
Advanced Studies in Pure Mathematics 57, 2010 
Probabilistic Approach to Geometry 
pp. 405-436 

The heat kernel and its estimates 

Laurent Saloff-Coste 

Abstract. 

After a short survey of some of the reasons that make the heat 
kernel an important object of study, we review a number of basic heat 
kernel estimates. We then describe recent results concerning (a) the 
heat kernel on certain manifolds with ends, and (b) the heat kernel 
with the Neumann or Dirichlet boundary condition in inner uniform 
Euclidean domains. 

§1. Introduction 

This text is a revised version of the four lectures given by the author 
at the First MSJ-SI in Kyoto during the summer of 2008. The struc
ture of the lectures has been mostly preserved although some material 
has been added, deleted, or shifted around. The goal is to present an 
overview of the study of the heat kernel, in the context of the theme 
of the meeting, that is, "Probabilistic Approach to Geometry". There 
is certainly ample evidence that the study of the heat kernel is an area 
of fruitful interactions between the fields of Analysis, Probability and 
Geometry and this will be illustrated here again. The simplest state
ment embodying these interactions is perhaps Varadhan's large devia
tion formula [60] 

lim -4tlogp(t,x,y) = d(x,y) 2 . 
t-+0 

This formula relates the heat kernelp(t, x, y) to the Riemannian distance 
function d(x, y) on a complete Riemannian manifold. A remarkable gen
eralization was given by Hino and Ramirez (see, [3, 39]). Namely, in the 
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context of Dirichlet spaces, 

lim -4t log IP'(Xo E A; Xt E B) = d(A, B)2 • 
t-->0 

Here Xt denotes the Markov process associated with the underlying local 
regular Dirichlet form and dis the associated intrinsic distance. Unfor
tunately, these elegant statements are not very easy to use in practice. 
They do capture the essence of the universal Gaussian character of the 
heat kernel but they are quite far from providing upper and/ or lower 
bounds comparing the heat kernel p(t, x, y) to expressions of the form 

(1) ( d(x,y)2) 
F(t, x, y) exp - ct , 

where F(t, x, y) is some explicit function whose role is to describe the 
behavior of the heat kernel in the region where d(x, y)2 ~ t. Of course, 
in the classical case of the n-dimensional Euclidean space :~Rn, F(t, x, y) 
is simply a function of t and 

( 1 )n/2 ( d(x, y)2) n 
(2) p(t,x,y) = 41rt exp - 4t , t > 0, x,y E JR . 

Upper and lower bounds of the type (1) are the focus of this article. 
After discussing in Lecture 1 some general upper bounds and their rela
tions to functional inequalities, we will survey a number of results that 
provide (almost) matching heat kernel upper and lower bounds. The 
most important of these results is described in Lecture 2 and character
izes those complete Riemannian manifolds on which the heat kernel is 
bounded by 

(3) 1 ( d(x,y)2) 
p(t, x, y) c::=. V(x, Vt) exp - t ' 

by which we means that there are constants e;, E (0, oo) such that 

c1 ( d(x,y)2) < t < c3 . ( d(x,y) 2) 
V(x, Vt) exp - c2t - p( 'x, y) - V(x, Vt) exp - c4t · 

In Lecture 3, this fundamental result is used to study a large class of 
manifolds with finitely many ends where (3) does not hold but where the 
function F in (1) can nevertheless be described explicitly in reasonably 
simple geometric terms. Finally, in Lecture 4, the characterization of 
(3) discussed in Lecture 2 is applied to the study of the heat kernel with 
Dirichlet boundary condition in some Euclidean domains. 
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§2. Lecture 1: Motivations and basic heat kernel bounds 

We let M denote our generic underlying space. It is, at the very 
least, a topological (metrizable, locally compact) space equipped with 
a measure JJ( dy) = dy and a "Laplacian" fl. The reader can think of 
a complete non-compact Riemannian manifold equipped with the Rie
mannian measure v( dy) and the Laplacian Ll = div grad as the basic 
example. But the reader should also keep in mind that we will want 
to include further examples, the simplest of which are weighted Rie
mannian manifolds, that is, complete non-compact Riemannian mani
folds equipped with a measure JJ(dy) = CY(y)v(dy), 0 < CY E C00 (M), and 
the associated weighted Laplacian Ll = CY- 1div(CYgrad). 

Of course, the most classical case is M = JRn equipped with Lebesgue 

measure and Ll = I:~ ( 8~i) 2 . In this case the heat kernel p(t, x, y) is 

given by (2). 

2.1. What is the heat kernel? 
There are many ways to introduce the heat kernel and each has its 

own advantages. Let us mention three distinct viewpoints. 
The first is to view the heat kernel as the fundamental solution of a 

parabolic partial differential equation, the heat diffusion equation 

(4) (8t- Ll)u = 0. 

That is, we seek a smooth function (t, x, y) f--7 p(t, x, y) defined on 
(O,oo) x M x M such that, for each y E M, p(t,x,y) is a solution 
of (4) and for any¢ E C~(M) (smooth compactly supported function 
on M), u(t,x) = JMp(t,x,y)¢(y)dy tends to ¢(x) as t tends to 0. In 
other words, the heat kernel allows us to solve the Cauchy initial value 
problem for (4). 

A second possibility is to consider Ll (defined, say, on C~ ( M)) as 
a symmetric operator on L2 (M, JJ) whose Friederichs extension gen
erates a strongly continuous one parameter contraction semigroup Ht 
on L2 (M, JJ) (the heat diffusion semigroup). This semigroup admits a 
transition function (a priori, this is a measure in the second variable) 
p(t, x, dy) such that Htf(x) = JM f(y)p(t, x, dy). The heat kernel (if it 
exists) is then obtained as the density of p(t, x, dy) with respect to the 
underlying measure JJ(dy) = dy. 

A third approach is to view p(t, x, dy) as the distribution at timet of 
a stochastic process (Xt)t>O started at x (the Brownian motion driven 
by Ll on M). These different viewpoints are related by the formula 

u(t, x) = Htuo(x) = lEx(uo(Xt)) 
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where u is the solution of the Cauchy initial value problem for (4) with 
initial value condition u0 (say, in C~(M)). 

