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Some questions on spectrum and arithmetic 
of locally symmetric spaces 

Conjeeveram S. Rajan 

Abstract. 

We consider the question that the spectrum and arithmetic of 
locally symmetric spaces defined by congruent arithmetical lattices 
should mutually determine each other. We frame these questions in 
the context of automorphic representations. 

§1. Introduction 

The classical spectral theories of light and sound can be mathemat
ically interpreted and generalized in possibly two different ways: one, in 
the context of Riemannian manifolds and the spectrum of the Laplacian 
acting on a suitably defined space of smooth functions on the manifold. 
More generally, one can consider the spectrum of elliptic, self-adjoint, 
natural differential operators acting on subspaces defined by appropriate 
boundary conditions of the space of smooth sections of natural vector 
bundles on the manifold, for example, the deRham Laplacian acting on 
the space of smooth forms. 

The concept of spectrum can also be generalized in the context of 
continuous representation theory of topological groups. In what follows, 
we restrict our attention to the class of locally symmetric Riemannian 
manifolds. These are spaces of the form r\ G I K, where G is a reductive 
Lie group, K is a maximal compact subgroup of G, and r is a lattice in 
G. The universal cover GIK carries a natural G-invariant metric, the 
Bergman metric, and we can relate the representation theory of G to 
the spectrum of Laplace type operators on r\ G I K. 

It is well known that the spectra of Laplace type operators associ
ated with locally symmetric Riemannian manifolds or the representa
tion theory of G acting on the space of functions on r\G, share many 
similarities with the arithmetic of such spaces. The beginnings of this 
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analogy can be attributed to Maass, who introduced and studied the 
arithmetic properties of eigenfunctions of the Laplace operator on the 
upper half plane which are invariant under a congruence subgroup of 
SL2 (Z) (called Maass forms) [8]. It was shown that Heeke operators 
can be defined on the space of such eigenfunctions of the Laplacian, and 
that the £-functions associated to Maass-Heeke eigenforms have many 
similar properties to the £-functions associated to holomorphic Heeke 
eigenforms. 

The theory of Maass forms also provides a link between the represen
tation theory of G = PSL2 (JR) acting on the space of square integrable 
functions L2 (r\G), and the spectrum of the hyperbolic Laplacian acting 
on r\Jll!, where lHI is hyperbolic upper half plane. For general groups, 
Langlands theory of automorphic representations provides the appropri
ate generalization to relate not only the spectrum of invariant differen
tial operators to representation theory, but also to the arithmetic that 
is provided by this theory. 

It was Selberg who brought the analogy between the spectrum and 
the arithmetic to the fore. Selberg considered primitive closed geodesics 
on a hyperbolic surface of finite area, as analogous to rational primes, 
and established an analogue of the prime number theorem for primitive 
closed geodesics [10]. The concept of the length spectrum can be intro
duced, and the Selberg trace formula establishes a relationship between 
the spectrum of the Laplacian acting on funtions on a compact hyper
bolic surface and the length spectrum of primitive closed geodesics on it. 
Although the relationship with the length spectrum is quite important, 
we will not pursue it out here. 

Another analogy observed by Selberg, is the conjecture that 

.A1 (r\JHI) ~ 114, 

where .A1 (r\JHI) is the least non-zero eigenvalue of the Laplacian act
ing on the space of smooth functions on r\lHI. Here r is a congruent 
arithemeticallattice contained inside SL2 (Z). Selberg's conjecture can 
be considered as the archimedean analogue of Ramanujan's conjecture 
on the size of the Heeke eigenvalues of holomorphic newforms [25]. 

In .a similar vein, there are many common features between the 
representation theories of real and p-adic Lie groups. For example, the 
Harishchandra homomorphism identifies the center Z(g) of the universal 
enveloping algebra of aeomplex semisimple Lie algebra g with the ring 
of Weyl group invariants of the symmetric algebra of a maximal torus 
in g [12]. The Casimir elements belong to Z(g), and these project to 
invariant differential operators on the associated symmetric space. The 
non-archimedean counterpart of the Harishchandra isomorphism is the 
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Satake isomorphism: if G is a split reductive p-adic Lie group, K a 
hyperspecial maximal compact subgroup of G, T a maximal split torus 
of G, the Satake isomorphism identifies the Heeke algebra H( G, K) of K
biinvariant functions on G, to the Weyl group invariants of the algebra of 
unramified characters ofT (see Cartier's article in [5]). Thus the Heeke 
algebra is analogous to the algebra of invariant differential operators of 
a complex semisimple Lie algebra. 

The inverse spectral problem is to know the properties of the Rie
mannian manifold that are determined by the spectrum. For instance, 
is the isometry class of the space determined by the spectrum? In the 
context of planar domains, this question was posed in a colloquiual way 
by M. Kac as "Can one hear the shape of the drum?" . Milnor and 
later Vigneras used arithmetical methods to construct pairs of isospec
tral but non-isometric manifolds. A fundamental construction of pairs 
of isospectral manifolds was given by Sunada. Sunada's method is com
pletely analogous to Gassmann's method of exhibiting .non-conjugate 
number fields having the same Dedekind zeta function. These examples 
indicate the existence of an arithmetical flavor to the inverse spectral 
problem. 

