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On SYZ mirror transformations 

K wokwai Chan and N aichung Conan Leung 

Abstract. 

In this expository paper, we discuss how Fourier-Mukai-type trans­
formations, which we call SYZ mirror transformations, can be applied 
to provide a geometric understanding of the mirror symmetry phe­
nomena for semi-fiat Calabi-Yau manifolds and toric Fano manifolds. 
We also speculate the possible applications of these transformations to 
other more general settings. 

§1. Introduction 

In 1996, Strominger, Yau and Zaslow suggested, in their ground­
breaking work [40], a geometric approach to the mirror symmetry for 
Calabi-Yau manifolds. Roughly speaking, the Strominger-Yau-Zaslow 
(SYZ) Conjecture asserts that any Calabi-Yau manifold X should ad­
mit a fibration by special Lagrangian tori and the mirror of X, which 
is another Calabi-Yau manifold Y, can be obtained by T-duality, i.e. 
dualizing the special Lagrangian torus fibration of X. Moreover, the 
symplectic geometry (A-model) of X should be interchanged with the 
complex geometry (B-model) of Y, and vice versa, through fiberwise 
Fourier-Mukai-type transformations, suitably modified by quantum cor­
rections. These transformations are called SYZ mirror transformations 
and they will be the theme in this article. 

Much work has been done on the SYZ Conjecture. Following the 
work of Hitchin [24], Leung-Yau-Zaslow [32] and Leung [31] explained 
successfully and neatly the mirror symmetry for semi-flat Calabi-Yau 
manifolds by using semi-flat SYZ mirror transformations. These are 
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honest fiberwise real Fourier-Mukai transformations. The advantage in 
this case is the absence of quantum corrections by holomorphic curves 
and discs. This is due to the fact that the special Lagrangian torus 
fibrations on semi-flat Calabi-Yau manifolds do not admit singularities, 
and, accordingly, the bases are smooth affine manifolds. 

To deal with general compact Calabi-Yau manifolds, however, one 
cannot avoid singularities in Lagrangian torus fibrations, and hence sin­
gularities in the base affine manifolds. Consequently, quantum correc­
tions will come into play. This necessitates the study of moduli spaces of 
special Lagrangian submanifolds and affine manifolds with singularities, 
which makes the subject much more sophisticated and difficult. Never­
theless, the recent progress made by Gross and Siebert [21], after earlier 
works of Fukaya [13] and Kontsevich-Soibelman [30], was doubtlessly 
a significant step towards establishing the SYZ Conjecture for general 
compact Calabi-Yau manifolds. 1 

On the other hand, mirror symmetry phenomena have also been ob­
served for Fano manifolds (and other classes of manifolds or orbifolds 
as well). The mirror of a Fano manifold X is predicted by Physicists 
to be given by a Landau-Ginzburg model, which is a pair (Y, W), con­
sisting of a non-compact Kahler manifold Y and a holomorphic function 
W : Y ---+ <C called the superpotential. A very important class of ex­
amples is provided by toric Fano manifolds. In this case, the mirror 
manifold Y is biholomorphic to (a bounded domain of) (C*)n and the 
superpotential W is a Laurent polynomial which can be written down 
explicitly. Ample evidences have been found in this toric Fano case; in 
particular, Cho and Oh [9] proved that the superpotential can be com­
puted in terms of the counting of Maslov index two holomorphic discs 
in X with boundary in Lagrangian torus fibers. In [4], Auroux applied 
the SYZ philosophy to the study of the mirror symmetry for a com­
pact Kahler manifold equipped with an anticanonical divisor. This is a 
generalization of the mirror symmetry for Fano manifolds, and, again, 
the mirror is given by a Landau-Ginzburg model. Auroux also made 
an attempt to compute the superpotential in terms of the counting of 
holomorphic discs, and analyzed the resulting wall-crossing phenomena. 
In [7], we studied the mirror symmetry for toric Fano manifolds, again 
through the SYZ approach, and we constructed and applied SYZ mirror 
transformations for toric Fano manifolds to explain various geometric 
results implied by mirror symmetry. 

1We should mention that the Gross-Siebert program is expected to work 
for non-Calabi-Yau manifolds (e.g. Farro manifolds) as well. 
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A brief explanation of the results in [7] is now in order; for more 
details, see Section 3. Let X be a toric Fano manifold, i.e. a smooth 
projective toric variety such that the anticanonical line bundle K x is 
ample. Let Wx be a toric Kahler structure on X. The moment map 
f.L x : X --+ P of the Hamiltonian yn_action on (X, w x) is a natural 
Lagrangian torus fibration. Here P c ~n is a polytope defining (X, wx ). 
The restriction of the moment map to the open dense yn_orbit X ~ 
(<C*)n c X is a Lagrangian torus bundle f.LX = f.Lxlx :X--+ P, where 
P denotes the interior of the polytope P. Our first result in [7] showed 
that the mirror manifold Y is nothing but the SYZ mirror manifold of 
X, i.e. the total space of the torus bundle dual to f.Lx : X --+ P (see 
Proposition 3.1).2 Furthermore, the semi-fiat SYZ transformation :Fsf 

takes the exponential of (A times) the symplectic structure wx = 
wxlx on X to the holomorphic volume form Oy on Y. 3 Note that Oy 
determines a complex structure on Y by declaring that a 1-form a is a 
(1, 0)-form if and only if a..JOy = 0. This part of the mirror symmetry 
does not involve quantum corrections. 

To get the superpotential W, however, we need to take into ac­
count the quantum corrections due to the anticanonical toric divisor 
D00 =X\ X, which we have ignored above. Before doing that, we first 
take a digression to a well-known construction. For a simply connected 
symplectic manifold ( M, w), let £M be the free loop space, i.e. the space 
of smooth maps 1 : 8 1 --+ M. The symplectic structure on M induces 
a symplectic structure on £M which will also be denoted by w. The 
action functional defined by 

H(r) := __!__ { w, 
21!" JD.., 

where D"~ is a disk contracting{, becomes a well-defined function on the 

universal covering £M of the free loop space £M. The group of deck 
transformations is H 2 (M, Z). It is not hard to see that His the moment 
map for the built-in 8 1-action on £M, and the gradient flow lines of 
H are (pseudo-)holomorphic cylinders if we fix a compatible (almost) 
complex structure on M. Tentatively, the quantum cohomology (or 
Floer cohomology) is the ~-equivariant Morse-Witten cohomology of 

the moment map H on £M. However, the fact that £M is infinite 
dimensional poses severe difficulties in implementing this idea. 

2More precisely, the SYZ mirror manifold is a bounded domain in the mirror 
manifold Y predicted by Physicists. 

