 3,
as —t. Notice that m can be obtained as the cokernel of

Clr] ®c ReM =T, Clr] @c ReM

by the map Y-, -, 7% ® mg — 3,5, 0¢my, and the natural action of
Clr, 2](8,), as well as the action of 228,, are obtained by conjugating
the usual actions by &~"/%. In particular, the action of z8, on Em]\\l
coming from the identification with Rp M and which gives the grading
of this Rees module corresponds to the action denoted 23, ®1 in Lemma,
4.4, and the natural action of 228, is that given by this lemma.

Let GE,F) be the Brieskorn lattice of the filtration F*M (cf. (1.11)),
that we will denote by Gy for short.

We will be mainly concerned with m loe = C[r, 771, 2] ®¢r, 2]
RpM. Recall (cf. [19, Lemma 2.1]) that RpMy,, ~ Clr,771] &c¢ G,
where, on the right-hand side, the C[r, 771, 2](d,)-action is given as
follows:

. the C[r, 7~ !]-structure is the natural one,
. the action of z is by 7 ® 9;" !,
. the action of 3, isby 2+ (8, ®1) - 1 ® .

Recall that G := M [0; '] is a C[d;,0; Y]-module with connection.
In the following we will use the notation 8 = 8;, ¢ = 8;! (with the
identification above, 8’ = 27/ with 7/ = 771). We will denote by V' G the
V-filtration of G at 0; = 0 and we will set 1, G := gry, G. Similarly, we

denote by VG the V-filtration at ;' = 0 and we set wg,”G = gr?/e/ G.

For any ¢ € C, we also set ¢§/9/’7G =gy (G® £=</%). As G has a
regular singularity at 8 = 0, each VG is C[f]-free of finite type, while,
as the singularity at 6’ = 0 is usually irregular, each V,/G has finite type
over C[0'](8'Dy:). If the G{* are the regular formal modules entering in
the decomposition analogous to (1.6) for G*, and if 4 is the index ¢ such
that ¢; = 0, then gry,, G = g1y, GJ;.
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Lemma 5.20. The C[r,771, 2)(8;)-module R/F]\\/Iloc is strictly spe-
cializable at 7 = 0 and T = co. The V-filtration is given by

(*)oo V‘r’ymloc =@ ™" ®(Gon Vg'ymkG) ~ RamnV, G,
kEZ

(*)o VIRpMo = @ 7 ® (GoNVy Q) ~ Rgm VG
kEZ

Proof. Let us denote by UY 1?1:]\\/_/ loc the right-hand side in (*)e.
Let us set Gy = #~*Gy C G. This is an increasing filtration of G
by C[#']-submodules. Let us fix v € R. Then, for k¥ <« 0, we have
GrNV,G = {0} and, for k > 0, GxNV,'G = Gi—1 ﬁV97G+Gkﬂ%7+1G
(the last equality expresses that v4(Go) = 0 for a <« 0, cf. [17]). If we
consider G, N V,'G as a filtration of the C[f]-module V,;’G compatible
with the filtration deg, C[f] by the degree in 8, these two properties are
equivalent to saying that G, N V,'G is a good filtration, or equivalently
that the Rees module R Vy'G i= @jez(Gr NV G)z* is a RaegC[H]-
module of finite type. According to the definition of the action of z
above, we identify RqesC[0] with C[r, z] and Rg ) Vy' G with UY m locs
hence the finiteness of U7 m loc Over C[r, z].

Moreover, we get in the same way an identification of ngUT R/F]\\/[ loc
with the Rees module Rgr) gry, G. In particular it is C[z]-free of finite
rank, hence the strictness property.

As tV)G C 87V, G = V) 'G, we have

13, (1® [Go NV, G)) = -7 @t[GoN V)G C T®[Go NV, 1G],

showing that UY R/F]\\/l loc 18 stable by 70,. Similarly, one shows that,
for N > 0, (70, — ’yz)NUleoc C U.?‘YI?FJ\\/IIOC. This gives (*)oo
(cf. [16, Lemma 3.3.4]).

For (%)o, the argument is similar. It is easy to check that
R V)G is a Cl7’, 2](7'3,/)-module, and that 7'8,, — vz is nilpotent
on Rg gr?,el G, which has no C[z]-torsion by definition. The only new
point is to check that Rg (s V, G has finite type over C[7’, z](7'3./).

Let ko be such that Gy, C V,JG and, for any k > ko, let ex be a
finite system of C[#']-generators of G N V,G. Recalling that ¢’ acts as
27’ on R Vg G, we find that, for any ki > ko, @pep, (G NV, G)
is contained in the Cl[7’, z]-submodule of Rgr) VG generated by the
zjej,j:ko,...,kl. )

On the other hand, the formula for the action of 8, given above
implies that 7/8, acts on Rgm VG by 2+ (6'9 + k) on 2*(GxNV,)G).
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We will show that, for k; large enough and any k > ki, 28(Gx N V,]G)
is contained in the C[r’, z](7'8,/)-module generated by 2zt e, .
We claim that
(a) There exists k; such that, for any k > ki,

GiN VTG = 0'85:(Go N VTG + Go NV TG

Note that this is equivalent to G411 NVyG = 6’0y (Gr NV, G) +
Gy NV, G. If k = ki, such an equality implies 2*+1(Gg, 41 N V,/G) C
(Clr', 2] + C[r', 2]7'8,/)2*1 e, . Tterating the argument gives the desired
inclusion.

We will prove Claim (a) by working at the formal level. As it is
clearly true away from 6’ = 0, it is enough to prove (a)”, that is, (a)
after tensoring with C[6’].

Firstly, by uniqueness of the V) -filtration, we have (V,JG)" =
Vg (G™). Moreover, (VoG N Go)" = (VJG)* NG{ in G [indeed, use
that this is clearly true for + instead of N and that C[#'] is flat over
C[¢’], and apply this to (V/G + Go)"/G§ = (Vi G)*/ (V)G 0 Go)N].
Therefore, it is enough to prove (a)".

Notice now that Claim (a) is equivalent to

(b) There exists k; such that, for any k > &y,
028 Vo TF(Go /0 Go) — VTG /0 Go)

is onto.

Similarly, (a)” is equivalent to (b)". Recall that G* decomposes as
Gl ®GY, and that V)G and G decompose correspondingly. It is thus
enough to prove (b)" on each term. On the regular part, there exists k
such that V1% (Glog0/0'Gleg o) = 0 (because VJMGgg has finite type
over C[#']), hence both terms are 0 in (b)". On the purely irregular
part, V,JG{, = G}, for any v, and 28} does not have the eigenvalue 0

rr rr
on G}, o/0'GY, o (cf. Remark 5.19), hence it is onto. Q.E.D.

irr,0

For the remaining of this section, we assume that (M, F'* M) is also
equipped with a sesquilinear pairing k such-that (M, F*M, k) comes
from a polarized complex Hodge Z-module on P*.

Corollary 5.21. []sc(_q o [1eez SP;?A \I,ER/F]\VI(T) = SPOGOSF) (T).