Based on such examples, a well known heuristic is that the Lapla
cian can be considered as the Frobenius/Hecke operator at infinity, for 
the class of locally symmetric spaces defined by congruent arithmetical 
lattices. Such spaces have a natural Riemannian structure arising from 
the invariant metric on the universal cover. When the universal cover is 
hermitian symmetric, a natural arithmetical structure is provided by the 
theory of canonical models due to Shimura and Deligne. In many ex
amples, these spaces are the moduli spaces of abelian varieties endowed 
with extra structure. In the general case, the Langlands theory of auto
morphic representations can be considered as an automorphic aspect of 
the arithmetic of such spaces. 

We expound on the theme that the Frobenius at infinity is the Lapla
cian, and our basic expectation is that the spectrum and arithmetic for 
such spaces should mutually determine each other. 
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§2. Archimedean analogue of Tate's conjecture 

Let M be a compact Riemann surface; uniformized by the upper 
half plane. The Jacobian J(M) of M, the 'motive' associated to the 
Riemann surface M, can be considered as the 'arithmetic' associated to 
M. 

We recall the theorem of Faltings proving Tate's conjecture [7]: if the 
eigenvalues of the Frobenius elements acting on the l-adic cohomology 
groups of two smooth, projective curves defined over a number field coin
cide, then the Jacobians of the curves are isogenous. The analogy of the 
Laplacian with the Frobenius motivates us to ask a naive archimedean 
analogue of Tate's conjecture: 

Question 1. Suppose M1, M2 are compact Riemann surfaces of 
genus at least two, that are isospectral with respect to the hyperbolic 
Laplacian acting on the space of smooth functions. Are the Jacobians 
J(M1) and J(M2) isogenous? 

This question turns out to have a false answer (see Corollary 2) 
in general, but can be verified .for the examples constructed using the 
Gassmann-Sunada method ([21]). 

Remark 1. A similar question was raised by M. S. Narasimhan 
(toT. Sunada) but requiring the stronger conclusion that the Jacobians 
be isomorphic. This seems unrealistic to expect even for the examples 
constructed using the Sunada method. From the arithmetic viewpoint 
it is natural to consider the isogeny class. 

Narasimhan also raised the quesion of considering isospectrality with 
respect to other natural metrics defined on hyperbolic compact Riemann 
surfaces, for example the pullback of the Fubini-Study metric with re
spect to the canonical map to projective space, or the pullback of the 
translation invariant metric with respect to embedding the curve in it's 
Jacobian, etc. But it is the hyperbolic metric that is natural in the con
text of automorphic forms (see Theorem 5), and thus seems natural to 
consider if we want to relate the spectrum and the arithmetic of such 
spaces. 
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2.1. Flat tori 

By the theorem of Faltings, we see that two abelian varieties defined 
over a riumber field have isomorphic l-adic representations if and only if · 
they are isogenous. 

In the context of flat tori, define two flat tori to be arithmetically 
equivalent if they are isogenous. We define two flat tori to be spectrally 
commensurable if upto rescaling of metrics the spectra are mutually con
tained inside each other. The expectation that the spectrum determines 
the arithmetic translates to the following refinement of a conjecture of 
Kitaoka [11]: 

Conjecture 1. Suppose £1, £ 2 are lattices in Euclidean n-space 
IR.n, such that the corresponding flat tori IR.n /£1, IR.n /£2 are spectrally 
commensurable. Then upto an isometry of IR.n, the lattices £ 1 and £ 2 

are commensurable. 

(To put it more colloquiually, the thetas and the zetas mutually 
determine each other.) 

The known examples (see [4] for some of them), for example Milnor's 
example of the isospectral pair of flat tori given by the lattices (E16, Es E9 
E 8 ), can be seen to be commenurable. Indeed, when the quadratic form 
associated to the lattices are integral valued, a brief hint of the proof of 
the above conjecture with the stronger assumption that the flat tori are 
isospectral, was given by Kitaoka [11], and a detailed proof of a more 
general result was given by Bayer and Nart [2]. 

§3. Arithmetic Archimedean analogue of Tate's conjecture 

In the previous section, we had taken as our model for the arithmetic 
of a compact Riemann surface, the Jacobian of the surface. Here, we 
focus our attention on the example of projective Shimura curves: they 
have natural canonical models defined over a number field, and so we 
can consider the usual arithmetic of such spaces [28]. 

Let F be a number field and let D be an indefinite, quaternion 
division algebra over F. Let 

Let K 00 be a maximal compact subgroup of Goo = G(F ®JR.) and let 
M = Goo/ Koo be the non-compact symmetric space associated to G. 
If D is unramified at r real places and 2r2 is the number of complex 
embeddings of F, then, 
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where lHI2 (resp. JHI3 ) is the hyperbolic 2-space (resp. 3-space). For 
a number field F, let AF denote the adele ring ofF, and AF,t the 
subring of finite adeles. Let K be a compact open subgroup of G(AF,t ). 
Let rK be the co-compact lattice in Goo corresponding to K, given by 
the projection to Goo of the group G00K n G(F). If K is sufficiently 
small, then rK will be a torsion-free lattice acting freely and properly 
discontinuously on M. The quotient space MK = rK\M will then be a 
compact, locally symmetric space. 