3Throughout this paper, we assume that the B-field is zero. 
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One of our discoveries in [7] was that a finite dimensional subspace 
of £,M is enough to capture the quantum corrections and recover the 
quantum cohomology, in the case when M = X is a toric Fano manifold. 
Consider the subspace LX of £,X consisting of those loops which are ge­
odesic in the Lagrangian torus fibers (with respect to the flat metrics) 
of the moment map J.tx :X-+ P. We consider the function won LX 
defined by w(!) = exp( -H(!)) if 'Y bounds a Maslov index two holo­
morphic disc and w(!) = 0 otherwise. The function W: LX-+ <C, as an 
object in the A-model of X, turns out to be the mirror of the superpo­
tential W. In [7], we constructed the SYZ mirror transformation :F for 
the toric Fano manifold X, and showed that the SYZ mirror transfor­
mation of w is precisely the B-model superpotential W. Moreover, by 
incorporating the symplectic structure wx and the holomorphic volume 
form f!y, we proved that 

:F(ev'=Iwx+\If) 

y::-l(ewf!y) 

== ewf!y, 

where ;::-1 is the inverse SYZ mirror transformation (see Theorem 3.1). 
Hence, the corrected symplectic structure on X and the complex struc­
ture on (Y, W) are interchanged by the SYZ mirror transformation. 
On the other hand, we identified the small quantum cohomology ring 
QH*(X) of X with an algebra of functions on LX, and realized the 
quantum product as a convolution product (see Proposition 3.2). Then, 
we showed that the SYZ mirror transformation :F exhibits a natural 
isomorphism between QH*(X) and the Jacobian ring Jac(W) of the 
superpotential W, which takes the quantum product {now as a convo­
lution product) to the ordinary product of Laurent polynomials, just as 
what classical Fourier series do (see Theorem 3.2). We conclude that 
the mirror symmetry for toric Fano manifolds is nothing but a Fourier 
transformation! 

The main goal of this article is to popularize the use of SYZ mirror 
transformations in exploring mirror symmetry phenomena. In Section 2, 
we review the use of semi-flat SYZ mirror transformations in the study of 
the mirror symmetry for semi-flat Calabi-Yau manifolds, where quan­
tum corrections are absent. This is the toy case which lays the basis 
for subsequent development in the investigation of the SYZ Conjecture. 
Section 3 discusses the mirror symmetry for toric Fano manifolds, where 
quantum corrections arise due to the anticanonical toric divisor. Follow­
ing [7], we demonstrate how to construct and apply SYZ mirror trans­
formations in this case. The final section contains a brief discussion of 
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possible generalizations. 
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§2. SYZ mirror transformations without corrections 

In this section, we review the construction of SYZ mirror trans­
formations for semi-fiat Calabi-Yau manifolds and see how they were 
applied in the study of semi-fiat mirror symmetry. 

2.1. Semi-fiat SYZ mirror transformations 
Denote by N ~ zn a rank-n lattice and M = Hom(N, Z) the dual 

lattice. Let D C MR = M 0z lR be a convex domain. 4 Then the 
tangent bundle T D = D x HMR is naturally a complex manifold with 
complex coordinates x1 + J=Iy1, j = 1, ... , n, where x 1 , ... , Xn E lR 
and y1 , ... , Yn E lR are respectively the base coordinates on D and fiber 
coordinates on MR. We have the standard holomorphic volume form 
DrD = d(x1 +Hyr)!\ ... 1\d(xn +HYn) on TD. By taking fiberwise 
quotient by the lattice M C MR, we can compactify the fiber directions 
to give the complex manifold 

y = TD/M = D X HTM, 

where TM denotes the torus MR/M. The complex coordinates on Y 
are naturally given by z1 = exp(x1 + J=Iy1), j = 1, ... , n, where 
y1 , ... , Yn E 1R/2?TZ are now coordinates on TM· Note that Y is bi­
holomorphic to an open part of (C*)n = TMR/M. The projection to D 
is a torus bundle, which we denote by vy : Y ___, D. The holomorphic 
n-form DrD descends to give the holomorphic volume form 

n _ dz1 dzn 
Hy- J\ • • • J\ 

Zl Zn 

4More generally, instead of a convex domain, one may consider a smooth 
affine manifold. 



6 K.-W. Chan and N.-c; Leung 

on Y. As mentioned in the introduction, fly in turn determines the 
complex structure on Y: a 1-form a is of (1, 0)-type if and only if a.Jrly = 
0. Further, if </J is an elliptic solution of the real Mange-Ampere equation 

then the Kahler form 

wy := R.a8¢ = 2:: <Pjkdxj A dyk, 
j,k 

with </Jjk denoting 8~28't, gives a Calabi-Yau metric on Y, and 

~~y:Y-+D 

becomes a special Lagrangian torus bundle ( SYZ fibration). In summary, · 
we have the following structures on the complex n-dimensional semi-flat 
Calabi-Yau manifold Y: 

Riemannian metric gy = Li.k </Jjk(dxj 18> dxk + dyj 18> dyk) 
Holomorphic volume form fly= /\~=1 (dxj + v-1dyj) 
Symplectic form Wy = L.i.k </JjkdXj 1\ dyk 
SYZ fibration Vy:Y-+D 

As suggested in the monumental work of Strominger-Yau-Zaslow [ 40], 
the mirror of Y, which is another Calabi-Yau manifold we denote by 
X, should be given by the moduli space of pairs (L, V'), where L is a 
special Lagrangian torus fiber in Y, and V' is a flat U(1)-connection 
on the trivial complex line bundle L x C -+ L. This is nothing but 
the total space of the torus fibration J.Lx : X = D x HTN -+ D, 
where TN = Ns./ N = (TM) v and NR. = N ®z IR, which is dual to 
vy : Y -+ D. This is called T-duality in physics. Furthermore, X can 
naturally be viewed as the fiberwise quotient of the cotangent bundle 
T* D = D x HNR. by the lattice N c NR.. In particular, the standard 
symplectic form WT• v = 2::7=1 dxj 1\ duj descends to give a symplectic 
form 

n 

wx = 'L:dxj 1\ duj 
j=l 

on X = T* D / N, where U1, ... , Un E IR/2nZ are coordinates on TN. 
Through the metric 
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where (<f)k) is the inverse matrix of (¢jk), we obtain a complex structure 
on X with complex coordinates given by dlog(wj) = I:~= 1 ¢jkdxk + 
Hduj. There is a corresponding holomorphic volume form which can 
be written as 

The projection map 
JLx: X-+ D 

now naturally becomes a special Lagrangian torus fibration. In sum­
mary, we have the following structures on X: 

Riemannian metric gx = I:7 k(¢jkdxj ® dxk + ¢Y"'duj ® duk) 
Holomorphic volume form rlx = /\_7=1 (I:~= 1 c/Jjkdxk + v -lduj) 
Symplectic form wx = I:_7=1 dxj 1\ duj 
SYZ fibration JLx: X-+ D 