2.2. Why is this interesting or useful? 

2.2.1. Intrinsic interest The study of the parabolic equation ( 4) is 
justified by its dual interpretation as the equation modeling heat diffu
sion and the equation driving Brownian motion. Estimating the heat 
kernel is to understand the space-time evolution of temperature in an 
object represented by M. From this view point, one may want to study: 

and 

• the long time behavior of the maximal temperature ¢( t) = 

SUPx,yEM{p(t, X, y) }; 
• the long time behavior of the maximal temperature for a fixed 

starting point x, ¢(t,x) = supyEMp(t,x,y); 
• the long time behavior of the temperature at a fixed point y 

for a fixed starting point x, i.e., the behavior of p(t, x, y). 
• the evolution of the position and shape of the hot spot set (for 

some fixed E E (0, 1)) 

HOT<(t,x) = {y EM :p(t,x,y) 2:: e¢(t,x)}. 

Obviously, in Euclidean space, (2) indicates that 

¢(t) = ¢(t, x) = p(t, x, x) = (4nt)-nf 2 

HOT<(t,x) = B(x, )4tlog1/e). 

This should be compared to what happens in Hyperbolic 3-space where 

( 
1 ) 3/2 

p(t,x,y)= 4nt si:h/-t-p2/4t, p=d(x,y) 

so that ¢(t) = ¢(t, x) = p(t, x, x) = (4nt)- 312e-t and, for all t > 0, 
HOT<(t, x) is contained in B(x, r(e)), a ball whose radius is independent 
oft. This illustrates the important fact that the behavior of heat kernel is 
influenced by and captures certain geometric properties of the underlying 
space. 

2.2.2. The heat kernel as an analytic tool One of the most basic 
application of the heat kernel (and the associated heat semigroup) is as 
a smoothing approximation tool, taking advantage of the fundamental 
property that Htf ---+ f as t tends to 0, under various circumstances. In 
fact, and this is very useful, many function spaces can be characterized 
in terms of the behavior of Htf. For instance, the space Aa (JRn) of 
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all bounded Holder continuous functions of exponent a E (0, 1) can be 
characterized as (HU denotes the time derivative of Htf) 

Aa = {! E L00 (~n): sup{tl-a/2 jJHUIIoo} < oo}. 
t>O 

Similarly, one of the equivalent definition of the Hardy space H 1 (whose 
dual is BMO), is that 

Hl = {! E L1 (~n) :sup IHtfl E L1 (~n)}. 
t>O 

See, e.g., [12] and [59, Chapter I]. The whole scales of Besov and Lizorkin 
spaces can be treated in similar ways. One of the point we want to make 
here is that these versions of the definitions of classical function spaces 
are suitable for extensions to a great variety of different setups when 
other approaches may not be available. In such cases, heat kernel esti
mates become essential to understand the meaning of these definitions. 

Another important application of heat kernel bounds concerns op
erators that are defined through functional calculus in terms of the 
Laplacian. For instance, the basic spectral theory of selfadjoint oper
ators allows us to make sense of the operator (often called a multi
plier) m(-~) = J0

00 m(>-.)dE>-. acting on £ 2 whenever m: [O,oo)----> ~ 
is bounded continuous. Here, the E>-. 's are orthogonal projections that 
form a spectral resolution of the Laplacian on £ 2 ( M, J-L). To obtain more 
information on such operators- e.g., does m( -~) also act on LP for 
some p E (1, oo )? -one needs to understand better the spectral projec
tion operators E>-.. Understanding the heat kernel is a very efficient way 
to study this question since, formally, p(t,x,y) = J0

00 e-t>-.dE>-.(Ox,Oy) 
where Ox denotes the Dirac mass at x. In some sense, p(t, x, y) can serve 
as an approximation for the spectral projectors E)... The simplest ap
plication of this general line of thought leads to the resolvent function 
formula (where Ga(x, y) is the kernel of (a!- ~)-I, if it exists) 

Ga(x,y) = 100 
e-atp(t,x,y)dt, a :2:0. 

A more sophisticated applications concerns the action of the imaginary 
power of the Laplacian ( -~)if3 on the LP spaces. See, e.g., [24]. In 
a similar spirit, heat kernel bounds play a crucial role in the study of 
the boundedness of Riesz transforms on LP spaces on manifolds. See [7] 
and Hofmann article in [40]. Finally, the complex time heat kernel and 
heat semigroup can also be investigated. See, e.g., [21]. This plays an 
important role in connection with the study of the multipliers mentioned 
above and of the wave equation. 
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2.2.3. Applications to Topology/Geometry It is well known that topo
logical/ geometrical information is contained in the spectrum of the Lapla
cian. The heat kernel is a useful tool to extract such information (see, 
e.g., [40]). This can be done both through asymptotic expansion as t 
tends to 0 and through the large time behavior of the heat kernel. For 
instance, topological dimension and volume growth are reflected in var
ious ways in heat kernel behaviors. In this spirit, more sophisticated 
properties such as isoperimetric inequalities are also relevant. 

2.2.4. Gaussian Hilbert spaces One of the most important stochas
tic process, beside Brownian motion, is the Orstein~Ulhenbeck process. 
Classically, this is the process on lR associated with the Dirichlet form 
J 1!'12&-y on L 2 (JR, 'Y) where 'Y is Gauss measure. It is one of the ba
sic object of Mathematical Physics. Hermite polynomials provide an 
orthonormal basis for L2 (1R, 'Y) and diagonalize the associated infinites
imal generator. The heat kernel measure f.l[(dy) = p(t, x, y)dy (with 
base point x) allows us to define the Gaussian Hilbert space L 2 (M, f.lD 
in many different settings. These Hilbert spaces are the building blocks 
of analysis on paths and loop spaces. See. e.g., Driver article in [8] and 
[35]. Of course, heat kernel estimates are crucial to our understanding 
of these objects. 

2.3. Sobolev-type inequalities andbasic heat kernel bounds 

To fix ideas, we frame the following discussion in the context of 
weighted Riemannian manifolds. Throughout this section, we let ( M, g) 
be a complete non-compact Riemannian manifold equipped with a smooth 
positive weight (J and the measure f.l(dy) = (J(y)dy where dy stands for 
the Riemannian measure. The associated Laplacian is 

D.f = (J~ 1 div((J gradf). 

This operator, defined on C';;"(M) is essentially selfadjoint on L 2 (M, f.l) 
with unique selfadjoint extension D.. We let p(t, x, y) be the associated 
heat kernel, i.e., the kernel associated to the heat semigroup et/5. on 
L 2 (M,f.l). 

2.3.1. Varopoulos' theorem Although there are various antecedents 
in the literature, N. Varopoulos [61] was the first to identify the equiv
alence between heat kernel bounds and Sobolev inequality in a large 
enough context. In particular, Varopoulos proved, for any fixed n > 2, 
the equivalence between the heat kernel upper bound 

(5) ¢(t) = sup{p(t,x,y)} :S crn/2 , t > 0, 
x,y 
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and the Sobolev inequality 

(6) 

Other developments in this direction are recorded in the following the
orem. See, e.g., [13, 27, 42, 48, 51, 53, 63]. 