Suppose now F is totally real. We recall the theory of canonical 
models due to Shimura [27]. Let r 1 , · · · , Tr be the real embeddings cor
responding to archimedean places of F at which D splits. The reflex 
field F' of ( F, r 1 , · · · , Tr) is the field generated by the sums 

T 

LTi(x), x E F. 
i=1 

There exists a Q-rational homomorphism 

A: RF'/QGm--+ RF/QGm, 

where for a number field K, RK/Q denotes the Weil restriction of scalars. 
On the Q-rational points, >. .: (F')* --+ F* satisfies the following relation: 

When r = 1, the reflex field can be taken to be F itself. 
Let Goo+ (resp. F~+) be the identity component of Goo (resp. F~). 

Let 
g+ = {X E Goo+G(AF,t) I v(x) E >.(AP,,F* F~+)}, 

where v : G --+ Gm is the reduced norm. For any compact open subgroup 
k of G(AF,J ), define a subgroup N(K) of the group of ideles Ap,, as, 

N(K) = {c E AP,, I >.(c) E F*v(K)}. 

By. class field theory, the subgroup N(K) defines an abelian exten
sion Ff< ofF'. Given x E Q+, choose an element c E Ap,, such that 
>.(c)fv(x) E F* F~+· By the reciprocity morphism of class field, 

rec: A}c,j(F')*--+ Gal((F'tb/F'), 

we get an element a(x) E Gal( (F')ab / F') by the prescription 

a(x) = rec( c-1 ). 
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Associated to k, we get a lattice 

r k = kc=+ n GQ. 

Let K = knG(AF,t), and assumethe following: 

Assumption (*). The natural inclusion of rK c r k is an isomor
phism modulo the centers. 

This assumption ensures that the quotient of M by the actions of 
r K and r [( are isomorphic. 

For sufficiently small k, the group r k modulo the centre acts freely 
and discontinuously on the associated symmetric space M. By the the
ory of canonical models, the complex varieties MK acquire a canonical 
model defined over the abelian extension of Fk, satisfying various com
patibility properties. We will refer to such varieties as 'Shimura varieties 
of quaternionic type'. One of the principal properties that we require is 
that there is an isomophism between the spaces, 

(3.1) M M a(x) 
Kc:::' K"' · 

We now give an 'arithmetical archimedean analogue of Tate's con
jecture' given in [21]: 

Conjecture 2. Suppose X and Y are Shimura varieties of quater
nionic type of dimension s, which are isospectral with respect to the 
deRham Laplacian acting on the space of p-forms for 0:::; p < r. Then 
the Hasse-Weil zeta functions of X andY are equal. 

Remark 2. A more general conjecture for curves is given in [21], 
where we do not restrict ourselves to Shimura curves. But for such 
curves, it is not at all clear about the naturality of either the Riemannian 
metric nor of the arithmetic of such varieties. For Shimura curves and 
more generally for the class of spaces defined by quotients of symmetric 
spaces by congruent arithmetic lattices, both the arithmetic and the 
spectrum can be related to theory of automorphic forms, and hence it 
is reasonable to restrict our attention to such spaces. 

For higher dimensional varieties, it is natural to add the spectrum 
of deRham Laplacian acting on the space of smooth differential forms 
of higher degrees, or even other natural elliptic self adjoint differential 
operators. But as we will see in Section 8, it is more natural to break 
up this conjecture into two parts: one, relating the the spectral side 
to representation equivalence of lattices; the second is to reformulate 
the above conjecture on the spectral side in terms of representation 
equivalence of lattices. 
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The first striking evidence for this conjecture that leads us to believe 
in the above conjecture, comes from the following theorem of A. Reid 
(24]: 

Theorem 1 (Reid). Suppose X andY are Shimura curves of quater
nionic type, associated respectively to quaternion division algebras D x, 
Dy defined respectively over totally real number fields Fx and Fy. As
sume that X and Y are isospectral with respect to the hyperbolic Lapla
cian acting on the space of smooth functions. Then 

Fx=Fy and Dx=Dy. 

The proof of Reid's theorem starts with the equivalent hypothesis 
that X and Y are length isopectral, a consequence of the Selberg trace 
formula. The length spectrum is then related to the arithmetic of the 
quaternion division algebras. This latter step has been generalised by 
T. Chinburg, E. Hamilton, D. Long and A. Reid (3), and more generally 
by G. Prasad and A. S. Rapinchuk (22). 

§4. Representation equivalence of lattices 

In this section, we relate the representation theoretic approach to 
isospectral questions. We recall the Gassmann-Sunada method: A triple 
(G, H1, H2) consisting of a finite group G and two non-conjugate sub
groups H1, H2 of G is said to form a Gassmann-Sunada system if it 
satisfies one of the following equivalent conditions: 

(1) The regular representations ofG on C[H1 \G) and C[H2\G) are 
equivalent. 