Proof. For 8 € (—1,0], let G(F )"wg G be the filtration naturally

induced by GF):*. As a consequence of the identification VT'Y}Z;]\\/[ loc
with Rgm V' G, we get, for any 8 € (—1,0],

(5.22) UPReM = RowmtG.
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Note however that the natural action of 228, on the left-hand side differs
by 70, from the action on the right-hand side defined from the z-grading
(cf. Lemma 4.4). Nevertheless, by our assumption on (M, F*M), the
graded pieces of \Ilfm with respect to the monodromy filtration are
strict (i.e., C[z]-free), and at the level of grM, 220, on the left-hand side
differs by Bz from the action on the right-hand side. Because of freeness
and uniqueness of the monodromy filtration, we have

g WERpM = R gry! ¢ G

On the other hand, as the action of d, has a simple pole on RG<F>¢5 G
we can apply Remark 1.9 to get

ez SPng v2 R M w A= geIIZS Ry eryt ’/’ﬁG(T) - SP%octF)wa(T)'
Recall that, if we set
vianag®e
VPG nGFEw 4 VG N GE)pHL

Vgp = dim

we have, as in the proof of Lemma 5.8, and by Definition 1.2 and (1.3),

SPY el (T) =@ —p)sr

Rory e it
and SPem (T) = II II@-sB-p)er.
Be(—1,0] pEZ
This gives the desired equality. Q.E.D.

We now consider the specialization at 8; * = 0. Let G} be the
formal microlocalized module attached to M at —¢;. Let p; be such
that FP*M generates M as a Z-module near —c;, let Ggf)pi) be the
saturation by 6 := 9; ! of the image of FPM in G? (by tensoring with
formal microlocal differential operators of order zero), and let us set

G(F) G’ P G( ¥ ’), which is independent of the generating index p;
(cf §1.c). Then 1t is known (cf. e. g [14, Prop.V.3.6]) that the Levelt—
Turrittin decomposition (1.6) for GO ) has components = GE,FO). We

have Gy, G = Gy "G,
Corollary 5.23. For any i,

I TISP g (D) = SPgen (7).

BE(—1,0] £€Z
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Proof. We will show the result for ¢; = 0. The same argument
applies for any ¢; after twisting by &~/  or &=°i/="_ We denote by ig
the index ¢ such that ¢;, = 0.

From (x)o we get, for any 8 € (—1,0],

U2PRrM = Ra 93P G = ch?qu, G,

and this equality is compatible with the action of 220, — '8,/ on the
left-hand side and that of 228, on the right-hand side (cf. Lemma 4.4).
By our assumption on (M, F*M), we know from Appendix A that the
graded pieces of \I!_ii,‘) / T/’ﬁR/FT/I with respect to the monodromy filtration
are strict (i.e., C[z]-free). The same property holds for the right-hand
side above, and going to the graded pieces, we find that the equality
holds with 220, action on the left-hand side shifted by —3z. Arguing as
for Corollary 5.21, we find

0 _ 0
ISPy wosmmm (@ = B) =SPL oy (-
2ez ‘0

Setting now

5 (F),
viahnah®

hio,8,p = dim ’
- vilap naDr +viay neldr
we have
? = — p)Hio.8,
SPchp)il)ngg‘o (T) = H(T p) 0:8,p
o pEZ
0 = — Hig,B,
and SPG%:‘,)O (T) H H(T + ﬂ p) 0.5,
Be(~1,0] pEZ
hence the result. QED.

86. Deligne’s filtration

In this section, we will be concerned with the first point considered in
the introduction. Let us consider the setting of §1.c, that is, a holonomic
C[t]{0¢)-module equipped with a good filtration F*M. Recall that M
denotes the associated Zp: (*00)-module with connection and M denotes
its minimal extension across co. We will now assume that M has only
regular singularities at finite distance and at infinity.

We will keep the notation of §1.c, but we will simply denote by Gy

the C[9;']-module GE,F) defined by (1.11). The spectral polynomial
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SPg, (T') is determined as soon as we determine the number v, (Go) for
any v € R.

In §6.c, we will define Deligne’s filtration Fp), (indexed by R) on
M ® €7, then on the corresponding de Rham complex, and then on its
hypercohomology. The main result of this section will be:

Theorem 6.1. Assume that (M, F*M) underlies a polarized com-

plex Hodge 9-module (cf. Definition 5.11). Then,

(1) the spectral sequence associated to the hypercohomology of the
filtered de Rham complex F} DR(M® &%) on P degenerates
at El 5y

(2) for any v € R, vy(Go) = dim H* (P*, gr};r; DR(M ® £7Y).

Let us remark that the Opi-coherent sheaf gry. (M ® &%) is sup-
ported at infinity if v & Z.

6.a. Laplace transform

We denote by P! the projective line with coordinates 6,8’ (that we
do not denote by 7,7’ as above at the moment) and by Al its chart with
coordinate 6. Recall that G = C[¢/, 0~ ]|®c[ Go (8" = 8; ' as above) is
equipped with a connection having a regular singularity at # = 0, defined
as the multiplication by —t. We denote by VG the corresponding V-
filtration, that we assume to be indexed by R (this assumption is implied
by the assumption in Theorem 6.1 that (M, F'* M) underlies a polarized
complex Hodge Z-module).

The exponentially twisted de Rham complex (4.1) is quasi-
isomorphic to

0—c-2=1. 6 .o
which is quasi—isdmorphic to
0— G o -1 G —0,
which in turn is quasi-isomorphic to
o7t —
0 — Gy —* Go — 0.

In other words, the hypercohomology Hiy (P!, M ® £7?) is identified
with the fibre at 8’ = 1 of the free C[#’]-module Gy.

The V-filtration VG enables one to define, in a natural way, a
filtration V*Hg (P, M ® £7%) by setting, for any vy € R,
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V'YH]%R(IPl,M ®ETH) =VV(Go/(0 —1)Go)
:= image [Go N Vy'G — Go/(8' — 1)Gy].

According to (1.3), we have
(6.2) v4(Go) = dim gr), Hpr (P, M ® £7%).

Example 6.3. Let us consider the case where M = C[t](0;)/(td; —
) for some a € (0,1). We regard M as corresponding to a variation of
Hodge structure V of type (0,0) on A \ {0} with filtration F*V given
by FOV =V and F'V = 0. Let V;°M denote the V-filtration of M at
t = 0. Then we set (cf. (5.12)) FOM = V7'M, F'M = 0 and, for
020, Ft*M =V M+ + V7'M =V> M.

Denoting by [] the class in M, we have [1] € V*M, and F'M =
C[t] - [0¢]- We also have M=G= C[0]{0s)/(Dg0 + &) which is free of
rank one over C[, 6=, and G\ = C[0="] - [6]. As [6] is in V; G, we

finally get
(F) 1 if v =—qa,
v+ (G, =
7(Go) {0 otherwise.

Let us consider the V-filtration V*RpM loc (cf. Lemma 5.20). No-
tice that, for any v € R, the multiplication by 7 — 2z is injective on
V”R/F]\\/[ loc- Indeed, let us use as in Lemma 5.20 the identification
V’VR/FJ\\J joc = RgumV, G. Then, the localization with respect to z
gives C[z,27'] ®c V,'G, where the action of 7 is induced by z ® ¢. In
particular, it is C[r, z, 27 !]-free and the multiplication by 7 — z is in-
jective on this module. Therefore, so is the multiplication by 7 — z
on the C[r,z]-submodule Ry V, G. We will compute its cokernel
V’le/F]\WIOC/(T - z)valov

Recall (cf. [5, Def. B.1]) that a V-solution to the Birkhoff problem
for Gy is a free C[f]-submodule G’° of G, which is stable by 89y, which
generates G over C[6,671], and such that, for any vy € R,

(6.4) GoNVyG =@ 01(Gon G NV Q).