We remark that both Y and X admit natural Hamiltonian Tn­
actions, but while JL : X -+ D is a moment map for the TN-action on 
X, v: Y-+ Dis not a moment map for the TM-action on Y. In fact, a 
moment map JLY : Y -+ NJR for the TM-action on Y is given by 

JLY = Lq, 0 Vy, 

where Lq, : D -+ NJR is the Legendre transform of ¢ defined by 

Since ¢is convex, the image D* = Lq,(D) is an open convex subset of 
(MJR)* = NJR. (For this and other properties of the Legendre transform, 
see the book of Guillemin [22], Appendix 1.) In the action coordinates 

x 1 , ... , xn of D*, which are given by g~: = c/J)k, the various structures 
on Y can be rewritten as: 

Riemannian metric gy = I:7 k(<f)kdx1 ® dxk + ¢jkdYj ® dyk) 
Holomorphic volume form r:ly = /\_7=1 (I:~=1 <j)kdxk + Hdyj) 
Symplectic form wy = I:7=1 dxJ 1\ dyj 
SYZ fibration JLY: y-+ D* 
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We call X the SYZ mirror manifold of Y (and vice versa) since 
the symplectic (resp. complex) geometry of X and the complex (resp. 
symplectic) geometry of Y are interchanged under the semi-fiat SYZ 
mirror transformation, which is described as follows. 

First recall that the dual torus TM = (TN )Y can be interpreted as 
the moduli space of fiat U(1)-connections on the trivial complex line 
bundle over TN. More precisely, given y = (Y1, ... , Yn) E MIR ~ JRn, we 
have a fiat U(1)-connection 

on TN x <C---+ <C. The holonomy of \7 y is given by the map 

holvY: N---+ U(1), v ~--+ e-y'=I(y,v)_ 

Hence, \7 y is gauge equivalent to the trivial connection if and only if y E 
M ~ (2nZ)n. Moreover this construction gives all fiat U(1)-connections 
on the trivial complex line bundle over TN up to unitary gauge trans­
formations. The universal U(1)-bundle, i.e. the Poincare line bundle P, 
is given by the trivial complex line bundle (TN x TM) x <C ---+ TN x TM 

equipped with the connection d + 7 ~7=1 (yjdUj - Ujdyj ). The cur­
vature of this connection is the two form 

n 

F = HL dyj 1\ duj. 
j=1 

Now consider the relative version of this picture. Let X xv Y = 

D x H(TN x TM) be the fiber product of the dual torus bundles 
J-l : X ---+ D and v : Y ---+ D. By abuse of notations, we still use P 
and F = A-~7=1 dyj 1\ duj E 0 2 (X xv Y) to denote the fiberwise 
universal line bundle and curvature two form respectively. 

Definition 2.1. The semi-fiat SYZ mirror transformation 

:Fsf : 0* (X) ---+ 0* (Y) 

is defined by 

1 ( * ( ) y'=IF) (2nA)n Jry,* Jrx a 1\ e 

1 1 * ( ) y'=IF 
( ~) Jrx a 1\ e ' 2Jry -1 n TN 

where nx :X xv Y---+ X and ny :X xv Y---+ Y are the two projections. 
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What is crucial is that this Fourier-Mukai-type transformation trans­
forms the symplectic structure on X to the complex structure on Y in 
the sense of the following two propositions. These already appeared 
in [7], Proposition 3.2. We include their proofs, which are somewhat 
interesting, here for completeness. 

Proposition 2.1. 

Proof. 

where we have frN du 1 1\ ... 1\ dun = (21f)n in the final step. Q.E.D. 

As a mirror transformation, Fsf should have the inversion property. This 
is the following proposition. 

Proposition 2.2. If we define the inverse transform (:F8f)- 1 

O*(Y)-+ O*(X) by 

then we have 
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Proof. 

1 1 n 1\ (dx · + J=ldy + dx · /\ dy · /\ du ·) 
(27rA)n TM j=l J J J J J 

1 1 n -- 1\ ((1 + J=ldx · /\ du ·) /\ dy ·) 
(27r)n J J J 

TM j=l 

Q.E.D. 

By exactly the same arguments, one can also show that 

If we take into account the B-fields, then the semi-flat SYZ transforma­
tion will give an identification between the moduli space of complexified 
Kahler structures on X with the moduli space of complex structures 
on Y, and vice versa. For this and transformations of other geometric 
structures, we refer the reader to Leung [31]. 

2.2. Transformations of branes 

Lying at the heart of the SYZ Conjecture is the basic but impor­
tant observation that a point z = exp(x + Ay) E Y defines a flat 
U(1)-connection 'Vy on the trivial complex line bundle over the special 
Lagrangian torus fiber Lx = f.L):/(x). Now, the point z E Y together with 
its structure sheaf Oz can be considered as a B-brane on Y; while the 
pair (Lx, lLy), where lLy denotes the flat U(1)-bundle (Lx x C, \1 y), gives 
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an A-brane on X. This implements the simplest case of correspondence 
between branes on mirror manifolds via SYZ transformations: 

The space of infinitestimal deformations of the A-brane (L,, ILy), which 
is given by H1 (L,,~) x H1(L,,H~) = H 1(L,,C), is canonically 
identified with the tangent space Tz Y, the space of infinitestimal defor­
mations of the sheaf 0 z. 

On the other hand, consider a section L = {(x,u(x)) EX: xED} 
of J.Lx :X-+ D. The submanifold Lis Lagrangian if and only if (locally) 
there exists a function f such that Uj = if. By the above observation 

3 

(now used in the opposite way), a point (x, u(x)) E L determines a flat 
U(l)-connection V u(x) on the trivial complex line bundle over the fiber 
(L,)v = vy1(x). The family of points {(x,u(x)) :xED} thus patch 
together to give the U(l)-connection 

on a certain complex line bundle over Y; its curvature two form is given 
by 

and, in particular, 

Fi'o = ~ L (auj -auk) dzj A dzk. 
8 j<k 8xk 8Xj Zj Zk 

We conclude that V L is integrable, i.e. Fi,'0 = 0, if and only if L is 
Lagrangian. More generally, we can equip L with a flat U(l)-bundle IL = 
(L x C, dL +a), where a E 0 1(£, ~) is a closed (and hence exact) one­
form. The A-brane (L,IL) is then transformed to the U(l)-connection 