(2) Any G-conjugacy class intersects H1 and H 2 in the same num
ber of elements. 

(3) For any finite dimensional representation V of G, the dimension 
of the spaces of invariants with respect to the subgroups H1 
and H2 are equal. 

Example. There exists examples of Gassmann-Sunada systems. 
For example suppose H1 and H2 are two non-isomorphic finite groups 
such that for any natural number d, the number of elements of order d 
in H1 and H2 are equal (this is a necessary condition for H1 and H2 
to be part of a Gassmann-Sunada system as above). In particular, the 
cardinalities of H1 and H2 are equal, say d. Then (Sd, H1, H2) forms 
a Gassmann-Sunada system, where Sd denotes the symmetric group on 
d symbols. 

Gassmann proved the following theorem (see (21), [17)): 
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Theorem 2 (Gassmann). Suppose K is a finite Galois extension 
of the rationals with Galois group isomorphic to G. Suppose G belongs 
to a Gassmann-Sunada system (G, H 1 , H 2 ). Then the field of invari
ants KH1 and KH2 are non-conjugate number fields having the same 
Dedekind zeta function. 

Sunada's fundamental observation ([29]) is that an entirely analo
gous statement can be transplanted to the spectral side: 

Theorem 3 (Sunada). Suppose (G, H 1 , H 2 ) is a Gassmann
Sunada system and assume that G acts freely and isometrically on a 
compact Riemannian manifold M. Then the quotient spaces of M by 
the action of the groups H 1 and H 2 are isospectral with respect to the 
metric induced from M. 

The proofs of the theorems of Gassmann and Sunada as well as the 
validity of Question 1 for the examples of pairs of isospectral compact 
Riemann surfaces constructed using the Sunada method, rest on the 
functorial nature of the Frobenius isomorphism i.e., given a G-space V, 
and H a subgroup of the finite group G, the Frobenius isomorphism, 

is natural (see [21]) with respect to G-equivariant maps ¢ : V ---+ W 
of G-spaces. Sunada's theorem follows by taking V = C00 (M), and 
¢ to be the Laplacian. Since G acts by isometries, the Laplacian is 
G-equivariant, and restricts to give the Laplacian of the space vH; ~ 
C00 (Mj Hi), i = 1, 2. 

Sunada's condition for isospectrality can be extended to infinite 
groups, to the context of continuous Lie group actions and discrete 
subgroups of such Lie groups. Let G be a Lie group, and let r be a 
cocompact lattice in G. The existence of a cocompact lattice implies 
that G is unimodular. Let Rr denote the right regular representation of 
G on the space L 2 (f\G) of square integrable functions with respect to 
the projection of the Haar measure on the space f\G: 

(Rr(g)f)(x) = f(xg) f E L 2 (f\G), g,x E G. 

As a G-space, L2 (f\G) breaks up as a direct sum of irreducible unitary 
representations of G, with each irreducible representation occuring with 
finite multiplicity. 

Definition 4.1. Let G be a Lie group and r 1 and r 2 be two co
compact lattices in G. The lattices f 1 and f 2 are said to be represen
tation equivalent in G if the regular representations Rr1 and Rr2 of G 
are isomorphic. 



146 C. S. Rajan 

We have the following generalization of Sunada's criterion for isospec
trality proved by DeTurck and Gordon in [6]: 

Proposition 4. Let G be a Lie group acting on the left as isometries 
of a Riemannian manifold M. Suppose r1 and r2 are discrete, co
compact subgroups of G acting freely and properly discontinuously on 
M, such that the quotients r 1 \M and r 2 \M are compact Riemannian 
manifolds. 

If the lattices r 1 and r 2 are representation equivalent in G, then 
r 1 \M and r 2\M are isospectral for the Laplacian acting on the space 
of smooth functions. 

The conclusion in Proposition 4 can be strengthened to imply 'strong 
isospectrality', i.e., the spectrums coincide for natural self-adjoint differ
ential operators besides the Laplacian acting on functions. In particular, 
this implies the isospectrality of the Laplacian acting on p-forms. 

The natural hermitian vector bundles on spaces of the form r\ G / K 
should be the class of automorphic vector bundles. On the universal 
cover G/ K, the automorphic vector bundles are the G-invariant hermit
ian vector bundles that are associated to representations of K on some 
finite dimensional unitary vector space V. The centre Z(g) of the univer
sal enveloping algebra acts on the space of smooth sections C 00 (r\G, V) 
of these vector bundles. Since the image of Z(g) is generated by in
variant self adjoint elliptic differential operators, it follows that if r is a 
uniform lattice in G; that for any character x of Z(g) the x-eigenspace, 

{¢ E coo(r\G, V) I z.¢ = x(z)¢, z E Z(g)}, 

has finite dimension m(x,r, V). 
Proposition 4 can be refined to say that the two spaces r1 \M and 

r2 \Mare strongly compatibly isospectral, in the sense that for any V, x 
as above, we have an equality of multiplicities, 