Jjz0
(Each term in the sum, as well as Go N G’® and G N V,'G, is a finite
dimensional C-vector space, and the sum is finite, as G’QOV‘;’H'J G =0 for
J > 0; moreover, G" C VG for v < 0.) By definition of a solution to

Birkhoff’s problem, a C-basis Go N G’ is a C[#']-basis of Go; therefore,
the natural morphism Gy N G — Go/(8' — 1)Gy is an isomorphism.
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Lemma 6.5. If the Birkhoff problem for Go has a V-solution G'°,
then, for any v € R, VYRpM /(T —2)V"Rp M, is identified with the
Rees module of the filtration VYT HEp (PL, M ® £7%).

Proof. We note that ()o in Lemma 5.20 gives (as z =7 Q 0'):

V’Y}%/F]\\/Iloc/(lr - Z)V’YR/I"—'J\MIOC
—Prre [(Go AVEG) /(0" - 1)(Go N V;—’““G)] :
k

As G0 is a V-solution, the natural inclusion
0 —1)(GoNV,T'G) c [(0' — 1)Go] N (Go NV, G)

is an equality for any v € R: indeed, since Go = Jyez(Go N V;Y”KG), an
element in the RHS can be written both as a polynomial (6'—1) >~/ a; 97
with a; € GoNG®N V(]_Hj G for some fixed £ € Z, and as a polynomial
> >0 007 with b; € GonG" NV, G, according to (6.4); the assertion
follows by considering the term of highest degree with respect to 6’ and
by a straightforward induction. As a consequence,

(GoNV;G)/(6' = 1)(Con Ve @)

is equal to the image of GoNV,'G in Go/(0' —1)Gy for any . The result
follows. » Q.E.D.

The previous proof also shows that the morphism Go N V)G —
Go/(0 — 1)Go induces an isomorphism

GoNGPNV)G =5 VY (Go/(0' — 1)Go) = VTHpEr (P, M ® E7Y).
As a consequence of the lemma, for any g € (—1,0],
(6.6) VPRpMoo/(r — 2)VPRp Moo = Rysie Hhg (P, M® 7).

Lemma 6.7. If (M, F, M) underlies a polarizable complex Hodge 2-
module, then the Birkhoff problem for the Brieskorn lattice of (M, F,M)
has o V-solution.

Proof. We follow the argument of [22, Lemma 2.8]. According
to [5, Prop. B.3(1)], giving a V-solution to the Brieskorn problem for
G(()F) is equivalent to giving, for any 8 € (—1,0], a filtration of ¢g G
which is opposite to GF )”wg G and which is stable by the nilpotent
operator Ny induced by —(00s — 3). According to (5.22) and Corollary
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5.14(3), GF )"1&5 G is the Hodge filtration of a polarized complex mixed
Hodge structure for which the nilpotent endomorphism is a nonzero

multiple of Ny. Remark 5.5 gives then a convenient opposite filtration.
Q.E.D.

6.b. Deligne’s filtration on the exponentially twisted Zx-
module

In this subsection, we denote by X an open disc in C with a coordi-
nate x centered at its origin. Let M be a regular holonomic Zx-module
equipped with a good filtration F,M. We will make the following as-
sumptions:

(1) M has a singularity at £ = 0 at most and is the minimal
extension of its localized module M := €x[1/z] ®¢, M.

(2) The eigenvalues of the monodromy of the local system
Ker [(% Mixs = M, X*] have an absolute value equal to 1.
(Hence, the decreasing Kashiwara—Malgrange filtration V*M
of M at the origin is indexed by a finite set of real numbers
translated by Z.)

We denote by M ® £~1/% the Ox[1/x]-module M equipped with the
twisted connection V — d(1/z) (i.e., if e is the generator of the rank
one Ox[1/z]-module €71/ we have 0,(e ® m) = e ® ((0; + z~2)m)).
For any v € R, we denote by [v] the smallest integer > ~, so that
v — [v] € (—1,0]. Deligne’s filtration is defined for v € R by:

FRoM@e™/7) =3 o5 (FPTHFYI-Dint g e71/%).
k>0

(The usefulness of the shift by ™! will appear later.) From now on, we
will skip the term ®&~1/%, so we will write

FR M =" (85 + 372 kot F IRy =Py,
k=20

The sum above consists of a finite number of terms since, for 8 € (—1,0]
fixed, FTVAM = 0 for r > 0. Therefore, each Fgel.’IV[ is a locally free
Ox-module of finite rank. Moreover, we clearly have the transversality
property (8, + x’2)Fgelj\~/[ c FS;IJV[.

Let us show that the filtration is decreasing. Assume that +' :=
B8 +p =2v:=p8+p, with 3,8 € (~1,0] and p,p’ € Z. The inclusion
FEH - Fg;p is clear if 8/ > 3 (so p’ > p). It remains to consider the

Del
case where 8 < 8 and p’ > p+ 1 and it is enough to assume p’ = p + 1.
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Writing 1 = (0, + 7 2)z% — 8,22, we get, for k > 0,

(8 + 2~ 2) kg FPHIHRY O N € (9, + 572 g PRy 2y
+ (0 + 272k O, a PPN,

In the right-hand side, the first term is contained in Fg:{p as ' +2 = 5.
For the second one, we note that 8,zFPHI+kyE < Fprtkys’
g FPTEVB+1 50 the second term is also contained in Fpi?, as
B +1=06.

Example 6.8. Let us assume, as in [4], that (5.12) holds and that
4*F*M has only one jump at p =0, so j*F'M = 0 and j*F°M = j*M.
Then, for 8 € (—1,0] and p € Z,

-~ fo ifp>1
B+p — it ]
Fpa M= {xZP—lvﬁ ifp<o.

Indeed, if p = —1 for instance,
Fg;lﬁ( =0 +z Dz VP 4 27 VP = 23V,

as 220, + 1 is invertible on VM (as M has a regular singularity at
z =0, it is enough to check this on modules like Ox (9,)/{xdy — a)*).

6.c. Deligne’s filtration on the de Rham complex

We now consider the case where (M, F'*) is a filtered Z-module on
the projective line P'. We denote by ¢t a fixed affine coordinate on the
affine line A! = P! \ {oo}. We define the Deligne filtration on M ® £7¢,
with M := Gp (¥00)®e,, M, by the following formulas (for simplicity, we
identify M ® £t with the @p: (*00)-module M with twisted connection
V —dt):

« Away from oo, we set Fg;”J‘NJE = FPM for 8 € (—1,0], and
peZ,
. near 0o, we set z = 1/t and use the definition of §6.b.
The de Rham complex DR(JT/E ® €71 is filtered by setting, for each

v €R,
F DR(M®E™) = {0 — FJ_ (Mo~ — QL @FI- (MaE™) - 0},
a complex which is also written as

{0 Rt =9 0} @ R - 0},
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Example 6.9. Let us consider the case of Example 6.3. Using
the computation in Example 6.8, we find, on P! \ {t = 0} with the
coordinate t,

0 ifv>0,
FRaM®E™") =  Cl¢'}t~27[1] ify=-p, peN,
Clt-C@rtO[1] ify=-a—p, peN.