VL,L = VL + 0!, 

which again is integrable if and only if L is Lagrangian. Furthermore, 
one can prove that V L,L satisfies the deformed Hermitian- Yang-Mills 
equations if and only if Lis special Lagrangian (see Leung-Yau-Zaslow 
[32] and Leung [31] for the detailed proofs). V L,L is a connection on the 
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holomorphic line bundle over Y given by the semi-flat SYZ transforma­
tion of lL: 

cL,L = 71Y,*(7rx(~*JL) 0 P), 

where ~ : L <.......t X is the inclusion map. In conclusion, the A-brane 
(L, JL) is transformed to the B-brane (Y, CL,L) through semi-flat SYZ 
transformations: 

§3. SYZ mirror transformations with corrections 

In the previous section, we see that T -duality and SYZ mirror trans­
formations can be applied successfully to give a geometric understanding 
of the mirror symmetry for semi-flat Calabi-Yau manifolds. However, 
no quantum corrections were involved in this case due to the absence 
of holomorphic curves and discs. The existence of quantum corrections 
is also closely related to the singularities of the Lagrangian torus fibra­
tions, which again are not present in the semi-flat case. In this section, 
following [7], we are going to discuss how SYZ mirror transformations 
can be applied to a case where quantum corrections do exist, namely, 
the mirror symmetry for toric Fano manifolds. · 

3.1. Mirror symmetry for toric Fano manifolds 
We begin with a more detailed description of the mirror picture for 

toric Fano manifolds [17], [29], [27]. Let P c MJR be a smooth reflexive 
polytope given by the inequalities 

(x, vi) 2: ..\i, i = 1, ... , d, 

where v1, ... , Vd E N are primitive vectors and ( ·, ·) : MJR x NJR --t lR 
is the dual pairing. This determines a toric Fano manifold X, together 
with a Kahler structure wg. Unlike the case of Calabi-Yau manifolds, 
the mirror of X is not another compact Kahler manifold, but a Landau­
Ginzburg model: a pair (Y, W) consisting of a noncompact Kahler man­
ifold Y, which (as a complex manifold) is biholomorphic to (a bounded 
domain of) (C*)n, and the Laurent polynomial 

which is called the superpotential. Here zv; denotes the monomial 
z~il ... z~in in the coordinates z1, ... , Zn of Y. For example, if P = 

{(xl,X2,X3) E !R3 : Xl 2: O,x2 2: O,xl + X2::; t}, then X= CP2 and 
the mirror Landau-Ginzburg model is given by the Laurent polynomial 
W(z1, z2) = Z1 + Z2 + e-• on Y = (C*)2 • 

Z1Z2 
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Among the many mirror symmetry predictions are the following 
conjectures: 

Conjecture 3.1. 

1. The small quantum cohomology ring QH*(X) of X is isomor­
phic to the Jacobian ring Jac(W) of W, where 

and 8j denotes Zj 8~ . . 
J 

2. (Homological mirror symmetry, see [29], [39], [37]} There are 
equivalences of triangulated categories 

DbCoh(X) e>< D1r Fuk(Y, W) 

D'rr Fuk(X) e>< Dsing(Y, W) 

where D1r Fuk(Y, W) is (a suitably defined version of) the de­
rived Fukaya category of the Landau~Ginzurg model (Y, W) and 
Dsing(Y, W) is the category of singularities of (Y, W). 

Substantial evidences [19], [25], [39], [41], [5], [6], [1], [2], [9], [8] 
have been found for these conjectures, while evidence in the Calabi~ 
Yau and other non-toric cases is much rarer. This is partly due to the 
fact that geometric structures on toric varieties are highly computable 
and explicit, making them an exceptionally fertile testing ground for 
techniques and conjectures. 

One of these explicit structures: the Lagrangian torus fibration on 
X given by the moment map f-Lx: X---+ P of the Hamiltonian Twaction 
on (X, w x), is particularly important in the SYZ approach and in the 
constructions of SYZ mirror transformations. Let 

/-LX: X---+ p 

be the restriction of the moment map to the open dense TN-orbit X = 
X\ Doo, where Doo = U1=1 Di is the anticanonical toric divisor, and P 
is the interior of P. In the symplectic (or action-angle) coordinates, 

X =T*P/N=P X HTN 

and the restriction of w.x to X is nothing but the standard symplectic 
structure 

n 

wx = l..:::dxj 1\ duj, 
j=l 
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where x 1 , ... , Xn E JR. and u 1 , ... , Un E lR/2n.Z are respectively the base 
coordinates on P and fiber coordinates on TN (see Abreu [3]). Now we 
are in exactly the same situation as in the previous section and it is 
tempting to assert that the mirror manifold Y predicted by Physicists is 
given by the SYZ mirror manifold of X, which is T P / M = P x ATM. 
This is indeed nearly the case. 

Proposition 3.1 (Proposition 3.1 in [7]). The mirror manifold 
Y = (C*)n predicted by Physicists contains the SYZ mirror manifold 
TP/M = P x ATM of X= X\ Drxo as a bounded domain 

{(z1, ... ,zn) E Y: le>.;zv;l < 1 fori= 1, ... , d}. 

Equivalently, the SYZ mirror manifold is given by the preimage of P C 

MIR = JR.n under the Log map 

Log: (C*)n -+lRn, (z1, ... ,zn) f----t (logJzlJ, ... ,logJznl). 

The same result also appeared in Auroux's paper [4] (Proposition 
4.2). Also included in his paper was a discussion of the issue that the 
SYZ mirror manifold (a bounded domain in (C*)n) is "smaller" than 
Hori-Vafa's mirror manifold (the whole (C*)n). There is evidence (say, 
in Abouzaid's works [1], [2]) showing that one should work with the SYZ 
mirror manifold, instead of the whole (C*)n, in studying mirror symme­
try. In any case, we will use and work with the SYZ mirror manifold, 
i.e. the bounded domain in (C*)n, and denote it by Y henceforth. 

In terms of the coordinates z1 = exp( -x1 - J=Ty!), ... , Zn = 
exp( -Xn- AYn) E C* of Y C (C*)n, the holomorphic volume form 
is given by the standard one on (C*)n: 

,.. _ dz1 dzn 
Hy- 1\ • • • 1\ 

Z1 Zn 

and the torus fibration vy : Y -+ P is the restriction of the Log map. 
We remark that metrically we are not considering X = X\ D= as a 
Calabi-Yau manifold; instead of the semi-flat Calabi-Yau metric, we 
use the TN-invariant Kahler metric on X (and the corresponding dual 
metric on Y). These are defined (cf. Guillemin [22] and Abreu [3]) using 
the strictly convex function cpp : P-+ JR. given by 

1 d 

cpp(x) = 2 L li(x) log li(x), 
i=l 

where li(x) = (x, vi)- Ai fori= 1, ... , d, instead of a solution ofthe real 
Monge-Ampere equation. For example, this gives the standard Fubini­
Study metric on X= CPn. Using these metrics and the corresponding 
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holomorphic volume forms, X andY are almost Calabi-Yau manifolds 
and the torus fibers of J-tx and vy are special Lagrangian submanifolds 
(also see Section 2 in Auroux [4]). 