Theorem 2.1. For any fixed n > 0, the bound (5) is equivalent to 
each the following properties: 

• The Nash inequality: 

• The Faber-K rahn inequality 

for all open relatively compact subsets 0 of M where >.(0) is 
the lowest Dirichlet eigenvalue in 0. 

Moreover, when n > 2, is also equivalent to: 

• The Sobolev inequality (6). 
• The Rozenblum-Cwikel-Lieb inequality: 

where V_ is the negative part of V E L~oc and N_ (A) is the 
number of negative L 2 -eigenvalues of A. 

Note that the lowest Dirichlet eigenvalue in a open set 0 is defined 
by the variational formula 

See, e.g., [14, 27]. For a topological application of the RCL inequality, 
see [15]. 

2.3.2. The general Gaussian upper bound One of the most impor
tant discovery in the area of heat kernel estimates is the "universality" 
of the Gaussian factor. 

This is illustrated by the following result due to A. Grigor'yan which 
is typical of an important body of work developed by E. B. Davies, N. 
Varopoulos, A. Grigor'yan and others concerning Gaussian bounds. See 
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[13, 17, 22, 27, 28, 51, 63]. Given a continuous decreasing function v, we 
consider the condition 

(*) 30<a<l<A<oo, u(As)>au(s), u=v'jv. 

This condition means that the logarithmic derivative u of v decays at 
most as a power function in the sense that u(s)/u(t) 2:: c(tjs)'Y for all 
s > t > 0 and some c, 'Y > 0. 

Theorem 2.2. Let v be a continuously differentiable decreasing pos
itive function on (0, oo) satisfying ( *). Let A be the continuous function 
related to v by 

t= r(t) ~ 
} 0 sA(s) 

equivalently, v'(t) = v(t)A(v(t)), v(O) = 0. Then the Faber-Krahn in
equality 

A(O) 2:: c1A(C1J.L(O)), 0 open relatively compact in M, 

is equivalent to the heat kernel bound 

c2 
¢(t) = sup{p(t, x, y)}::::; -(-), t > 0. 

x,y v c2t 

Moreover, these equivalent properties imply 

I(!) m p(t,x,y)l::::; ~~~? exp ( 

for all (t,x,y) E (O,oo) x M x M. 

d(x, y) 2 ) 

4(1 + E)t ' 

2.4. Volume growth and heat kernel bounds 
One of the most basic ideas relating heat kernel estimates and ge

ometry is that, because of the diffusive character of the heat equation, 
large volume growth should implies that the heat kernel is small. Here 
volume growth refers to the volume function V(x, r) = J.L(B(x, r)). We 
now state one of the simplest result illustrating this idea (and its short
comings). We say that a weighted manifold has bounded geometry if (a) 
(M,g) satisfies Ric 2:: -kg for some k 2:: 0; (b) c1 ::::; a(x)ja(y)::::; C1 for 
all x, y with d(x, y) ::::; 2; (c) Cl ::::; V(x, 1) ::::; cl. Under these conditions, 
the heat kernel satisfies 

C2::::; tnf2p(t, x, x) ::::; c2, (t, x) E (0, 1) X M, 

where n is the topological dimension of M. 
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Theorem 2.3. Let M be a complete non-compact weighted manifold 
with bounded geometry (as defined above). 

• Assume that V ( x, r) 2::: erN for all r 2::: 1. Then 

c 
p(t, X, y) :::; tN/(N+l)' t 2::: 1. 

• Assume that V(x, r) :::; CrN for all r 2::: 1. Then 

c 
p(t,x,x) 2::: (tlogt)N/2' t 2::: 1. 

These bounds are (essentially) sharp in the sense that there are 
examples where they describe (essentially) the true behavior of the heat 
kernel. See [9, 18, 19] for details. 

The following result complement the previous theorem by giving an 
important collection of examples where the long time behavior of the 
heat kernel is tightly connected to the volume growth. Let M = G be 
a connected unimodular Lie group equipped with Haar measure and a 
left-invariant Riemannian metric. Let V(r) be the volume of a ball of 
radius r. Then either (a) there exists D such that V ( r) ~ rD, r E (1, oo), 
or (b) logV(r) ~ r, r E (l,oo). See [63] for details and references for 
this classical result. 

Theorem 2.4. Let M = G be a connected amenable unimodular 
Lie group equipped with Haar measure and a left-invariant Riemannian 
metric. Let V(r) be the volume of a ball of radius r. Then: 

• Either there exists D such that V ( r) ~ rD, r E ( 1, oo), and the 
heat kernel satisfies p(t,x,y) ~ rDf2 , t E (1,oo). 

• Or logV(r) ~ r, r E (l,oo), and the heat kernel satisfies 
-log(p(t,x,y)) ~t113 , t E (1,oo)). 

See also [52, 53] for a further review of results in this direction and 
references. In the second case, i.e., for amenable unimodular connected 
Lie groups of exponential volume growth, the estimate take the form 

exp ( -clt113 ):::; p(t,x,x):::; exp ( -Clt113), X E G, t:::: c2, 

for some cl,Cl,C2 E (O,oo). 

§3. Lecture II: The parabolic Harnack inequality (PHI) 

3.1. Harnack inequalities 
3.1.1. The elliptic Harnack inequality One of the classical result 

concerning harmonic functions in JRn states that any positive harmonic 
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function u in an Euclidean ball B = B(x, r) satisfies 

(7) sup {u}:::; H inf {u}. 
(1/2)B (1/2)B 

The constant H is independent of B (location and scale) and u. This is 
known as the (elliptic) Harnack inequality. Its best known consequence is 
the fact that global positive harmonic functions in JR_n must be constant. 

J. Moser (44] observed that (7) also holds for uniformly elliptic op
erators (with measurable coefficients) in divergence form in JR.n and that 
this implies the crucial Holder continuity property of the local solutions 
of the associated elliptic equation, a result proved earlier by De Giorgi. 

In the context of weighted Riemannian manifolds, we may consider 
the above elliptic Harnack inequality as a property that may or may 
not be satisfied. It is an open question to characterize (in useful terms) 
those weighted manifolds that satisfy this property. However, around 
1975, Cheng and Yau (16] proved that on any complete Riemannian 
manifold (M,g) with Ricci curvature bounded below by Ric ;::: -Kg, 
for some K ;::: 0, any positive harmonic function in a ball B = B(x, r) 
satisfies 

l\7logul:::; C(n)(K + 1/r) in (1/2)B. 