In particular, the complex gr};Dz DR(JV[ ® €7%) reduces to the complex
having only grp” (M ® €7*) in degree one, and we get 6.1(2) in that
case.

Theorem 6.1 is a consequence of the following proposition, together
with Lemma 6.7 and (6.2).

Proposition 6.10. If (M, F*) underlies a polarized complex Hodge

2-module on P!, then the filtered de Rham complex RT DR(JV[@)S_’E7 o)
is strict, that s, for any v € R, the natural morphism

H* (P!, F,, DR(M ® £7%)) — H*(P',DR(IM @ £~%))

is injective, with image V7 'H' (PL, DR(M ® £7%)) (when * = 1).

Proof. We assume for simplicity that RFpM underlies a polarized
Hodge Z-module of weight 0, with polarization (Id,Id), that we denote
T = (RFM, RpM, Rpk) = (A, #,C) (cf. [19]). Let us consider a
new copy of the affine line, that we denote by Al with coordinate T,
and let us denote by p : P! x Al — P! the projection. Let us set

7T = (T, ,7C) with

W =& ®p+./Z/v
and #C defined as in [18, §3]. If V*.# denotes the V-filtration along
t’ = 0, we have V,f/// = RFVtCBM for B > —1. The V-filtration of 4

along 7 = 0 is computed in [18]. In a chart near (¢ = oo, 7 = 0), setting
t' = 1/t, it is given by the formula (if 8 € (-1, 0])

VP = 85 (p*ReVETIM @ £77/7).
k>0

(There is also a formula for V,Y%# for any v € R, but it will be needed
here.) This can be rewritten as

VA = (18 20y + 7@t "3)F(Clr] ®c ' " RrVIM).
k>0
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Let us now consider the multiplication by 7 — 2. It is clearly injective
on 7/, hence on each V7. The cokernel is given by

VEZH (1 — VIS = (0 + 2R C| RV M
k>0

that is, for any 8 € (—1,0],

(6.11) VP |(r — 2)VEIH = Rypre (M@ YY),

Del

In a chart away from ¢ = co (and near 7 = 0), we have, for 38 € (—1,0],
Vi =,

and therefore (6.11) remains valid in this chart.

Let p: P! x Al — Al denote the projection. Then, according to [16,
Th. 3.3.15], [18, Prop. 4.1(ii) and Cor. 5.9] and [16, Th. 6.1.1], the filtered
complex by V"2 is strict, that is, S5, VEZH — TP, T4 is injective
for any j and 3, therefore 275, VP4 = 0 for any j # 0 and any 3, and
AP VEZY is identified with VE#p, T4 = VPRpM = VORpM,
(because § > —1).

We thus have an exact sequence

0= HBVEIUM == AP VI — HD Ry (M@ ET) = 0
which is identified with the exact sequence (cf. (6.6))
0— meloc -z, V,rﬂmloc — RVB+-H]13R<]P1,JV{ ® E_t) — 0.

The identification of the action of 229,, i.e., the grading with respect to
the filtrations involved, gives

Py Ry Mo et =H (P!, Rpgien DR(M ® &7%)).
Fixing the power of z shows therefore that, for any p € Z, the morphism
H' (P!, FSXPDRM @ £74)) — HY (P, DRIM ® £7%))
induces an isomorphism onto VAtP=1HL (P! M ® €71, as was to be

proved. Q.E.D.

Remark 6.12. It is possible to define the Deligne filtration as a
filtration on G and not only on its fibre at § = 1. For any v € R, one

sets
F3,G=C[0,07']- (GonV,)G) C G.
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One easily checks that Griffiths transversality holds for this filtration
(i.e., t- FJ,G C FJ'G). Moreover, the limit filtration when 6 — 0 is
the Hodge filtration on @ﬁe(—l,ol gr@a G, that is, for any 8 € (—1,0],

P, ey, G i= (F3,G NV G)/(FJ GV PG)
jumps at most at y =+ p, p € Z, and
FyiPerh G =Gray G = (G*NVSG)/(GP nV;7Pq),

where we recall that G? = 8’PGy. These properties are checked by using
a V-solution of the Birkhoff problem for Gy, as in Lemma 6.5.

§7. The new supersymmetric index and the spectrum

Let (Z,%) be a polarized complex Hodge Z-module of weight w
on P! (cf. Definition 5.11). Its exponentially twisted de Rham cohomol-
ogy ¥ 7 is an integrable polarized twistor structure of weight w,
according to Corollary 5.16, which is identified to the fibre (9\, 5/”\)1 of
the Fourier—Laplace transform (9\, 5/’\) at T =1

Recall (cf. Appendix B) that we have a rescaling action with respect
to 7 € C*, that we denote by uZ, on integrable twistor structures. Ap-

plying it to T, we get a family Susy“* ﬁ(T) of polynomials in 7" with
coeflicients depending on 7 € C*.

Theorem 7.1. If (F,.%) is a polarized complex Hodge Z-module
of weight w, then

}ii% Susyﬂiﬁ(T) = SP"/;I(T),
lim Susy,. = (T) = SP%.:(T).

Remark 7.2. It follows that the eigenvalues of the new supersym-
metric index of uj,?; interpolate, when 7 varies between 0 and oo, be-
tween the spectrum at oo, which gives, by exponentiating, the eigen-
values of the monodromy of the original variation of Hodge structure
around ¢t = oo, and the spectrum at 0, which gives, by exponentiating,
the eigenvalues of the monodromy of the original variation near the sin-
gular points at finite distance. In particular, in general, Susyui ﬁ(T) is
far from being constant with respect to . .

As we will indicate below, p 9; is nothing but the fibre 7. If w = 0,
9;—#0 is a variation of polarized pure twistor structure of weight 0, hence

corresponds to a flat bundle with harmonic metric h. The flat bundle
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is nothing else but G*" with its connection. Now, Susy 5 (T) is the
characteristic polynomial of the selfadjoint operator 2 acting on the
C*® bundle associated to G. Therefore, at each 7° € C*, the fibre G0
has a ﬁ—orthogonal decomposition indexed by the eigenvalues of 2, ..
This decomposition does not give rise to a filtration of G*" indexed
by a discrete set of R, however. On the other hand, Deligne’s filtration
introduced in Remark 6.12 is a Hodge-type filtration, but does not corre-
spond, in general, to the previous ‘Hodge’ decomposition. Nevertheless,
this difference disappears asymptotically when 7 — 0, according to the
theorem.

Example 7.3. Let f be a cohomologically tame function on an
smooth complex affine variety U as in Examples 1.4 and 1.8 and let Gy
be the corresponding Brieskorn lattice. In [19, Th. 4.10] we have defined
(following a conjecture of C.Hertling) a sesquilinear pairing C on Gy
and proved that ¢ := (G, Go, 6’) is a pure twistor structure of weight 0
polarized by (Id,Id). It is moreover integrable, and can be obtained as
the direct image by the constant map of the exponential twist of the
minimal extension of a suitable variation of Hodge structure (namely,
the intermediate direct image by f of &y, with a suitable Tate twist).