4.1. Converse to Gassmann-Sunada criterion 

We see that representation equivalent lattices give rise to spectrally 
indistinguishable spaces. It is natural to ask whether the converse holds. 
When G = PSL2 (R), basic facts from the representation theory of G, 
allow us to show that the converse holds. Given a hyperbolic compact 
Riemann surface X, let 

Px: rx ~ PSL(2,R), 
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be an embedding of the fundamental group f X arising from the uni
formization of X by the upper half plane. This map is independent of 
the various choices made upto conjugation by an element of PSL(2,1R). 
A folklore observation is the following [19]: 

Theorem 5. Suppose X and Y are compact Riemann surfaces of 
genus at least two. Then X and Y are isospectral with respect to the 
hyperbolic Laplacian acting . on the space of ·smooth functions if and 
only if the lattices px(fx)and py(fy) are representation equivalent in 
PSL(2, IR): 

L2 (PSL(2,1R)/fx) ~ L 2 (PSL(2,1R)jfy), 

as P SL(2, IR)-modules. 

The proof that the spectrum determines the representation type of 
fx in PSL(2, IR) follows from the classification of the irreducible unitary 
representations of PSL(2, IR). 

Remark 3. Maass showed that a theory of Heeke operators can be 
defined on the spaces of eigenfunctions of the Laplacians invariant by 
the lattice, paving the way for the work of Selberg and Langlands. 

Remark 4. One of the main reasons for considering the hyperbolic 
Laplacian for Riemann surfaces is that the spectrum of the hyperbolic 
Laplacian can be related to the representation theory of the isometry 
group PSL(2,1R) of the universal covering space. If we consider other 
natural metrics on a compact Riemann surface, then we can no longer 
expect any relationship with representation theory. 

For groups apart from PSL2 (1R), the converse direction from the 
spectrum to the representation theory is not well understood. For com
pact quotients of hypebolic spaces, H. Pesce [18] has shown that if two 
such spaces are strongly isospectral, then the corresponding lattices are 
representation equivalent in the group of isometries of the hyperbolic 
space. For more general groups, we formulate later a possible approach 
to a converse of the generalized Sunada criterion in the context of com
pact locally symmetric spaces (see Conjecture 3). 

§5. Adelic conjugation of lattices 

In this section, we provide some evidence for the conjectures raised 
in the previous sections. In the process, we construct new examples of 
isospectral but non-isometric spaces. 

Let F be a number field and let D be an indefinite quaternion di
vision algebra over F. We assume that there is at least one finite place 
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v0 ofF, at which D is ramified. Let K be a compact open subgroup of 
G(AF,t) having a factorisation of the form, 

K=KoK', 

where K 0 is a compact, open subgroup of G(Fv0 ), and is an invariant 
subgroup of D~0 • The group K' has no vo component, i.e., for any 
element x E K', the Vo component Xv0 = 1. Let 

be the co-compact lattice in Goo, and let MK = rK\M be the quotient 
space of M by rK. 

The following theorem is proved in [23], and can be considered 
as a geometric version of the concepts of L-indistinguishablity due to 
Labesse, Langlands and Shelstad: 

Theorem 6. With the above notations and assumptions, for any 
element X E GLl(D)(AF,f ), the lattices rK and rK"' are representation 
equivalent. 

The following corollary gives examples of isospectral but non-isometric 
compact Riemannian manifold, generalizing the class of examples con
structed by Vigneras [30], reflecting essentially the failure of strong ap
proximation in the adjoint group: 

Corollary 1. With the notation as in Theorem 6, assume further 

that K is small enough so that rK is torsion-free. Let Fi{K) denote the 
normalizer of the image of K in PGL1(D)(AF,t ). Choose an element 
x E G(At) such that it's projection to PGL1 (D)(AF,t) does not belong 

to the set Fi{K)PGL1(D)(F) (such elements exist by the failure of strong 
approximation in PGL1(D)). 

Then XK and XK"' are strongly isospectral, but are not isometric. 

Remark 5. Vigneras works with the length spectrum rather than 
the representation theoretic context in which the above theorem is placed. 
The relation between the Laplacian spectrum and the length spectrum 
holds only for hyperbolic surfaces and three folds. Further, she has 
to compute the length spectrum and show that indeed the lattices are 
length isospectral. For this reason, she has to restrict attention to K 
which come from maximal orders and use theorems of Eichler computing 
the number of elements having a given trace. 

We also obtain the following corollary providing more evidence in 
support of the Conjecture 2: 



On spectrum and arithmetic 149 

Corollary 2. Let F be a totally real number field and k be a com
pact open subgroup of G(AF,f ). Assume that k satisfies the hypothesis 
of Theorem 6 and is such that the lattice r K is torsion-free and satisfies 
Assumption (*). 

Then the spaces MKx for x E G(AF,J) are isospectral and have 
the same Hasse- Weil zeta function for the canonical model defined by 
Shimura. 

If D is ramified at all real places except one, then the Jacobians of 
MK and MKx are not isogenous but are conjugate by an automorphism 
ofQ. 