When K = 0 (non-negative Ricci curvature), this gradient Harnack 
estimate immediately implies the validity of (7). 

3.1.2. The parabolic Harnack inequality (PHI) The parabolic ver
sion of (7) is attributed by J. Moser to Hadamard and Pini. In [45], 
J. Moser proved the parabolic Harnack inequality for uniformly ellip
tic operators in divergence form in JR.n. This inequality states that 
a positive solution u of the heat equation in a cylinder of the form 
Q = (8, 8 + ar2 ) x B(x, r) satisfies 

(8) sup{u}:::; Hoinf{u} 
Q- Q+ 

where, for some fixed 0 < (3 < 'Y <a< a< oo and rJ E (0, 1), 

Q_ = (8 + (3r2 , 8 + "(r2 ) x B(x, ryr), Q+ = (8 + ar2 , 8 + ar2 ) x B(x, ryr). 

Here the constant H 0 is independent of x, rand u. The geometry of the 
cylinders Q_, Q+ c Q is depicted in Figure 1 below with T = R 2 = r 2 

and a = (4/3)a = 2"( = 4(3 = 8ry = 4. The gap (of order r2 ) between 
the two inner-cylinders is necessary, dictated by the parabolic nature of 
the equation. 

As in the elliptic case, the parabolic Harnack inequality (8) implies 
the Holder continuity of the corresponding local solution (this continuity 
was first obtained by Nash in [46]). 
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R/2 

Tl Q+ 

I For a positive solution in Q, 

4T 
T8 

sup{u} $ H 0 inf{u}. 
Q- Q+ 

Q 

R 

Fig. 1. The cylinders Q-,Q+ C Q 

Again, in the context of weighted Riemannian manifolds, we may 
consider (8) as a property, call it (PHI), that may or may not be satisfied. 
For complete Riemannian manifolds (M, g) of dimension n with non
negative Ricci curvature, P. Li and S. T. Yau proved that any positive 
solution u of the heat equation in (s, s, +r2 ) x B, B = B(x, r), satisfies 

IY'logul2 - 28t logu $ C(n) ( r12 + ~) in (0, r 2 ) x B(x, r/2). 

For global positive solution u of the heat equation, they obtain the 
refined optimal inequality 

IV' logul2 - at logu $ ~ in (0, oo) X M. 

The first of these gradient estimates implies that (8) holds on mani
folds with non-negative Ricci curvature. The second gradient inequality 
yields, for any E E (0, 1), the very precise two-sided heat kernel bound 

(9) 
c(E) ~ C(E) df'•·vll2 

--'--'-=-e-4(1+<)t < p(t X y) < e- 4 1-e t 

· V(x, Vt) - ' ' - V(x, Vt) ' 

as well as the companion gradient estimate 

(10) 
C(E) d(x,y) 2 

IV' p(t X y) I < . e- 4(1-e)t • 

Y ' ' - VtV(x, Vt) 

See [43]. 

3.2. The characterization of (PHI) 
In contrast to the fact that we do not have a precise description of 

those complete weighted Riemannian manifolds that satisfy the elliptic 
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Harnack inequality, there is a very good description of the class of com
plete weighted Riemannian manifolds satisfying the parabolic version 
(PHI). This theorem also applies to weighted manifolds with boundary 
as long as the Neumann condition is assumed. 

Theorem 3.1 ([26, 49)). Let (M,g) be a weighted complete Rie
mannian manifold. The following three properties are equivalent: 

• The parabolic Harnack inequality (PHI). 
• The two-sided heat kernel bound ((t,x,y) E (O,oo) x M x M) 

(11) 
C1 C d(x,y)2 02 ~ 

---=-e- 1 t < p(t x y) < e-c2 t 
V(x, -../i) - ' ' - V(x, -../i) 

• The conjunction of 
The volume doubling property 

V x EM, r > 0, V(x, 2r) S DV(x, r). 

The Poincare inequality (Vx EM, r > 0, B = B(x,r)) 

V f E Lip( B), Llf- fBI 2 dJ-L S Pr2 l!V fl 2 dJ-L, 

where fB is the mean off over B. 

Here Lip( B) denotes the space of bounded Lipschitz functions in B. 
This space can be replaced by the space of smooth functions in B that 
are bounded with bounded gradient, or by the natural Sobolev space 
W 1 (B) of those functions in L2 (B) whose first derivatives in the sense 
of distributions can be represented by functions in L 2(B). Assuming the 
doubling property, the Poincare inequality can be replaced by 

v f E c;;o(M), r If- fBI 2 dJ-L s Pr2 r !Vfl 2 dJ-L, 
jB jkB 

where B = B(x, r), kB = B(x, kr), x EM, r > 0 and fB is the mean of 
f over B. It is in this weaker form that the Poincare inequality is often 
obtained. See [26, 49, 50] and also [51, Chapter 5]. 

The doubling property implies that for all x, y E M and 0 < r < 
R<oo 

V(y, R) < D (d(x, y) + R)"' 
V(x,s) - 1 r 

and, if M is assumed to be non-compact, 

V(x, R) > d (R)f3 
V(x,r) - 1 r ' 
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for some 0 < (3:::; a < oo. 
Another interesting characterization of the class of manifold that 

satisfy (PHI) is as follows: A complete weighted manifold M satisfies 
(PHI) if and only if the Riemannian product lR x M satisfies the elliptic 
Harnack inequality. See [38] for details and further results. 

3.3. Examples of weighted manifolds satisfying (PHI) 

Here is a list of examples with additional comments in each case. 

• Complete Riemannian manifolds with non-negative Ricci cur
vature. In this case, the doubling property follows from the 
celebrated Bishop-Gromov volume comparison. The Poincare 
inequality follows from the work [11] of P. Buser. See also 
[51, Sect. 5.6.3]. The parabolic Harnack inequality and the 
two-sided heat kernel bound were first obtained by Li and Yau 
in [43]. 

• Convex domains in Euclidean space. The doubling property 
and Poincare inequality are well-known results in this case. 
The Harnack inequality and heat kernel bound can be derived 
by the Li-Yau argument, at least for smooth convex domains 
(convexity of the boundary is similar to non-negative Ricci 
curvature). Of course, the Neumann boundary condition is 
assumed. 

• Complements of any convex domain. It is amusing and instruc
tive that both convex domains and their complements satisfy 
(PHI). In the case of the complement of a convex domain, 
note that the distance is the intrinsic geodesic distance of the 
domain (for convex domains, the intrinsic geodesic distance 
equals the Euclidean distance). That (PHI) holds in this case 
is a recent result of the author and his graduate student P. 
Gyrya. More generally, (PHI) holds in inner uniform domains 
(complements of convex domains are inner uniform but un
bounded convex domains are not). 