In such a case, there is a natural real structure coming from the real
structure on the cohomology H4™Y (U, f~1(t)) for a regular value t € C
of f, and we can define 2H°t as in Remark 2.6, whose eigenvalues are
symmetric with respect to 0. According to the symmetry, mentioned in
Examples 1.4 and 1.8, of the spectrum at the origin or at infinity with
respect to %dim U, Theorem 7.1 reads:

lim Susy,,s%(T) = SPE, (T — 3 dimU),

. H 0 .
Jim. Susy,,<g (T) = SPg, (T — 5 dimU).

Proof of Theorem 7.1. It will have three steps. -

Step 1. According to Proposition B.2 in the appendix, u*.9; is re-
garded as the fibre at 7 of the Fourier—Laplace transform FTof T , whose
definition is recalled in §4.b. ‘ -

Step 2. According to [19] (cf. §4.c), J is an integrable polarized
regular twistor Z-module of weight w on the analytic affine line with
coordinate 7, and according to Theorem A.1 of the appendix A, it is an
integrable wild twistor Z-module of weight w at 7 = oo (this could also
be deduced from [12]). We can therefore apply Theorem 3.1 at 7 = 0
and Theorem 3.5 at 7 = oo to compute the left-hand sides in Theorem
7.1.
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Step 3 for 7 — 0. From Corollary 5.14 applied to the right-hand
sides in (4.5)(x), we conclude from Lemma, 5.8 that the Susy polynomials
are equal to the corresponding SP*° polynomials. It follows that such a
property holds for the left-hand sides, as the shift by g is the same for
Susy and SP*°. By Corollary 5.16 and Lemma 5.8, #%a, .7 satisfies
Susy = SP°°, hence so does the left-hand side in (4.5)(xx). It follows

that (007, U0.%, 4, 228,) is Tw of a polarized complex mixed Hodge
structure of weight w, hence also satisfies Susy = SP*°. Therefore,

H H Susy m go 7(T) = H H SPng w2 7(T)

BE(—1,0]L€Z Be(—1,0)£€Z
= SP% e (T") after Corollary 5.21

= SP‘;"1 (T) Dby definition.
On the other hand, Theorem 3.1 gives
limSusy 5 (T) =[] J]Susygamee7(T).
BE(—1,0]€Z

Step 8 for T — oco. We argue similarly at 7 = co. We apply Corol-
laries 5.14 and 5.15 to the right-hand sides in (4.6)(*) and get, according
to Lemma 5.8, the equality between the Susy polynomial and the SP°
polynomial. This equality then also holds for the left-hand side, as the
same shift of —(8 + 1) applies to both. We conclude:

H H HSusy M\I”/* ﬁ§(T) H H HS OM\I,‘%/"' B§(T)

i Be(—1,0]£€Z i Be(—1,0]4€Z
= H Spo p 7 ( after Corollary 5.23
: 4,0

=SP%(T) by definition.

On the other hand, Theorem 3.5 gives
hm Susyg (T) = H H HSusy s/ 51T

i Be(—1,0]LEZ
Q.E.D.
§Appendix A. Stationary phase formula for polarized twistor
Z-modules

Let (7,%) be a polarized regular twistor Z-module of weight w
(in the sense of [16] or [11]) on P!. The Fourier-Laplace transform
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(9\, 5’3 is an object of the same kind on the analytic affine line Al with
coordinate 7, after [15] and [18]. The purpose of this appendix A is to
show that this Fourier-Laplace transform naturally extends as a wild
twistor 2-module (in the sense of [20], cf. also [12]) near o0 € P! and
to relate the corresponding nearby cycles with the vanishing cycles of
(7,.%) at its critical points (stationary phase formula). While the first
goal could directly be obtained from recent work of T. Mochizuki [12],
we follow here the method of [18] in order to get in the same way the
stationary phase formula. We will use the notation introduced in §2.b
and in §4.b.

Theorem A.1. Let (F,) be a polarized regular twistor Z-module
of weight w on P'. Then its Fourier-Laplace transform (7 ,.%) is a

polarized wild twistor Z-module of weight w on Pl and, for any c € C,
we have functorial isomorphisms in %- Triples(pt) compatible with the

polarizations induced by F and & respectively:

W PT M) = (V4o T, Mye) i Ref € (—1,0),
gMU P T MUl T if B e iRY,

() (UITOT, N) = ($7e T Hire)-

()

Remark A.2. In [18] and [16, Appendix], the distinction between
the two lines in the analogue of A.1(*) was mistakenly forgotten in the
corresponding statements (see Footnote 3 below).

Proof. According to the results of [15] and [18], it is enough to
prove the conditions on the wild specialization at 50, that is, (x) and (xx)
with possible ramification at 7/ = 0. We will denote by iy the inclusion
{0} — P'. We can reduce to the case w = 0 by Tate twist by (w/2),
and assume that . = (Id, Id), so 7= (Id,1d). The compatibility with
polarizations will then be clear from the proof.

As in [18, Prop. 4.1], we will denote by Dg the divisor 1-7 if § € iR*
and 1-(—i) if 8 € iR%, and Dg = 0 otherwise. For a %Z-module .4, the
Z-module A (Dg) is defined as usual as Oa,(Dp) ®aq, - We denote
the monodromy filtration of a nilpotent endomorphism by M,. Q.E.D.

Lemma A.3. Let .# be a coherent Zgp1-module which is strictly
specializable at t = 0. Then the % s (x0)-module Z# is strictly spe-
cializable along ™" = 0 and we have natural functorial isomorphisms of
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X g1 -modules with nilpotent endomorphism

) (U T 0 Nv) 2o 4 (W) M1y, Ny)  if Re B € (—1,0),
e UL, ~ o4 (er) T M (Dp) a,) if B € R,
(o) (ORI N) o g (67 M, Ny).

Recall (cf. [16, §3.6.b]) that ¢; *.# is also denoted 1; *.# (or s 0.4
if one uses the increasing notation), but later we will extend the corre-
spondence with sesquilinear pairings, where the distinction between ¢
and ¢ is important. Recall also (cf. [20]) that the notation \IJE’,ﬁ Z# has
the same meaning as lllf,‘% (as used on the right-hand side), but we
mean here that the possible exponential factor is zero, for later use.

Proof. We will consider the two charts (¢,7') and (¢/,7'). Let us
first start with the second one. Let (m;):cr be a finite set of Za1 (11 .,)-
generators of .#;: .,. Then, from the formulas (cf. [16, (A.2.5)])

m/tlTl ® E”t"'/z = 7'/57‘/ (m ® g—tT/z)
3u(m® E747/%) = (Bym) ® E71/* 47/ (7'8,)2(m @ E7V7/%),

we conclude that, in this chart, Z# is V% %-coherent (where the V-
filtration on Z is relative to 7/ = 0) and that it is strictly specializable
along 7’ = 0 with a constant V-filtration.

Let us now consider the chart (¢,7') and the corresponding formulas
[16, (A.2.4)]

Bu(m® E77/%) = [(8, — 1/7")m] ® €777,
67-1(m ® 8——t‘r/z) _ tm/7"2 ® E_tT/Z.