This gives us the counterexamples to Question 1. It is tempting to 
conjecture that the last statement of the foregoing corollary will be the 
exception to Question 1: if two compact Riemann surfaces are isospec
tral, then the Jacobian of one is isogenous to a conjugate of the Jacobian 
of the other by an automorphism u E Aut(C/Q), where u preserves the 
spectrum of the Riemann surface. If morever u is not identity or of 
order two, then the pair of Riemann surfaces arise from an arithmetical 
context, i.e., are Shimura curves as considered in this paper. 

§6. L-equivalence 

The proof of Theorem 6 given in [23], uses the theory of L-indistin 
-guishable automorphic representations initiated by Langlands, in par
ticular the computation of the mutltiplicity by Labesse and Langlands 
with which a representation of SL(1, D)(Ap) occurs in the space of au
tomorphic representations of SL(1, D)(Ap) [5], [14]. An examination of 
the proof of Theorem 6 indicates that it yields a more general formula
tion, which will form the basis of reformulating the above conjectures in 
a more general framework. 

From the viewpoint of Langlands theory, it is more natural to clas
sify the L-packets of irreducible representations ([1, 5, 13, 15, 26]). We 
will assume that there exists a suitable notion of L-packets. We do not 
attempt out here the definition of either the Langlands or Arthur L
packets, nor what is the correct notion of L-packets that we require for 
the relationship between the spectrum and arithmetic to hold. A coarse 
expectation that two representations are L-equivalent (or L-indistin 
-guishable or equivalently belong to the same L-packet) is that the L
functions and E-factors attached to them are equal. It is expected that 
L-packets have finite cardinality. For representations of real Lie groups, 
a property that members of the same L-packet share is that they all 
have the same infinitesimal character, i.e., they cannot be distinguished 
by means of spectral data alone. 
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Example. IfF is a local field, the £-packets of representations of 
SL(2, F) (or any of it's inner forms SL(l, D)(F)) consists of those rep
resentations that are conjugate to each other by an element of G£(2, F) 
(resp. by GL(l,D)(F)). Thus the discrete series {nt. n/:, k ~ 2} 
constitute a single £-packet for SL(2, ~). 

Let F be a global field. Two representations of SL(2, AF) (resp. of 
SL(l, D)(AF )) are said to be £-equivalent if their local components at 
each place ofF are £-indistinguishable as representations of the local 
group. Equivalently, they are conjugate by an element of G£(2, AF) 
(resp. GL(l, D)(AF )). 

Given an irreducible unitary representation 1r of a semisimple Lie 
group G (real or p-adic or adelic), we denote by [n], the £-packet of G 
containing n. For an automorphic 1r of G(A), we denote by 1rK the space 
of K-fixed vectors of the space underlying the representation 1r and by 
m 0 (n) the (finite) multiplicity with which 1r occurs in the space of cusp 
forms. We define a notion of automorphic equivalence of lattices: 

Definition 6.1. Let G be a reductive algebraic group over F and 
K be a compact open subgroup of G(AF,t ). The cupidal automorphic 
spectrum associated to ( G(AF ), K), is the collection of cuspidal auto
morphic representations 1r of G(AF) counted with multiplicity m(n, K), 
where 

m(n, K) = m0 (n)dim(nK). 

The L-cuspidal spectrum associated to ( G(AF ), K) is the collec
tion of cuspidal £-packets of [n] of G(AF) counted with multiplicity 
m([n], K) defined as, 

m([n], K) = L m(rJ, K). 
77E[n] 

Definition 6.2. Let G1 and G2 be semisimple groups over F. Sup
pose K 1 and K2 are compact open subgroups of G1 (AF,t) and G2(AF,t) 
respectively. Then the pair (G1(AF,t),K1) and (G2(AF),K2) are said 
to be cuspidally equivalent (resp. L-cuspidally equivalent) if there exists 
an isomorphism 

¢: G1 (AF)--+ G2(AF) 

such that for any cuspidal representation 1r of G2(AF ), the multiplicities 
m(n, K 2 ) and m(n o ¢, K 1) (resp. m([n], K 2) and m([n o ¢], K 1)) are 
equal. 

The reasons for the above definitions stem from the following strength
ening of Theorem 6: 
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Theorem 7. With the same hypothesis as in Theorem 6, the lattices 
K and Kx are £-equivalent in SL 1(D)(Ap ). 

The proof of Theorem 6 given in [23] carries over to prove this more 
general theorem. 

§7. From arithmetic to spectrum 

Suppose X is a projective Shimura curve. We take for a tentative 
definition of the arithmetic of X the data given by Hasse-Weil zeta func
tions attached to 'natural' local systems on X, i.e., those local systems 
which arise by restriction to the lattice from algebraic representations of 
the group G = GL1 (D). The irreducible representations are essentially 
given by the symmetric powers of the standard representation of GL(2). 
We are then led to ask the converse to the above questions that the 
spectrum determines the arithmetic: 

Question 2. Suppose X andY are Shimura curves, such that the 
Hasse-Weil zeta functions associated to the local systems coming from 
the n-th symmetric power of the standard representation of GL(2) are 
equal for all n 2': 0. 