• Connected Lie groups with polynomial volume growth. These 
are connected Lie groups such that for any compact neighbor
hood K of the origin, \1 n, IKnl :::; CnA for some constants 
C, A. Here Kn = {k = k1 ... kn : ki E K} and IKnl is the 
Haar measure of Kn. Nilpotent Lie groups are always of this 
type. By an important result of Guivarc'h, there must then 
exist an integer D such that \In, c1nD:::; IKnl:::; C1nD. This 
implies the doubling property for any left-invariant Riemann
ian metric. Concerning the Poincare inequality, see, e.g., [51]. 
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For the parabolic Harnack inequality, see [63]. It is interest
ing to note that doubling, Poincare and (PHI) also hold for 
the sub-Laplacians of the form~= 2::~ X'f associated with a 
family of left invariant vector fields :F = {xi' 1 ::; i ::; k}' as 
long as :F generates the Lie algebra (this is called Hormander 
condition). See [63]. 

• Let ( M, g) be a Riemannian manifold which covers a compact 
manifold with deck transformation group r. The group r is 
finitely generated and, choosing a finite symmetric generating 
set, we can consider its volume growth. Iff has polynomial vol
ume growth then (M,g) satisfies (PHI). See, e.g., [20, 50, 52]. 

• Assume that M, N are two complete Riemannian manifolds 
and G is a group of isometries of M such that MjG = N. 
Then, if M satisfies (PHI) so does N. See,e.g., [49, 50]. 

• Consider the Euclidean space Rn, n 2: 2, with weight (1 + 
lxl 2 )"'12 , a E ( -oo, oo ). This is a complete weighted manifold. 
It satisfies (PHI) if and only if a > -n. It satisfies the ellip
tic Harnack inequality for all o:. See [33] for this and other 
examples in this spirit. 

• Any weighted complete Riemannian manifold with bounded 
geometry (see Section 2.4) which is (volume) quasi-isometric 
to a complete weighted manifold satisfying (PHI) also satisfies 
(PHI). See [41, 20]. 

3.4. Some consequences 

In this subsection, I describe two consequences of the parabolic Har
nack inequality (PHI) that will play a role in Lecture III. They concern 
the Dirichlet heat kernel in the complement of a compact set and the hit
ting probability of a compact set. The main references for these results 
are [31, 32]. 

3.4.1. The Dirichlet heat kernel in n = M \ K Let K be a compact 
set with non-empty interior in a complete weighted manifold M and set 
n = M\K. We are concerned with the fundamental solutionpn(t,x,y) 
of the heat equation in n with Dirichlet boundary condition along an 
(the reader can assume that K as smooth boundary but it is irrelevent 
for our purpose). Note that we always have po(t, x, y) ::; p(t, x, y). 

Theorem 3.2 ([31]). Assume that M satsifies (PHI) and is tran
sient, that is, Jt" v(:,svs) < oo. Then there exist 6, c, C E (0, oo) such 

that for all (t,x,y) E (O,oo) x (M\Ko?, 

cp(Ct,x,y) :Spo(t,x,y) :Sp(t,x,y). 
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Here, K 0 is the 8-neighborhood of K. This theorem says that, when 
M is transient and satisfies (PHI), the Dirichlet heat kernel in 0 is 
comparable to the heat kernel of M away from 80. The hypothesis that 
M is transient is essential. Note that the theorem implies that 0 must 
be connected at infinity. 

To state a result concerning the case when M is recurrent, that is, 
when It'' V(:,s..;s) = oo, we need an additional assumption. 

Definition 3.3. We $ay that M satisfies (RCA) (this stands for 
relatively connected annuli) if there is a point o and a constant A such 
that for any r > A2 and any two points x, y EM with d(o, x) = d(o, y) = 
r there is a continuous path in B ( o, Ar) \ B ( o, r /A) connecting x to y. 

Theorem 3.4 ([31]). Assume that M satsifies (PHI), (RCA) and 
is recurrent. Then there exist 8, Ci E (0, oo), i = 1, ... , 4 such that for 
all (t,x,y) E (O,oo) x (M\K0 )Z, 

c1D(t, x, y)p(c2t, x, y) :::; Pn(t, x, y) :::; c3D(t,x, y)p(c4t, x, y) 

where 
D(t x ) _ H(lxi)H(Iyl) 

' 'y - (H(Ixl) + H( Vt))(H(Iyl) + H( Vt)) 

with lxl = sup{d(x,k): k E K} and 

rr se-1/s 
H(r) = 1 + Jo V(o, s) ds, o E K fixed. 

For instance if M = IR.2 then H(r) ~ log(2 + lxl). 
3.4.2. Hitting probabilities Let Xt be the strong Markov process as

sociated with our heat semigroup (i.e., Brownian motion on M). In this 
section we consider the hitting probability 

7/JK = 1P'x(3s E [0, t] : Xs E K). 

This is a solution of the heat equation in 0 = M\K taking the boundary 
value 1 on 80. It is a very important solution from many different 
viewpoints. We assume that K is a compact set with non-empty interior 
and o in an interior point of K. The notation is as in the previous section. 

Theorem 3.5 ([32]). Assume that M satisfies {PHI) and is tran
sient, that is, It" V(:,s..j8) < oo. Then, for any 8 > 0 there exist 

c, C E (0, oo) such that for all (t, x) E (0, oo) x (M \ Ko) we have 

clxl2 e-Cixl2/t < 7/J (t x) < Clxl2 e-clx12/t ift < 2lxl2 
V(o, lxl) - K ' - V(o, lxl) 
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and 

Moreover, for all large enough 8 and (t,x) E (82 ,oo) x (M\Ka), 

c e-Cixl2/t < '1/J' (t x) < C e-clxl2/t. 
V(o, ..fi) - K ' - V(o, ..fi) 

The hitting probability estimates in the recurrent case are very in
teresting but we refer the reader to (32, Sec. 4.4]. 