The proof is very similar to that of [18 Prop. 4.1]. It will be simpler to
work with the algebraic version of %%, that is, to consider the 1e projec-
tion p in the algebraic sense, so p+,/// (x30) = C[r', 71 &¢ M. More-
over, as we work in the (analytic) chart with coordinate ¢, there is no
difference between .# and .#. We will exhibit the V-filtration of %%
along 7/ = 0. As such a filtration is only locally defined with respect
to z, we fix z, and work with in some neighbourhood of z,. We will
forget z, in the notation of the V-filtration. For any b € R, let us set

Uty Zalz,rl k(vb-i-k% Qe t/z1’ ) - %{ /—1] ® 8_t/ZTI,
£20 keZ

where V*.# is the V-filtration (near z,) of .# along ¢t = 0. The following
properties are easily checked:
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« U2 is a decreasing filtration of Z# by &z [7'](7'8,)-modules.

. TUYSH = U4 (so 7' induces gty T - ex¥ ).

« From the strict specializability of .# (cf. [16, Def.3.3.8 &
Rem. 3.3.9(2)]) we get, for b € (—1,0] and k € N, V¢ # = t*vP o
and V-1-*F 7 = Z?;é BVl + VL. 1f we write, according
o [16, (A.2.4)],

U = 8 (S () (Vs @ 7T

£20 k20 o Z T/k(vb—l—k% ® 8—t/z7'/))
k>0

and, for k > 0,

T/k(vb—l—k% ® g—t/zr/) _ (7'/5t + 1)k(Vb_1,/ﬂ® e—t/zr’)
k—~1
+ 3 T8+ DIV @ e,

Jj=0

we find that UbZ# is Zg1[17'](7'3,)-coherent, and locally generated as
such by m; ® €7%*"" and /(n; ® £€7¥/*""), if m; (resp. n;) are local
O 51 (t3;)-generators of V.4 (resp. VP~1.4).

« If By(s) is the minimal polynomial of t3; on gré, .#, then, for any
local section m of VP4, as (t8,+7/0,/)(m®@ &1/ = (td,m) @ &~/
and as Jt(mE~Y*™) € U 4 we find By(7'3, —1)(mQE~/*T) €
U>*74 .

It follows from these properties that V?Z# := U"'9# is a good
candidate for being the V-filtration of Z#. It remains to check the strict
specializability, by computing the graded modules.

For any b € R, the map (where 7 is a new variable)

Ve [n) — U = Vo In
Z mpn® — Z 3 (my @ £7H/77)
p p

induces a mapping

-1
(A4) (gt ), tBe) — (exb 74,78, ~ 1) T— (g1t T, 7'8,),

~
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and we have a commutative diagram

grl M) — gt

(A.5) 5{ lff—l

gt ) ——r e

Moreover, if we identify in a natural way grl, .#[n] with i ;. grb, .#, this
map is a morphism of Z g1-modules. Q.E.D.

Lemma A.6. Ifb <0, (A.4) is an isomorphism of X g1 -modules.

Proof. If b €< 0, we assert that

UbTH = U2 + ) BV @ €7,

£>0

which implies that the morphism (A.4) is onto. Indeed, on the one hand,
using the formulas [16, (A.2.4)] recalled above and iterating the inclusion

Tl_l(Vb+1.ﬂ ® a—t/zr’) c 8,5(Vb+1ﬁ® 8—t/z7—’) _ (3tVb+1% ® E—t/u-’)
C Uy + (VP @ €717,

we get

YRt A @ ey C (VE @ €7 + UM
k>0

On the other hand, if b < 0, for any k > 1 we have V*~*.# = 8FVo.i +
V>=k 4 and

TRVE A @ e € (P8 + DRV @ E7HF) 1 UL

Notice then that, for j > 1, 8(VP./ ® &/*") c U4 and
I (VO @ EHTY c UM Cc U .

The morphism (A.4) is also injective: one remarks that, given local
sections n; of ., if 3, 7"n; @ €7/ > is a local section of U"%#,
then the dominant coefficient with respect to 7/~! belongs to V°.# (by
considering the dominant coefficient with respect to 7/~! in an expression
like ), 8P (m,®&/*7")); arguing as in [18, Proof of Prop. 4.1, §(ii)(6)],
one gets the injectivity. Q.E.D.
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At this point, we have proved the strict specializability of Z# along
7/ = 0. We now prove the existence of the isomorphisms (*) and (*x) of
Lemma A.3.

Let 3 be such that Re8 € (—1,0]. The morphism (A.4) induces,
near z,, a morphism (z'07+z/)f///, Ni) — (wfﬁ%, N,/). One can show
that these locally defined morphisms glue together. Setting £, (5) =
Re S — (Im 2,)(Im G8) (cf. [16, p. 17]), if £,,(B) < 0, it is an isomorphism
near z,, according to the Lemma A.6 with b = £, (5). Let us first show
that such remains the case if £, (8) = 0. In this case, by definition of
strict specializability (cf. [16, Def. 3.3.8(c)], we know that 8 : e —

f “# is an isomorphism near z,, so we conclude using (A.5).

Let us now assume that £,,(8) > 0 and let us choose k¥ € N such
that £, (8 — k) € (—1,0]. Near 2,, we get from (A.5) a commutative
diagram

o+ W) M —— 4L,

i0,+0F l lf"k

iyl —— T I

where the right vertical map is an isomorphism, by definition, and the
choice of k£ implies that the lower horizontal map is an isomorphism.
On the other hand, by the strict specializability of .# at ¢t = 0 (cf. [16,
Def. 3.3.8(1b) and Rem.3.3.9(2)]) and the choice of k, the map t* :
VF - P is an isomorphism, and 3¥¢F : VIR — PR
is equal to H;:& [(8 ~j)*z+ N|. We note that (8 —j) xz+ Ny is
invertible near z, unless (8 — j) * 2z, = 0. With the conditions z, € Ao,
B8#0,Re(8—7)<0,5=0,...,k—1, £, (8—7) > 0, this vanishing only
occurs if § =0, Ref=0and z, =1 if ImpB <0, 2z, = —¢ if Im B > 0.
Therefore, on the one hand, the natural morphism (A.4) induces

(A7) io+ V) My — VO TMA, if Ref € (~1,0).

On the other hand, if 8 € iR*, one checks similarly that, grading
first? by the monodromy filtration in order to kill Ny, (A.4) induces an
isomorphism

(A.8) do,+ gL wtﬁ///mo s etM P Il n, (— D).

Lastly, if 8 = 0, we consider the isomorphism

/
(A.9) i0,+¢f1///mo - lb;l‘%mo —I:" @bg/%m'

3This grading was forgotten in [18].
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Notice that, by definition, \Ilf,‘g}/l = wf,?//l . So, at this point,
we have obtained A.3(xx). In order to get A.3(x), it remains to com-
pare wf M p, With \Iltﬁ AM\p,- Arguing in a way similar to that of [18,
Lemma 4.18], we conclude that, for Re 3 € (—1,0], the natural inclusion
PP My — o’ A\, is an isomorphism. This gives A.3(x).

Finally, the functoriality of the isomorphisms A.3(x) and () is clear
from the construction.

Let I = (M', M#",%€s) be an object of %- Triples(P!), such that
M, M" are X z1-coherent and strictly specializable along t = 0. Then
7T is defined as (Z#', 24", %6s), where Z#', 74" are as above and
F%s is defined in [16, p. 196].