3.2. SYZ transformations for toric Fano manifolds 
By applying the semi-flat SYZ mirror transformation or T-duality, 

we can obtain the mirror manifold Y. But where comes the superpoten­
tial W: Y--+ C? Recall that, in applying T-duality, we have completely 
ignored the compactification of X, which is given by adding the anti­
canonical toric divisor Doo = u:=l Di. As suggested in the foundational 
work of Fukaya-Oh-Ohta-Ono [14], this has tremendous effect on the 
Floer theory of the Lagrangian torus fibers of J-tx :X--+ P, and this is 
indeed where quantum corrections by holomorphic discs come into play. 

As have been discussed in the introduction, motivated by the idea of 
using Morse theory on the free loop space £,X to construct the quantum 
cohomology QH*(X), we introduce the subspace LX c £,X consisting 
of those loops which are geodesic in the Lagrangian torus fibers of the 
moment map J-tx :X--+ P, i.e. 

LX= {'y E £,X:"( is a geodesic in Lx = J-t}/(x) for some x E P}. 

Concretely, we have 

LX =X X N = p X HTN X N, 

and we consider it as a (trivial) zn-cover of X, 1r : LX --+ X. Notice 
that, for each Lagrangian torus fiber Lx, x E P, we have a canonical 
identification 7r1 (Lx) ~ N. 

We are going to define a function "11! on LX in terms of the counting 
of holomorphic discs in X of minimal Maslov index. This will recapture 
the information of the compactification of X by D 00 , which we have 
ignored previously, and "11! serves as the object in the A-model of X mirror 
to the superpotential W. To do this, let's first recall the fundamental 
results of Cho-Oh [9] on the classification of holomorphic discs in X 
with boundary in Lagrangian torus fibers of J-tx :X--+ P. 

Let Lx = J-tx/(x) be the Lagrangian torus fiber in X over a point 
x E P. Then the relative homotopy group 1r2(X, Lx) is generated by 
the Maslox index two classes {31 , ... , !3d, which are represented by holo­
morphic discs in (X, Lx)· Note that we have, 8f3i ==vi, fori= 1, ... , d, 
where 8 : 1r2(X, Lx) --+ 1r1(Lx) ~ N is the natural boundary map. In 
[9], Cho and Oh proved that, fori= 1, ... , d and for eachpoint p E Lx, 
there is a unique (up to automorphism of the domain) Maslov index 
two J-holomorphic disc 'Pi : (D2 , 8D2 ) --+ (X, Lx) in the class f3i which 
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passes through p and intersects the toric divisor Di at an interior point. 5 

Here J is the complex structure on X determined by the fan I; dual to 
P. 

Definition 3.1. Fori= 1, ... , d, define \IIi :LX--+ lR by 

ifv =Vi 

ifv=/=vi, 

for (p, v) E LX= X x N, where ni(P) is the algebraic number of Maslov 
index two J-holomorphic discs in (X,LJ.Lx(p)) in the class f3i which pass 
through p. Then set 

By their definitions, the TN-invariant functions wl, ... 'wd carry 
enumerative meaning, although by Cho and Oh's result, we always have 
ni(P) = 1, for all i and any p. One may think of the TN-invariant 
function W as recording which cycle v E N = 1r1 ( Lx) collapses to a point 
as one goes towards the anticanonical toric divisor Doo, or equivalently, 
which geodesic loop "( E LX bounds a holomorphic disc of Maslov index 
two. 

Remark 3.1. Before showing how to transform W to get the su­
perpotential W, we remark that the TN-invariant function <I> : LX --+ lR 
introduced in [7], Definition 2.1, is nothing but the "exponential" of W, 
i.e. 

<I>= Exp W, 

where Exp w is defined as 2:%"'=o iJ ~ in which * denotes the 
k times 

convolution product of a certain class of functions on LX with respect to 
the lattice N. Now each point q = (q1 , ... , qt) (l = d- n) in the Kahler 
cone K(X) C H 2 (X,JR) determines a symplectic structure w_x on X and 
we can choose the polytope P = { x E MWI. : (x, vi) 2: >.i, i = 1, ... , d} 
such that vl = el' ... 'Vn = en is the standard basis of N = zn ' 
>.1 = ... = An = 0 and An+a = log Qa for a = 1, ... , l. We thus get 

5 Another way to state this result is the following. Let JV[1 (,Bi) be the moduli 
space of J-holomorphic discs r.p: (D 2 ,8D2 )--+ (X,Lx) in the class ,Bi with 1 
boundary marked point. Let ev : M 1 (,Bi) --+ Lx be the evaluation map at the 
boundary marked point. Then the result of Cho and Oh says that ev. [M1 (,Bi)] = 

[Lx] as n-cycles in Lx. See also Sections 3.1 and 4 in Auroux [4]. 
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two families of functions { \]i q} qEIC and { <r> q }qEIC. By the symplectic area 
formula of Cho-Oh ([9], Theorem 8.1), we have 

r <p:wx = r Wx = 27t( (x, Vi)- Ai), 
jD 2 jf3i 

fori= 1, ... , d. Hence, for any (p, v) E LX, 

fori= 1, ... , n, and 

if V =Vi 

if V =j:; Vi, 

if V = Vn+l 

if V =I Vn+a, 

for a= 1, ... , l, where x = J.tx(p). It follows that 

{)<[> q 
Qa-8 =<i>q*Wn+a 

Qa 

for a= 1, ... , l, which is the first part of Proposition L1 in [7). 

On the other hand, the functions \]i 1, ... , \]i d are intimately related 
to the small quantum cohomology QH*(X) of X, as was shown in the 
following 

Proposition 3.2 (Second part of Proposition 1.1 in [7]). Assume 
that X is a product of projective spaces. Then we have a natural iso­
morphism of C.-algebras 

where C[wrl, ... 'w;1) is the polynomial algebra generated by wi=\ ... ' 
w;1 with respect to the convolution product *, and £ is the ideal gen­

erated by linear relations: 2::::=1 ai \]i i ,..._, 2::::=1 bi \]i i if and only if the 

corresponding divisors 2::::=1 aiDi and 2::::=1 biDi are linearly equivalent. 

Remark 3.2. By employing Givental's mirror theorem [19), one 
can in fact show that the proposition holds for all toric Fano manifolds. 
See Remark 2.3 in [7) for details. 