§4. Lecture III: The heat kernel on manifold with ends 

The aim of this Lecture is to describe the results of (30, 34] which 
provide two-sided estimates that are fundamentally different from (11). 
This is joint work with A. Grigor'yan. We investigate the heat kernel 
on complete weighted manifolds of the form 

that is, manifold that are the connected sum of a finite number k of 
manifolds Mi, 1 :S i :S k. More precisely, this means that M is the 
disjoint union M = K U E 1 U · · · U Ek where K is a compact with 
smooth boundary - we refer to it as the cenral part - and each Ei is 
isometric to the complement of a compact set Ki with smooth boundary 
in Mi. If M is weighted then we assume that the Mi's are weighted. 
The weight on M and the weight on Mi coincide on Ei (with the obvious 
identification). Technically, it is actually very convenient to allows the 
Mi to have a boundary since we can then consider the case when Mi = 
Ei. In addition, the simplest examples are actually examples of domains 
in ~n (e.g., with n = 3) in which case we assume the Neumann condition 
along the boundary. In this context, for any x E M, we let ix = i if 
x E Ei, ix = 0 if x E K (the choice of what ix means when x E K will 
never play an important role). 

Our goal is to study the heat kernel on M = M 1 # ... #Mk when 
each Mi satisfies (PHI), i.e., satisfies the two-sided heat kernel bound 
(11). This is done by using a gluing technique developped in (34]. The 
idea is to reduce the problem as much as possible to estimates that 
depend on each end separately. Since each end satisfies (PHI), we know 
a lot about the heat equation on each end. The estimates of the Dirichlet 
heat kernel on Ei and of the hitting probability of K starting from x E Ei 
play a crucial role in this technique. In addition, and this is the only 



Heat kernel 421 

input that depends globally on M, we need an estimate of the heat 
kernel p(t,x,y) when x,y are in the central part K. It turns out that 
the structure of the heat kernel bound depends in a crucial ways on 
whether or not the manifold M is transient and also, if M is transient, 
on whether or not every end is transient. 

4.1. The case when every end is transient 

In this section we assume that M = M1 # ... #Mk with every Mi 
being a transient manifold satisfying (PHI). Because Mi satisfies (PHI), 
transience means Jt" V.(~,sv'8) < oo. Here and in what follows o is a fixed 
point in the interior of the compact K and 

Vi(x, r) = J.L(B(x, r) n (K U Ei)), x E K U Ei 

is the Ei-restricted volume growth function. We set 

Vo(r) = ~n{Vi(o,r)} . 
• 

Note that the end Ei that yields the smallest volume Vi ( o, r) may depend 
on r. For x E M, set 

and 

lxl =sup d(k,x) 
kEK 

ix = i if x E Ei with the convention that K =Eo. 

Define H(x, t) on M x (0, oo) by the formula 

(12) . { lxl2 (1t ds ) } H(x,t) =mm 1, + . 
Vi.,(o,jxi) 1x12Vi.,(o,y8) + 

Note that H(x, t) ~ 1 if jxj stays bounded and H(x, t) is comparable 
to the hitting probability 'lj;K(t,x) if x E Ei and away from K (this 
probability can be computed in Mi!). See Section 3.4.2. 

Let d0(x, y) be the infimum of the length of rectifiable curves joining 
x to y without entering K. Let d+(x, y) be the infimum of the length 
of rectifiable curves joining x to y and intersecting K. Note taht if x, y 
are in the same end and away from K then d0(x,y) = d(x,y) whereas, 
if x, yare in different ends, then d+(x, y) = d(x, y). 

Theorem 4.1 ([34]). Assume that M = M1# ... #Mk is the comn
nected sum of the complete non-compact weighted Riemannian manifolds 
Mi, 1:::; i:::; k, where each Mi is transient and satisfies (PHI). Then the 
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heal kernelp(t,x,y) on M is bounded above and below by expressions of 
the type 

c1 ( d0(x, y)2 ) ----r======= exp -c2 + 
JV;_x (x, yt)V;_Y (y, vt) t 

(
H(x, t)H(y, t) H(x, t) H(y, t) ) ( d+(x, y) 2 ) 

C3 + + · exp -c4. . 
Vo ( vt) V;_Y ( O, Jt) V;_x ( o, Jt) t 

To illustrate this result in a simple case, set Mi = JRN j7l.N -N; for 
some N1, ... , Nk, with n = min{Ni} > 2 and N ;:::: max{Ni}· In this 
case, the end Mi has volume growth V;_(r) ~ rN; for larger. For sim
plicity, assume that x E Ei, y E Ej with i =F j and that lxl, IYI :::; v't. 
Then the theorem above yields the two-sided bound 

4.2. The case when M is transient 

The case when M is transient but at least one end Mi is not is rather 
interesting. It is completely different from, but can be reduced to, the 
case when every end is transient. The reduction is via the technique of 
Doob transfoms. More precisely, we assume that M = M1 # ... #Mk is 
transient with each Mi satisfying (PHI). We assume further that each 
Mi satisfies (RCA) (see Defnition 3.3). Then there exists a positive 
harmonic function h on M such that (see [31, 58]) 

(J, Ixl2 ds ) 
h(x) ~ 1 + 1 V;_Jo, JS) + 

Theorem 4.2 ([33, 34]). The ends Mi of the weighted manifold 

are transient and satisfy (PHI). 

The classical Doob transfoE? technique shows that the heat kernel 
on· M and the heat kernel on M are related by a simple formula. This 
and Theorem 4.1 yields the following result. 

Theorem 4.3. Consider M = M1 # · · · #Mk. Assume that M is 
transient. Assume that each Mi satisfies (PHI) and (RCA). Then the 
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heat kernel is bounded above and below by expressions of the type 

h(x)h(y) x ( 1 exp (- d~(x, y)) + 
V~x (x, Vt)~Y (y, Vt) t 

(
ii(x, t)H(y, t) H(x, t) H(y, t) ) ( d~(x, y) )) 
-'-=--'---~----'-- + + exp - · . 

Vo(Vt) ~y(o, Vt) ~Jo, Vt) t 

Here- means that the corresponding object is computed on the weighted 

manifold M = (M, h 2 dJ.L). 

Let us point out that this theorem covers a great variety of different 
cases. For each (t,x,y) one (or more) of the terms in the theorem will 
dominate the other terms. It is not always obvious to guess which term 
will dominate. Under the general hypotheses of the theorem, it is not 
always possible to rank the ends from smallest to largest. Indeed, which 
end is smallest (or largest), viewed from the central part K, may well 
depend on the scale r at which one look at them. One end may be 
the smallest for a long while but later turn out to be the largest end, 
assymptotically as r tends to infinity. Since the stated estimates are 
uniform in t, x, y, they do capture such phenomenon. 

Corollary 4.4 ([34]). Assume that M = M1 # · · · #Mk is transient 
with each Mk satisfying (PHI) and (RCA). Then 

• SUPx,y{p(t, x, y)} c::::: maxi{~(o, Vf,)- 1 } 

• supy{p(t, x, y)} c::::: maxi{[1Ji( Vt)~(o, vt)]- 1 } 

• p(t, x, y) c::::: maxi{[1Ji( Vt)2 ~(o, Vt)]- 1 } 

with 

4.3. An explicit example 

We now describe the application of the theorem of the previous 
section in the case of a very explicit example depicted in Figure 2. This 
example is taken from [34]. 