Lemma A.10. Let  be as above. Then the isomorphisms of
Lemma A.3 extend as isomorphisms

» (WOPTT Ne) g (WO T, A;)  if Ref € (—1,0),
gM U0l ~ iy (M UPT) if B eiR*,
(%) (WOLET  Np) ~ g, (71T, M)

Proof. The point is to prove the compatibility of the corresponding
sesquilinear pairings under A.3(x) and (xx), up to I'-factors that we will
analyse, as in [18, Proof of Prop. 5.8].

Let us fix 2z, € S and let us work in the neighbourhood of z,.
For B # 0 with Re8 € (—1,0], let us set « = -3 — 1 and b = £,_(0).
Let m’,m” be local section near (t = 0,2,) of V®.',V®.#" induc-
ing sections [m/], [m"] of 2.’ WP A" on grb, M’ g, M" (vecall that

f//qs = Wf%s, cf. [16, Lemma 3.4.2(2)]). We regard [m/'], [m"] as sec-
tions of i0,+1/1,’56 M ,i0,+¢f A" (degree 0 with respect to 7). Following
(A.4), they correspond to sections [7'~'m/ ® E~t/*7'] [+~ 1m" @ ~/*7']
of \IIE’,ﬁ ', \Ifg‘,ﬁ Z#". By definition, we have, for any C™ form (t) of
type (1,1) on P! with compact support in the chart ¢,

W27 %s(r'm' ® et/= ) I tm” @ &7Y*7)), )
= Ressmauz/z <‘%fs(m' ® &7 m! @ et
o AT PR grdr! A dT )

= Ress:a*z/z <<€S (mlym)a I)?(t, S, Z)<P>,
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where ¥ is C°° with compact support in @1, =1lnear 7 =0and =0
far from 7’ = 0, and Iy is defined for Res > 0 as in [16, §3.6.b] by

I)z(t, S, Z) = /ezf/?—t/z-r’!7_/|2(s—1)5<\(7_/)§%r_d7_, A =

The last equality above means that (6s(m’,m”), Ix(t, s, 2)¢) is holo-
morphic with respect to s for Res > 0 and extends as a meromorphic
function of s, of which we take the residue at s = axz/z.

One first proves, as in [16, Lemma 3.6.6] that (65 (m/,m"), I;(t, s, 2)¢)
has poles on sets s = vy % z/z (z € S) with Rey < Rea or v = a.
Moreover, only the first case occurs if ¢ vanishes along t = 0, and we can
thus assume that ¢ = gf;dt/\df near t = 0. As the residue at s = a*xz/z

does not depend on the such a ¢, we can assume @ = XQﬁdt A dE
with x = 1 near ¢ = 0. We will compare <<€S(m’,n7),Ig(t,s,z)X> and
(Gs(m' "), [¢]2 x?) before taking their residue.

If we denote by T the distribution x%s(m’ ,m’ }, and by & the

Fourier transform with kernel e”*~t7/# L dr A d7 (cf. [16, Rem. 3.6.17)),
these functions are respectively written as

/ﬁ'T(T, z)|7-|—2(s+1)55(7—)-2i7d7’/\d‘7= and /QT(T, z)fX(T,S,Z)gi—rdT/\d_f

with I (7, s, 2) := F ~1(|t|>*x) (this is analogous to (3.6.25) and (3.6.26)
in loc. cit.).

We note that (1 — X(7))FT(1,2) is C* with compact support, so
its inverse Fourier transform 7 is in the Schwartz class, and

/QT(T, z)IAX(T, $,2)(1— 5{(7’)){;(17’ AdT

reads [ nx|t[>*s=dt A df, so takes the form I'(s + 1)h(s, 2), where h is
entire with respect to s. Using the computation in [18, Lemma 5.14]
for T, (replacing ¢ there with 7 here) and in particular [18, (5.17)], we
finally find, if 8 # 0,

INl+ax*xz/2)

PN T
T(arz)s) os=ars/z (Bs(m!,m"), Ig(t, s, 2)x)

= Res;—arz/z <‘€s(m’,r-r7), |t|2sx>.

Let us write I'(1 + ax2/2)/T'(—a* 2/z) = pf as in [18, Lemma 5.5],
and D, = —Dg. Using (A.7) or (A.8) we find (grading only if 3 € iR*,
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that is, if D, # @)

(™). %' (D,), Y2, 20" (D,), ii*%s)
= ’L'(),_’_(gI‘I.VI)(\I/f%I, \Ilf‘%"a ch)

A.10(x) follows then from [18, Lemma, 5.6].

Arguing similarly for 8 = 0, we note that A.10(xx) is by definition
(cf. [16, (3.6.18) & Rem. 3.6.20]).

Arguing as in [18] by applying [16, §6.3], we get A.1(x) and (xx)
for ¢ = 0. It is then not difficult to check that replacing ¢ with ¢ + ¢
corresponds to twisting 7 by &€%%7 and to get (*) and (xx) for any
¢ € C in the same way. One checks that A.1(x) and (**) hold after
ramification by using [20, Rem. 2.3.3]. Q.E.D.

The integrable case. Let us now assume that (7, .%) is integrable.
We will describe the compatibility between the actions of 220, in The-
orem A.l. Recall that, with this assumption, the numbers 3 such that
\I!tﬂ Z # 0 are real, and thus so are the numbers § such that \Ilf T # 0.
In the computation above, we can set b = 3 and do not worry about the
local dependence with respect to z, (cf. [16, Chap. 7]).

The morphism (A.4) is compatible with the natural action of 229, on
i0,+ 8% . on the one hand, and the action of 228, — 70, on gr}/, | Z#
on the other hand (where the action of 228, comes from the natural
action of 228, on “#, cf. Lemma, 4.4). As we set § = b, we thus have,
for 8 <0,

(o WP, 220,) = (WO I, 220, — (B+ 1)z — Nop).
As multiplication by 7/ commutes with 228, and N,/, we obtain

WP, 220, — (B+ 1)z —N,) if B € (—1,0),

!

. Jéj 26 ~
('LO,+¢t M,z Z) - {(1[)?_/%,,2282 —N;) ifg=-1

In a way analogous to that of Lemma A.10, we conclude
(i, 40} F,2%0,) > (Y2, %7 ,2%0, — (B+1)2 —N) if B € (~1,0),
(i0,+ 071 T, 2%0,) = (W20 24 , 220, — N,1).
As 1/);6, commutes with the direct image by p in our context, we get
(W27, 228,) = (WP T, 2%0, — (B+ 1)z — Ny) if B € (~1,0),
($717,2%0,) = (WO T, 228, — N,),



342 C. Sabbah

and, grading with respect to M, kills N+ and gives, for any ¢ € Z,

(A.11)
(NPT, 228,) =5 (e 0P 7,220, — (B+1)2) if B € (~1,0),
(A.12)
(e} 6,17, 228,) = (g}t 9907, 228,).

Lastly, we get a similar result after translating ¢ by ¢ € C.

§Appendix B. Rescaling

In this appendix B, we recall the notion of rescaling of an integrable
twistor structure considered in [8, Def. 4.1]. We also explain how the “no
ramification” condition is related to a good behaviour of the rescaling.