We need the assumption that X is a product of projective spaces 
as we are intended for a geometric understanding of the isomorphism in 
Proposition 3.2 by using tropical geometry. This is briefly described as 
follows (see Subsection 2.2 in [7) for details). One first defines a tropical 
version Q Htrop (X) of the small quantum cohomology ring of X. Since X 
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is a product of projective spaces, we have a one-to-one correspondences 
between the J-holomorphic curves in X which have contribution to the 
quantum product in QH*(X) and those tropical curves in Nw. which 
have contribution to the tropical quantum product in QHtrop(X), by 
the correspondence theorem of Mikhalkin [33] and Nishinou-Siebert [36]. 
From this follows the canonical isomorphism 

Then comes a simple but important observation: Each tropical curve 
which has contribution to the tropical quantum product in Q Htrop (X) 
is obtained by gluing tropical discs in Nw.. 6 On the other hand, these 
tropical discs are exactly corresponding to the families of Maslov index 
two J-holomorphic discs in X with boundary in Lagrangian torus fibers, 
which were used to define the functions \[II, ... , \[1 d. Hence, we naturally 
have another canonical isomorphism 

For example, let us take a look at the case of X = !CP2 . See Fig. 1 
below. 

t V2 

D3 
~ 

VI 
DI 

Pc Mw. 
V3 r c Nw. 

0 
D2 t 

Fig. 1 

Denote by { ei, e2} the standard basis of N = 7!}. We have VI = 
(1,0),v2 = (0,1),v3 = (-1,-1), and the polytope P c Mw. ~ JR2 is 
defined by the inequalities 

6This idea was recently generalized by Gross [20] to understand tropically 
the big quantum cohomology and mirror symmetry of CP2 . 
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where t > 0. There are three toric divisors D1, D2, D3 corresponding to 
three functions 'lh, W2, W3 E C 00 (LX) defined by 

\[II (p, v) { e-x1 if v = (1, 0) 
0 otherwise, 

W2(p,v) { e-x2 ifv=(0,1) 
0 otherwise, 

w3(p, v) { e-(t-x1-x2) ifv=(-1,-1) 
= 0 otherwise, 

for (p, v) E LX and (x1, x2) = J.Lx(p) E P, respectively. The small 
quantum cohomology ring is given by 

QH*(CP2) C[DI, D2, D3]/ (D1 - D3, D2- D3, D1 * D2 * D3 - q) 
= C[HJ/ (H3 - q), 

where we have, by abuse of notations, also use Di E H 2(CP2, C) to 
denote the cohomology class Poincare dual to Di, H E H 2(CP2, q is 
the hyperplane class and q = e-t. Fix any point p E CP2 \ D 00 , then 
the quantum corrections, which appear in the relation 

D1 * D2 * D3 = H 3 = q, 

is due to the unique holomorphic curve cp : (IP'\ XI, x2, X3, x4) ---t CP2 
of degree 1 (i.e. a line) with 4 marked points such that cp(x4) = p and 
cp(xi) E Di, for i = 1, 2, 3. Let x = J.Lx(p) E P and Lx = J.Lx1 (x) be 
the Lagrangian torus fiber containing p. Using tropical geometry, one 

l"' glued fro/ VI 

r V3 

Fig. 2 

sees that there is a tropical curve r in NJR with three unbounded edges 
in the directions Vl' v2' V3 and the vertex mapped to e = Log(p) E NJR' 
which is corresponding to this holomorphic curve (see Fig. 1 above). 
Here; we identify X with (C*)2, and Log : X = (C*)2 ---t NJR = JR2 is 



20 K.-W. Chan and N.-C. Leung 

the Log map we defined in Proposition 3.1. It is obvious that r can 
be obtained by gluing the three half lines emanating from the point 
~ E N~ in the directions v1, v2 , v3. See Fig. 2. These half lines are the 
tropical discs which are corresponding to the three families of Maslov 
index two holomorphic discs rp1, rp2 , rp3 respectively. We see that the 
above quantum relation corresponds exactly to the equation 

in qw~l, W~1 ]. 
Without the assumption that X is a product of projective spaces, the 

tropical interpretation will break down. This is because for general toric 
Fano manifolds, the holomorphic curves which contribute to the small 
quantum product may have components mapped into the anticanonical 
toric divisor D 00 • An example is provided by the exceptional curve in 
the blowup of !CP2 at one TN-invariant point (see Example 3 in Section 
4 in [7]). Now the problem is that tropical geometry cannot be used to 
count these holomorphic curves. In other words, there are no tropical 
curves corresponding to such holomorphic curves (cf. Rau [38]). 

Now it's time to return to the main theme of this section, namely, 
we can construct and apply SYZ mirror transformations to the study of 
mirror symmetry for toric Fano manifolds. First we equip LX= X x N 
with the symplectic structure n* ( w x), which we denote again by w x. 
Also let /-LLX : LX --+ P be the composition map J-tx o 1r. Analog to 
the semi-flat case, we consider the fiber product LX Xp Y = P x N x 
H(TN x TM) of the fibrations /-LLX: LX--+ P and Vy: Y--+ P. Note 
that we have a covering map LX Xp Y--+ X Xp Y. Pulling back the 
universal curvature two-form F = Al:j=1 dyj 1\ duj E S12 (X Xp Y), 
we get a two-form on LX Xp Y, which we again denote by F. We further 
define the holonomy function hol : LX x p Y --+ !C by 

hol(p,v,z) =holvy(v) =e-v'=I(y,v) 

for (p, v) E LX, z = exp( -x-Hy) E Y such that p,x(p) = z;y(z) = x. 
The SYZ mirror transformation for toric Fano manifolds is constructed 
as a combination of the semi-fiat SYZ transformation ;:sf and fiberwise 
Fourier series. 

Definition 3.2. The SYZ mirror transformation F : Sl*(LX) --+ 

Sl* (Y) for X is defined by 

F( a) (-2nH) -n7rY,* ( n£x (a) 1\ e v'=IF hal) 

( -2nvCI)-n r n£x(a) 1\ ev'=IFhol, 
lNxTN 
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where 7rLx : LX xp Y --+ LX and ny : LX Xp Y --+ Y are the two 
natural projections. 

The basic properties of :Fare similar to those of other Fourier-type 
transformations, and in particular, it satisfies the inversion property 
with the inverse SYZ mirror transformation :F-1 : O*(Y) --+ O*(LX) 
defined by 

( -2nH)-n7rLx,*(nY(a) 1\ e-v'=IFhol-1) 

( -2nH)-n. { nY.(a) 1\ e-v'=IFhol-1. 

lrM 
In [7], the SYZ mirror transformation was, for the first time, used to 

study the appearance of the superpotential W as quantum corrections. 
More precisely, we showed that 

Theorem 3.1 (First part of Theorem 1.1 in [7]). The SYZ mirror 
transformation (or fiberwise Fourier series) of the function \[F, defined 
in terms of the counting of Maslov index two J -holomorphic discs in the 
toric Fano manifold X with boundary in Lagrangian torus fibers, gives 
the superpotential W : Y --+ C on the mirror manifold: 

:F(w) = w. 
Furthermore, we can incorporate the symplectic structure w x to give the 
holomorphic volume form of the Landau-Ginzburg model (Y, W) in the 
sense that 

Conversely, we have 

y::-1(W) = \[1, y::-1(ew0y) = ev'=Iwx+'I'. 