For the domain of Figure 2 (with Neumann boundary condition), 
we ask the following questions: 

• What is the large time behavior of the heat kernel p(t, x, y) for 
fixed x, y? 

• What is the behavior of ¢(t, x) = supy{p(t, x, y)} for a fixed x? 
• What is the behavior of ¢(t) = SUPx,y{p(t,x,y)}? 
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Fig. 2. A 3-d transient Euclidean domain with 3 ends 

• What is the rough location and shape of 

HOTE(t, x) = {y EM: p(t, x, y) ~ E¢(t, x)}? 

The bound of Theorem 4.3 allows us to answer all these questions. 

• For any fixed x, y, p(t, x, y) c::::: 1/(t(logt)2 ) as t tends to infinity. 
• For any fixed x, ¢(t, x) c::::: 1/t as t tends to infinity. 
• ¢(t) c::::: 1/vt as t tends to infinity. 
• For E > 0 small enough , any fixed x, and t large enough, the 

hot-point region HOTE(t, x) is situated in the small cylindric 
end at the bottom of Figure 2 at a distance of order yt form 
the central part K of M and has width of order yt. See Fig
ure 3 which shows various temperature regions in a schematic 
rendering of the domain of Figure 2. 

In Figure 3, R} represents the cylindric bottom part (volume growth 
r 1 ), R 2 represents the planar middle part (volume growth r 2 ), and R 3 

represents the conical top part (volume growth r3 ). The function H(y) 
is defined by H(y) = p(t, x, y)j¢(t, x) where we think of x as fixed and 
of t as fixed but very large. 
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n' 

Fig. 3. Temperatures in the Euclidean domain of Figure 2 

4.4. Brief outline of the proof of Theorem 4.1 

The proof of Theorem 4.1 depends on a number of results andes
timates of independent interest, in particular, those describe above in 
Sections 3.4.1-3.4.2. The idea is to reduce things as much as possible to 
estimates that depends on each end taken separately. Then, one needs 
to "glue" these various estimate together. This is achieved via a gluing 
technique developed in [34]. A rough account of this technique is given 
by the very general bound described below. 

Let 0 1 and 0 2 be two open sets in M with boundaries r 1 and r 2 

respectively. Assume that r 2 separates 0 2 from r 1 in the sense that 
either 0 1 , 0 2 are disjoint or 0 2 C 0 1 . 

Let '1/Ji = '1/Jr; be the hitting probability defined in Section 3.4.2 and 
pn,1 be the Dirichlet heat kernel in 0 1 as in Section 3.4.1. Set 

t 

G(t) :=I sup p(s, v, w)ds, 
vEr1,wEr2 

0 

t 

G(t) :=I inf p(s, v, w)ds. 
vEr1,wEr2 

0 
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Then, for all x E 01, y E 02, and t > 0, 

p(t, x, y) < Pn1 (t, x, y) 

+ 2 ( sup sup p(s,v,w)) 'l/h(t,x)'l/J2(t,y) 
sE[t/4,t] vEr1,wEr2 

+ G(t) [ sup '1/Ji(s,x)] 'I/J2(t,y) 
sE[t/4,t] 

+ G(t) [ sup '1/J~(s,y)l 'I/J1(t,x} 
sE[t/4,t] 

and 

p(t, x, y) > (1/2)pn1 (t, x, y) 

[ ] t . t + inf inf p(s,v,w) 'I/J1(4,x)'I/J2C4'y) 
sE[t/4,t] vEr1,wEr2 

+ G(~) [ inf '1/Ji(s,x)] 'I/J2(~,y) 
sE[t/4,t] 

+ G ( ~) [ inf '1/J~ ( s, y)] 'I/J1 ( ~, x). 
sE[t/4,t] 

The reader should compare the structure of these bounds to the bound 
stated in Theorem 4.1. See [34] for further details. 

§5. Lecture IV: Heat kernels in inner uniform domains 

In this last lecture, I describe joint work with PavelGyrya concern
ing the Neumann and Dirichlet heat kernel in Euclidean domain. The 
goal of this work is to obtain sharp heat kernel bounds for the heat kernel 
with Dirichlet boundary condition in certain domains. The simplest case 
of a domain of interest is the upper half space U = IR+ = {x: Xn > 0}. 

The Neumann heat kernel in U = IR+ = {x: Xn > 0} equals 

pfJ(t,x,y) = (47r:)n/2 (e_llv-:;::112 +e_llv';;-/'112). 

The Dirichlet heat kernel in U = IR+ = {x: Xn > 0} equals 

PB(t, X, y) = (47r:)n/2 ( e- llv-:;::112 - e- llv';;-/'112) . 

Here, y' is the symmetric of y w.r.t. hyperplane {xn = 0}. 
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For the Neumann heat kernel, it is plain that 

For the Dirichlet heat kernel, it is not immediate to see that, in fact, 

D( ) XnYn _ lly-xll 2 
t x ~ e 4t 

Pu ' 'y - tnf2(xn + yt)(yn + yt) 

A natural and important problem is to obtain such results for more 
general domains. 

For instance, given a (finite or) countable family f = {(xi,Yi))} C 
JR.~ of points in the upper-half plane, let lR.~r be the upper-half plane 
with the vertical segments si = { z = (Xi, y) : 0 < y :::; Yi} deleted. 
When can one obtain good heat kernel estimates (with either Neumann 
or Dirichlet boundary condition) in lR.~r? 

(xi, Yi) I I 

Ill"."""' ' I I 
Fig. 4. A slit upper-half plane 

5.1. Uniform and inner uniform domains 

Recall the following definitions illustrated in Figure 6. 

Definition 5.1. A domain U is uniform if there are constants 
c0 , C0 E (0, oo) such that for any two points x,y in U there exists a 
curve joining x toy of length at most Cod(x, y) and such that, for any 
z on the curve, 

d. t( uc) > d(x, z)d(y, z) 
IS z, _Co d(x,y) . 

Good examples of uniform domains are: 

• Domain above the graph of a Lipschitz function <!>: 

U = {x = (x1, ... , Xn): <i>(x1, ... , Xn-d < Xn}· 

• The inside and outside of the snow flake 
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Fig. 5. Approximation of a snow flake 

Let du(x, y) be the inner distance in U between x andy. By defini
tion, du(x, y) is obtained by minimizing the length of curves joining x 
toy in U. 