Are X and Y isospectral with respect to the hyperbolic Laplacian 
acting on the space of functions? 

There is one context however where the arithmetic associated to a 
pair of varieties is expected to be the same. For this, we assume that 
X is associated to congruence lattices Kx c G(AF,t) as described in 
Section 3. In this case, the canonical model of the varieties are defined 
over an abelian extension of the reflex field F'. Now it follows from the 
theory of canonical models for algebraic local systems as above, that if 
CJ E Gal((F')ab IF'), then the conjugate Y = xu is first of all again a 
Shimura curve associated to D; secondly, it has the same arithmetic as 
X in the sense described above. 

In this case, we have the following theorem that Galois conjugation 
preserves the spectrum: 

Theorem 8. With notation as in Section 3, assume that k satisfies 
the hypothesis of Theorem 6 and is such that the lattices r KX are torsion
free and satisfies Assumption (*). 

For any CJ E Gal((F')ab IF'), the spaces X and xu are isospectral 
for the hyperbolic Laplacian acting on functions. 

The proof of this theorem is based on the observation that by the 
properties of canonical models, any CJ as above can be written as CJ(x) for 
some x E GL1(D)(AF,t), and then appealing to Theorem 6. In some 
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sense, the 'correct interpretation' of Theorem 6 is given by the above 
theorem: Galois conjugation over the reflex field preserves the spectrum. 

§8. General conjectures 

We try to generalize the discussion so far to the general case of 
quotients of symmetric spaces defined by congruence arithmetic lat
tices. The relationship between the spectrum and arithmetic can be 
broken into two steps: one, the relationship between the spectrum and 
L-equivalence of uniform lattices in real Lie groups. The other aspect 
is to relate L-equivalence of lattices in the real points of a reductive 
or semisimple algebraic group to suitable notions of arithmetic, i.e., to 
relate to more global aspects. 

8.1. Spectrum to arithmetic 
Suppose r is a cocompact lattice in a real Lie group G. We have a 

direct sum decomposition, 

where G denotes the set of equivalence classes of irreducible unitary 
representations of G, and m(n, r) the (finite) multiplicity with which 7f 

occurs in L2 (r\G). Define the multiplicity m([n], r) of an L-packet [n] 
by, 

m([n],r) := L m(ry,r). 
7)E[n] 

Define two uniform lattices r 1 , r 2 to beL-equivalent or L-indistin 
-guishable in G, if for any 1r E G, 

With this definition, we can expect the following conjecture to hold: 

Conjecture 3. Let G be a semisimple Lie group, K a maximal com
pact subgroup of G and r 1 , r 2 two torsion-free uniform lattices in G. 

Then r1 and r 2 are L-equivalent in G if and only if the associated 
compact locally symmetric spaces r 1\ G I K and r 2\ G I K are compatibly 
strongly isospectral as defined in Section 4. 

One can replace the isospectrality on forms by weaker assumptions: 
for instance, isospectrality for the deRham Laplacian on p-forms for all 
0 :S p :S dim( G I K). Or for the compact quotients of symmetric spaces 
of noncompact type, it is even tempting to ask whether isospectrality 
on functions is sufficient to guarantee the rest of the implication. 
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Remark 6. When the lattices are no longer cocompact, one can 
define a similar notion of two lattices peing cuspidally L-equivalent by 
working with the cuspidal spectrum of L2(r\G). 

The relationship between £-equivalence and representation equiva
lence of lattices is not clear. For instance, the following question can be 
raised: 

Question 3. Does there exist £-equivalent lattices which are not 
representation equivalent? 

Remark 7. For SL(2, IR), it seems that Hodge duality will ensure 
that £-equivalent lattices are representation equivalent. 

Remark 8. To start the discussion rolling from the spectral side, a 
first question to ask is whether any space isospectral to a compact locally 
symmetric space is itself locally symmetric? If we assume strong isospec
trality, then this is proved by Gilkey [9]. A suitable assumption will be 
to impose isospectrality on forms, but for the compact quotients of non
compact symmetric spaces it would be interesting to know whether just 
the spectrum on functions will suffice. 

Assuming the truth of the above question, the natural sequel to it 
is to say that the spectrum determines the symmetric space, in other 
words the isometry group of the universal cover. 

Such results can be considered as spectral analogues of Langlands 
conjectures on conjugation of Shimura varieties, that the Galois conju
gate of a Shimura variety is again a Shimura variety. 

We now generalize the conjecture that the spectrum determines the 
arithmetic: 

Conjecture 4. Let G1, G2 be semisimple algebraic groups over 
number fields F1 and F2 respectively. Let Ki C Gi(AF,t ), i = 1, 2 
be compact open subgroups, and r K; be the corresponding arithmetic 
lattices in Gi,oo· Suppose G1,oo ~ G2,oo = Go, and that rK1 and rK2 

are L-cuspidal, equivalent lattices in Go. 
Then the adele groups G1(A) and G2(A) are isomorphic, and the 

L-cuspidal spectrums of (G1(Ap),K1) and (G2(Ap),K2) are equal. 