Remark 3.3. 
1. We shall mention that the fact that the superpotential W can 

be computed in terms of the counting of Maslov index two holo­
morphic discs in X with boundary in Lagrangian torus fibers 
was originally due to Cho and Oh [9]. The key point of our 
result is that there is an explicit Fourier-Mukai-type transfor­
mation, namely, the SYZ mirror transformation :F, that gives 
the superpotential W by transforming an object (the function 
w) in the A-model of X. 

2. Apparently, the statements written here are slightly different 
from those in Theorem 1.1 in [7], but realizing that ci> = Exp \[F, 

it is easy to see that they are in fact the same statements. 
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3. The complex oscillatory integrals 

frewDy 

of the n-form e w Dy over Lefschetz thimbles r c Y (defined 
by the singularities of W : Y ~ q, which satisfy certain 
Picard-Fuchs equations, play the role of periods for Calabi­
Yau manifolds. This is why we call ewDy the holomorphic 
volume form of the Landau-Ginzburg model (Y, W). 

On the other hand, we also showed that the SYZ mirror transfor­
mation (which, in this case, is fiberwise Fourier series) F(\l!i) of the 
function \1! i is nothing but the monomial e)..i zvi on Y, for i = 1, ... , d. 
Since the Jacobian ring J ac(W) of the superpotential W is generated by 
the monomials e).. 1 zv1 , • •• , e)..d zvd, by Proposition 3.2, the SYZ mirror 
transformation realizes a natural isomorphism between the small quan­
tum cohomology QH*(X) and the Jacobian ring Jac(W). 

Theorem 3.2 (Second part of Theorem 1.1 in [7]). The SYZ mirror 
transformation F induces a natural isomorphism of CC-algebras 

F: QH*(X) ~ Jac(W), 

which takes the quantum product, now realized as a convolution product, 
to the ordinary product of Laurent polynomials, provided that X is a 
product of projective spaces. 

In the example of X = CCP2 , the superpotential is the Laurent 
polynomial W(z1 , z2 ) = z1 + z2 + ~ on Y = (CC*) 2 , where q = e-t. Its 
logarithmic partial derivatives are given by 

so that the Jacobian ring is given by 

Jac(W) qzt1,zi'1]/\zl- _q_,z2- _q_) 
Z1Z2 Z1Z2 

qzl, z2, z3]/ (Z1- z3, z2- z3, z1z2z3- q), 

where the monomials zl = Z]' z2 = Z2 and z3 = _g_ are the SYZ 
Z1Z2 

mirror transformations (i.e. fiberwise Fourier series) of the functions 
\1! 1, \1! 2 and \1! 3 respectively. 
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Remark 3.4. 

1. In [10], Coates, Corti, Iritani and Tseng formulated the mirror 
symmetry conjecture for toric manifolds (and orbifolds) as an 
isomorphism of graded ~VHS between the A-model ~VHS 
associated to a toric manifold and the B-model ~VHS asso­
ciated to the mirror Landau-Ginzburg model (see also Iritani 
[28]). It is desirable to have this isomorphism, which contains 
more information than the isomorphism in the above theorem, 
realized by SYZ mirror transformations. 

2. In [15] (and also [16]), Fukaya-Oh-Ohta-Ono applied the ma­
chinery developed in [14] to the case of toric manifolds. They 
considered Floer cohomology with coefficients in the Novikov 
ring, instead of C used here and in Auroux's paper [4]. They 
have results on the superpotential even in the non-Fano toric 
case. The isomorphism Q H* (X) ~ J ac(W) (over the N ovikov 
ring) was also discussed and proved in their work (Theorem 
1.9 in [15]). Their proof is combinatorial, using Batyrev's pre­
sentation of the small quantum cohomology ring for to ric Fano 
manifolds, the validity of which in turn relies on Givental's 
mirror theorem. They claimed that a more conceptual and 
geometric proof for toric, not necessarily Fano, manifolds will 
appear in a sequel to their paper. 

3.3. Transformation of branes 

This subsection is an attempt to understand the correspondence 
between A-branes of the toric Fano manifold X and B-branes of the 
mirror Landau-Ginzburg model (Y, W) via SYZ mirror transformations. 

We will deal with the simplest case of the correspondence. So let 
Lx = p,-;/(x) be the Lagrangian torus fiber of X over a point x E P. 
We equip Lx with a fiat U(1)-bundle lLy = (Lx x C, 'Vy), where 'Vy is 
the fiat U(1 )-connection corresponding to y E (Lx) v. The mirror of 
the A-brane (Lx,lLy) is given, according to SYZ, by the B-brane (z = 

exp( -x- J=ly) E Y, Oz). In other words, the correspondence on the 
level of objects is the same as in the semi-fiat Calabi-Yau case. Quantum 
corrections will emerge and make a difference when we consider their 
endomorphisms. 

According to Hori (see [26], Chapter 39), the endomorphism algebra 
End(z, Oz) of the B-brane (z, Oz), as a C-vector space, is given by the 
cohomology of the complex 
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where i&W(z) is contraction with the vector 8W(z) = "L.j=1 8jW(z)(8j)z 
and here again aj denotes Zj a~. . The following elementary proposition 

3 

shows that the introduction of the superpotential W "localizes" the cat-
egory B-branes to the critical points of W. 

Proposition 3.3. The endomorphism End(z, Oz) is nontrivial if 
and only if z E Y is a critical point of the superpotential W : Y ---+ C, and 
in which case, End(z, Oz) is isomorphic to 1\*TzY as C-vector spaces. 

On the other hand, the endomorphism algebra of the A-brane (Lx, lLy) 
in the (derived) Fukaya category is given by the Floer cohomology ring 
HF(Lx,lLy),7 which in turn, as a C-vector space, is given by the coho­
mology of the Floer complex 

where m1 = ml(Lx,lLy) denotes the Floer differential. In [9], [8], 
Cho and Oh explicitly computed the Floer differential m1. Recall that 
H 1 ( Lx, C), viewed as the space of infinitestimal deformations of the pair 
( Lx, lLy), is canonically isomorphic to Tz Y. Let C1, ... , Cn be the basis 
of H 1(Lx, C) corresponding to (81)z, ... , (8n)z. Then the results of Cho 
and Oh stated that m1,f3.(Cj) = Cj · 8f3i = v{ and 

f;._m1,f3.(Cj)exp(- 2~ ii wx)ho1v-y(8f3i) 

d 

~vfzv• =81W(z). 
i=l 

This shows that m1 = iaw(z) on H 1(Lx, C) = TzY, and m1 = 0 on 
H 1(Lx, C) if and only if z is a critical point of W. The following result 
proved by Cho-Oh in [9] is parallel to the above proposition. 