Definition 5.2. A domain U is inner uniform if there are constants 
co, C0 E (0, oo) such that for any two points x,y in U there exists a curve 
joining x toy of length at most Codu(x, y) and such that, for any z on 
the curve, 

d. ( uc) du(x, z)du(y, z) 
1St z, ~ Co d ( ) . u x,y 

Good examples of inner uniform domains are: 

• The slit half-plane lR!r is inner uniform if and only if there 
is a constant c > 0 such that for any pair (i,j), lxi- Xjl ~ 
cmin{yi,Yj}· Such domains are never uniform if there is at 
least one non trivial slit. 

• The complement cc of any convex set C in JR.n (such comple
ment will often not be uniform), e.g., the outside of a parabola 
in the plane. Note that the inside of the parabola is neither 
uniform nor inner uniform. 

Definition 5.3. Let (U, du) be the abstract completion of (U, du). 

5.2. The Neumann heat kernel in an inner uniform domain 

Given a Domain U C JR.n, let W 1(U) be the subspace of L 2 (U) 
of those functions f whose first order partial dervatives in the sense 
of distributions can be represented by locally integrable functions that 
belong to L 2 (U). 
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u 

Fig. 6. The inner uniform condition 

Theorem 5.4 ([36, 37]). Let U be an inner uniform domain. Then 
the heat kernel pff (t, x, y) associated with the Dirichlet form 

is a continuous function of (t, x, y) E (0, oo) xU xU which satisfies 

This is _proved by showing that the Dirichlet form (&fj, W 1(U)) is 
regular on U and satisfies the doubling property and a Poincare inequal
ity (see Section below). 

5.3. The Dirichlet heat kernel in an unbounded inner uni
form domain 

Given a domain U, we consider the subspace WJ(U) ofW1 (U) which 
is the closure of Cgo(U) in W 1(U) for the norm (llfll~ + ll\7 fll~) 112 . This 
defines a regular Dirichlet form &{](!,f) = fu l\7 fl 2 d>., f E WJ(U). 
The associate heat kernel, pfJ(t, x, y) is always bounded by 
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but this is a crude estimate. 

Definition 5.5. Given a domain U, we call harmonic profile of U 
any function h E C00 (U) such that: (a) tJ..h = 0, {b) h > 0 in U, (c) 
hE WJ!oc(U). 

' 
Such functions do not exist if U is bounded. The set of harmonic 

profiles form a positive cone and, in general, this cone might contains 
more than one half-line. 

The following result follows from the boundary Harnack principle 
obtained in [1, 2]. See [36, 37] for details. 

Theorem 5.6 ([1, 2, 36, 37]). Let U be an unbounded inner uniform 
domain. Then U admits a harmonic profile h and any other harmonic 
profile h' satisfies h' = ah for some a> 0. Moreover, the function h has 
the following properties: 

• For any E E (0, 1), there exists a constant C = Ce such that 
Vx E U, r > 0, y,z E U with du(x,y) < r,du(x,z) <rand 
d(z, uc) >a, we have h(y) s; Ch(z). 

• The measure h2d>.. on (U, du) has the doubling property. 

This is the key to the follwoing precise heat kernel estimate. 

Theorem 5. 7 ([36, 37]). Let U be an unbounded inner uniform_ do
main. Let h be a harmonic profile for U. Let Vh2(x, r) = J{du(x,y)<r} h2d>... 

The Dirichlet heat kernel in U, pf](t,x,y), is bounded by 

and 

As an explicit interesting example depicted in Figure 7, consider 
the exterior of the parabola in the plane, that is, the domain U = EP = 
{x = (xr, x2) = x2 < xf}. Then 

h(x) = 2 ( Jx~ + (1/4- x2)2 + 1/4- x2) -1. 

In particular, for any fixed x, y E U, P/J(t, x, y) c::: r 312 as t tends to 
infinity. 
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\ 
IP 

EP 

Fig. 7. The domain outside the parabola 

5.4. Inner uniform domains and Harnack-type Dirichlet 
spaces 

One of the key to the heat kernel estimates described in the previous 
two sections is the extension of Theorem 3.1 to the abstract setting of 
regular strictly local Dirichlet spaces. This extension was obtained by 
K. Th. Sturm in a series of papers [54, 55, 56]. See also the related work 
of Biroli and Mosco [10]. 

Without entering into the details, a Harnack-type Dirichlet space 
is a regular strictly local Dirichlet space ( M, A, £, F) with the following 
additional properties: 

• (a) M is a locally compact connected metrizable space equiped 
with a positive Radon measure A and (£,F) is a regular strictly 
local Dirichlet form on L2 (U, A). 

• (b) The intrinsic distance d (associated to ( £, F)) defines the 
topology of M and (M, d) is a complete metric space. 

• (c) The space ( M, d, A) has the doubling property and satisfies 
the Poincare inequality 

VB= B(x, r), V j E F, fsit- !BI 2 dA ~ Pr2 fs df(f, f). 

In this Poincare inequality, B(x, r) is the intrinic metric ball of radius 
r around x and df is the energy measure of £ (in the classical case, 
df(f, f) = IV fl 2 dA). For any locally integrable function j, fB is the 
mean of f over B. 

On any Harnack-type Dirichlet space, the associated heat semigroup 
admits a continuous kernel p(t, x, y) satisfying 

C1 _ d(x,y) 2 C3 _ d(x,y) 2 

---:::-e c2t < p(t X y) < e qt 

V(x, vt) - ' ' - V(x, vt) 
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See [55, 56] and [36, 37, 38]. 
The theorems stated in the previous two sections and concerning 

the Neumann heat kernel p{f and the Dirichlet heat kernel pfj on an 
unbounded inner uniform domain U in JRn are obtained by applying the 
theory of Harnack-type Dirichlet spaces to certain Dirichlet forms on the 
abstract completion fi of (U, du). Note that this abstract completion is 
not, in general, a subset of ]Rn. For instance the result concerning the 
Neumann heat kernel p{f on an inner uniform domain (Theorem 5.4) 
is obtained by showing that the Dirichlet space (fi, >.., £{j, W 1(U)) is of 
Harnack type. The treatment of the Dirichlet heat kernel P/] is more 
intricate as it involves the use of a h-transform where his the harmonic 
profile of the domain. How~ver, the main point is again to show that a 
certain Dirichlet space on U is of Harnack type. 

A far reaching generalization of Theorems 5.4-5. 7 is that similar re
sults hold for unbounded inner uniform domains in Harnack-type Dirich
let spaces that admits a earn~ du champ. See [36, 37] for details. 
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