Remark 9. The results of Prasad-Rapinchuk [22] show that if the 
spaces corresponding to the two lattices satisfy a 'weak commensurabil
ity' property, then the corresponding adele groups are isomorphic. 

The following GL1-aspect of the above conjecture can be made: 

Conjecture 5. Suppose F1, F2 are two totally real number fields of 
degree r over Q are such that the unit groups U p1 and U p 2 are spectrally 
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commensurable as lattices in the natural embedding into JRr-l. Then 
are F 1 and F1 arithmetically equivalent, i.e., do they have the same 
Dedekind zeta function? 

It is known (see [17]) that if two number fields are arithmetically 
equivalent then the unit groups have the same rank. The methods of 
[21] will also directly show that the lattices are commensurable with 
respect to the natural embeddings,since itis known that arithmetically 
equivalent number fields arise from the Gassmann construction. But for 
the converse direction, we need to restrict our attention to totally real 
number fields. It is for this reason that we have restricted our attention 
mostly. to semisimple groups, although it is quite natural to frame the 
conjectures in the wider context of reductive algebraic groups. 

8.2. From arithmetic to spectrum 

We now consider the possible definitions of arithmetic not only in the 
context of higher dimensional Shimura varieties but also for more general 
locally symmetric spaces arising from congruent arithmetic lattices. 

Let G be a semisimple algebraic group over a number field F, and 
K be a compact open subgroup of G(AF,J ). One possible definition 
for the arithmetic associated to (G(AF ), K) is to consider the cuspidal 
£-spectrum attached to it. A natural question is the following: 

Conjecture 6. Let G1 , G2 be semisimple algebraic groups over 
number field F1 and F2 respectively. Let Ki c Gi(AF,J ), i = 1, 2 
be compact open subgroups, and r Ki be the corresponding arithmetic 
lattices in Gi,oo· Suppose that the adele groups G1 (A) and G2(A) are 
isomorphic, and that the L-cuspidal spectrums of (G1(Ap),Kl) and 
(G2(Ap),K2) are equal. 

Then rKl and rK2 are £-equivalent lattices in Gl,oo '::::;'_ G2,oo· 

This conjecture seems obvious when F1 = F2 , and G1 and G2 are iso
morphic. However Lubotzky, Vishne and Samuels [16] have constructed 
non-trivial examples satisfying the hypothesis of the above conjecture, 
concluding thereby that there exists non-commensurable arithmetic lat
tices in PGLd(JR) which are representation equivalent. The above con
jecture should yield to suitable generalizations of Jacquet-Langlands 
type comparison between automorphic representations on inner forms 
of algebraic groups. 

We now try to define a suitable notion of arithmetic for general 
groups not giving raise to hermitian symmetric spaces, which closely 
reflects the customary meaning of arithmetic of Shimura varieties as 
discussed in Section 7. 
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We recall that an automorphic representation 1f of G(AF) is coho
mological if it's infinity type 1f00 is a cohomological representation of 
G(F 0Q! JR). For example, the discrete series representations 1ft, k ~ 2 
are representations of cohomological type for SL(2, JR) (together with the 
trivial representation and the Steinberg representation they constitute 
all the representations of SL(2, JR) with cohomology). 

It follows from the congruence relation of Eichler-Shimura and the 
work of Ihara, Langlands and others ([20], [5]), that in case of Shimura 
varieties the automorphic representations that describe the Hasse-Weil 
zeta functions of natural local systems on such spaces, are cohomological. 

Definition 8.1. The cohomological L-cuspidal spectrum associated 
to ( G(AF ), K) is the collection of £-packets of cohomological automor
phic representations of G(AF) counted with multiplicity m([1f], K). 

It's this definition, that we would like to consider as the suitable 
candidate for the notion of arithmetic of the space r K \ G 00 / K 00 • How
ever there are a couple of problems with this definition: one, is that 
computations done for general groups seem to indicate a sparsity of co
homological representations; the other is that we will have to consider 
non-unitary cohomological representations also in the above definition. 

We now generalize the conjecture that the arithmetic of Shimura 
curves determines the spectrum to arbitrary locally symmetric spaces: 

Conjecture 7. Let G1 , G2 be semisimple algebraic groups defined 
over number fields F1 and F2 respectively. Let Ki C Gi(AF,f ), i = 1, 2 
be compact open subgroups, and rKi be the corresponding arithmetic 
lattices in Gi,oo· Suppose that the adele groups G1(A) and G2(A) are 
isomorphic, and that cohomological L-cuspidal spectrums of 
(G1(Ap),K1) and (G2(Ap),K2) are equal. 

Then rKl and rK2 are £-equivalent lattices in Gl,oo ~ G2,oo· 

A particular consequence of Conjectures 4 and 7 is that the cus
pidal cohomological £-spectrum should determine the full cuspidal £
spectrum. 

Remark 10. If we consider the example of SL(1, D), where Dis an 
indefinite quaternion division algebra over a totally real number field, the 
arithmetic is concentrated on those automorphic representations whose 
archimedean component is a discrete series. The spectrum on the other 
hand gives information about those automorphic representations with 
archimedean component an unramified principal series representation. 
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