Theorem 3.3 (Cho-Oh [9]). The Floer cohomology HF(Lx,lLy) 
is nontrivial and isomorphic to H*(Lx, C) if and only if m 1 = 0 on 
H 1(Lx,C). 

We conclude that 

Theorem 3.4. The Floer cohomology HF(Lx,lLy) of the A-brane 
(Lx, lLy) is isomorphic to the endomorphism algebra End(z, Oz) of the 
mirror B-brane (z, Oz) as C-vector spaces. 

7We use C, instead of the Novikov ring, as the coefficient ring. 
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It is intriguing to see whether this isomorphism can be realized by 
explicit SYZ mirror transformations. 

Remark 3.5. In [8], Cho proved that the Floer cohomology ring 
HF(Lx,Ly), equipped with the product structure given by m 2 = 
m 2 (Lx,Ly), is a Clifford algebra generated by H 1(Lx,C) with the bi­
linear form given by the Hessian of W: Q(Cj, Ck) = OjchW(z). This 
implies that the isomorphism in Theorem 3.4 is in fact an isomorphism 
of C-algebras. This confirms a prediction by Physicists. See the paper 
of Cho [8] for details. 

§4. Further questions 

The results described in this article represent the first step in our 
program which is aimed at exploring mirror symmetry via SYZ mirror 
transformations. In particular, they showed that these transformations 
can be applied successfully to explain the mirror symmetry for toric 
Fano manifolds, a case where quantum corrections do exist. However, 
we shall emphasize that the quantum corrections in the toric Fano case, 
which are due to the anticanonical toric divisor, are much simpler than 
those in the general case (Gross-Siebert [21], Auroux [4]), where quan­
tum corrections may arise due to contributions from the proper singular 
Lagrangian fibers of the Lagrangian torus fibrations and complicated 
wall-crossing phenomena start to interfere. In terms of affine geometry, 
this means that the bases of the Lagrangian torus fibrations in the toric 
case are affine manifolds with boundary but without singularities, while 
in the general case, the bases are affine manifolds with both boundary 
and singularities (and in the semi-fiat case, the bases are affine mani­
folds without boundary and singularities). Certainly much more work 
remains to be done in the future. In this final section, we will comment 
on several possible future research directions. The discussion is going to 
be rather speculative. 

4.1. Toric Fano manifolds 

We have seen that the simplest correspondence between A-branes on 
a toric Fano manifold X and B-branes on the mirror Landau-Ginzburg 
model (Y, W), namely 

is compatible with the SYZ philosophy. It is desirable to see how other 
A-branes on X are transformed to the corresponding mirror B-branes on 
(Y, W). An interesting and important example would be the Lagrangian 
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submanifold JRpn c e,pn for odd n, which can be viewed as a multi­
section of the moment map of e,pn. Employing the SYZ approach, the 
mirror B-brane is expected to be a trivial rank-2n holomorphic vector 
bundle over Y, equipped with some additional information related to 
W. A possible choice of this additional information would be a matrix 
factorization of W; currently, it is widely believed that the category of 
B-branes on (Y, W) is given by the category of matrix factorizations of 
W. This was first proposed by Kontsevich, see Orlov [37] for details. 
The relation between these matrix factorizations and the computation 
of Floer cohomology will be the key to a complete understanding of the 
correspondences of branes. 

On the other hand, we have not even touched the correspondence 
between B-branes on X and A-branes on (Y, W). As we mentioned in the 
introduction, the results of Seidel [39], Ueda [41], Auroux-Katzarkov­
Orlov [5], [6] and Abouzaid [1], [2] have provided substantial evidences 
for this half of the Homological Mirror Symmetry Conjecture. In partic­
ular, Abouzaid [2] made use of an idea originated from the SYZ conjec­
ture, namely, the mirror of a Lagrangian section should be a holomorphic 
line bundle. His results also showed that the correspondence is in line 
with the SYZ picture. Recently, Fang [11] and Fang-Liu-Treumann­
Zaslow [12] proved a version of Homological Mirror Symmetry for toric 
manifolds by explicitly using T-duality. It is an interesting question 
whether one can construct an explicit SYZ mirror transformation to 
realize the correspondence between B-branes on X and A-branes on 
(Y,W). 

4.2. Toric non-Fano or non-toric Fano manifolds 

As in the case of toric Fano manifolds, non-toric Fano manifolds 
such as Grassmannians and flag manifolds admit natural Lagrangian 
torus fibrations, provided by Gelfand-Cetlin integrable systems (see, for 
example, Guillemin-Sternberg [23]), which are convenient for applying 
SYZ mirror transformations. While mirror symmetry for these manifolds 
has been studied for some time by Givental [18] and others, new tools and 
new ideas are needed if we want to apply SYZ mirror transformations 
to these examples. The recent works of Nishinou-Nohara-Ueda [34], 
[35] have shed some light on this case. In particular, they obtained 
a classification of holomorphic discs in flag manifolds with boundary in 
Lagrangian torus fibers, which should be very useful in the constructions 
of SYZ mirror transformations. 

On the other hand, the mirror symmetry for toric non-Fano mani­
folds is also not well understood too. As can be seen from the works of 
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Givental [19], the mirror map between the complexified Kahler and com­
plex moduli spaces in this case is a nontrivial coordinate change, instead 
of an identity map as in the toric Fano case. In Auroux [4], nontrivial 
coordinate changes and wall-crossing phenomena were also observed in 
constructing the superpotentials for the mirrors of non-toric examples. 
Hence, the definitions and constructions of SYZ mirror transformations 
must have to be adjusted in order to incorporate the nontrivial mirror 
map and also wall-crossing phenomena. For this, we will have to make 
the construction of SYZ mirror transformations local. A very prelimi­
nary attempt to this is made in Section 5 in [7]. 

4.3. Calabi-Yau manifolds 

The ultimate goal of our program is no doubt applying SYZ mirror 
transformations to get a better understanding of the mirror symmetry 
for Calabi-Yau manifolds and the SYZ Conjecture. Works of Fukaya 
[13], Kontsevich-Soibelman [30] and Gross-Siebert [21] have laid an 
important foundation for understanding the SYZ framework for both 
Calabi-Yau and non-Calabi-Yau manifolds. In view of the fact that 
toric varieties have played an important role in the constructions of 
Gross and Siebert, it would be nice if we can incorporate our meth­
ods with their new techniques to study SYZ mirror transformations for 
Calabi-Yau manifolds; and hopefully, this would let us reveal geometri­
cally the secret of mirror symmetry. 
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