Let (#,5¢",%s,V) be an integrable twistor structure (cf. §2.c
with X reduced to a point). In order to clarify notation, we will de-
note by n the coordinate denoted by z before. By integrability, V25,
acts on ¥, #" in a way compatible with %s. For the sake of simplicity,
we will denote by 1?8, this action. The bundles 5, 5" are a priori
defined on some open neighbourhood of {|n < 1|} but, using the gluing
defined by %5 and its compatibility with V, we can assume that they are
defined, together with the action of 728, on the whole complex line C,,
with coordinate 7 and that %s is the restriction to S of a sesquilinear
pairing compatible with V

C: g, R0 Hic. — Oc;,.

Let us consider the map p : Cv x Qo — C, defined by u(r’,2) =
n = 7'z (for 7 # 0, we will set 7 = 7/~!; this corresponds to the
coordinate 7 in §4.b). The pull-backs p* 5", u* " are holomorphic
bundles on C,s x £y. When restricted to the open set 7/ # 0, they are
equipped with a flat meromorphic connection having a pole of Poincaré
rank one along z = 0. We have

220,(1e@m) =7"'1®n*d,m) and 7723.(1®m)=1®n*9,m.

For a fixed 7, € C*, denote by uf the composition of u* with the
restriction to 7/ = 7,71, This defines pu} 5, ux H#".

In order to define the rescaling of the sesquilinear pairing, we need
to be careful. Indeed, the rescaling is not compatible with twistor con-
jugation, as we have p; Hc. = u;gljif('c’*. We therefore need an identi-
fication /L:OC%’T(’C’* o~ ,u;;lc%f” . in order to get a sesquilinear pairing p; ¢
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such that (uy ', py ", p; €) is a twistor structure. This identifi-
cation is obtained through the parallel transport with respect to the
holomorphic connection on y* |</cl*x<C* from 7, x C* to 7,1 x C* along

the segment between 7, and 7, *.

One can rewrite this definition in a way independent of 7, € C*.
For that purpose, let us denote by £’, Z" the local systems on C;
determined by (5#”,V) and (%", V). We get a pairing £, @0 .24 —
Cs by restricting s to these local systems. We remark that, on S, o
coincides with the involution ¢ :  — —n, and we can extend (by parallel
transport) in a unique way g as a pairing

G Lo IP — Cc;.

Taking the pull-back by p commutes with ¢ (with respect to 5 and to z),
and restricting to C, x S gives a pairing

-1z . ,,—1 cp! —17 =1 conr
P «z(c:,xS@L B gc:,xs_‘*(CC:/Xs-

Identifying now ¢s and o|s in the z-variable gives the desired sesquilin-
ear pairing u*%s at the level of local systems, and thus at the level of
holomorphic bundles. Clearly, it is nondegenerate.

Definition B.1 (Rescaling). Let J = (5, 5" ,%s) be an inte-
* grable twistor structure. The rescaling p* 7 is the triple (u* 5, p* ",
1 %s) defined as above.

‘We have the following properties:

. By construction (and because p*%s is nondegenerate), u*.7 is an
integrable variation of twistor structure on CZ,.

. Functoriality: This mainly reduces to showing that, given 7 =
(', ", 6s) with 7', 5" defined on some neighbourhood of {n < 1},
the extension of s, 7" to C, by using the gluing is functorial. This
is done as follows. The pairing %5 induces an isomorphism ¢’ ~ 7"
on some neighbourhood of {n = 1}, which allows one to extend 4#” as a
bundle on C,,. If ¢ : 91 — 95 is a morphism, the previous isomorphism
is compatible with ¢ : S — 4 and 3" : HY" — ;" by definition.
Therefore, it extends to C,,.

. Compatibility with adjunction: Restricted to local systems on
{n = 1}, the adjoint €§ of ¥s is U‘l%ST , where %’ST is the adjoint with
respect to the standard conjugation. So, working on local systems,

s = U_l%ST = L“lﬁpl
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and
pEE = (T ) e = (T )
= o Dy = ()"
« Compatibility with Tate twist: For k € $Z,
T (k) == (A, " (i2) "2 Es),
s0

WH(T(R)) = (2, " " 72 (i) 7 ).
We therefore have an isomorphism
o (W T (k) > w (T (K),
with ¢ = (¢',¢") and ¢/ = 772  Id s e, " = Id e 0.

Proposition B.2. If (F,.%) is the polarized twistor 2-module of
weight w associated to a variation of Hodge structure of weight w as in
Proposition /§.10, then, when restricted to T # 0, 00, the Fourier—Laplace
transform 7 is identified with the rescaling of its fibre at T = 1 as defined
above.

Sketch of proof. One first reduces to weight 0, by using the com-
patibility of rescaling and Fourier—Laplace transform with Tate twist by
w/2. One can also assume that ¥ = (Id,Id). Then the result follows
from [19, §2b & 2¢] (in particular, Lemma 2.4 in loc. cit.). Q.E.D.

In the remaining part of this section, we explain why a good be-
haviour at 7/ = 0 of the rescaled twistor structure imposes the “no ram-
ification” condition of §1.b. Instead of working on {7 # 0}, we now work
on the whole line C,.. Let us set J# = 5 or " and A4 = p*H[r' ).
If we set X = C,/, then .# is an integrable Zg [7'~!]-module.

Proposition B.3. If M is strictly specializable with ramification
and exponential twist at 7 = 0 (in the sense of [16] and [20]), then
(#,Vs,) has no ramification.

Proof. It will be easier to work in an algebraic framework. One
can find a free Clpl-module H with an algebraic connection having
a double pole at 7 = 0 and no other pole, such that (52, Va,,) =
(Oc, ®cpy) H,Va,). Notice then that M is the analytization of M ~
C[r',7~1] ®c H, where the action of z is defined as 7'~ @ 7.
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Let us try to find a Bernstein relation (in the sense of [16] or,
more generally with parabolic structure, of [11]) for elements of M
at 7/ = 0. Let m € H. The differential equation of minimal de-
gree satisfied by m can be written as b(nd,)m = nP(n,nd,)m, where
b € C[s] \ {0} and P is an operator in 3, with coefficients in C[n]. Let
us set b(s) = [[3ec(s — B)?. One deduces

[[(78- - B2 (1 @m) = 2% - (+'2) - P(r'z, 2~ 7'8,)(1 @ m).
peC

For such a relation to be a Bernstein relation in the sense of [16, 11] two
conditions must be fulfilled.

(1) The right-hand side should have no pole in z; this is possible if
and only if the smallest positive slope of the Newton polygon of
the equation b(nd,) — nP(n,ndy) is > 1; but we assumed that
the order of the pole of the connection is at most two, herice
the biggest slope of the Newton polygon (Katz invariant) is
< 1. Both conditions imply that the Newton polygon has only
the slopes 0 and 1. '

(2) For any § with vg # 0, the function z — [z should be written
as z + vz2 + bz + 7 for some v € C and b € R (cf. [11]). This
implies vy =0 and 5 € R.

We should apply these conditions to any exponentially tw1sted mod-
ule .# ® £/, Condition (1) applied to any M ET implies

(3) (4#,Vs,) satisfies the “no ramification” condition at n = 0.

Q.E.D.
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