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Nicolas Juillet 

Abstract. 

We present a general method to disprove generalized Brunn
Minkowski inequalities. We initially developed this method in [14] in 
the particular case of the sub-Riemannian Heisenberg group in order to 
prove that this space does not satisfy a curvature-dimension condition 
in the sense of Lott-Villani and Sturm. 

§ Introduction 

New developments in analysis and geometry deal with a synthetic 
definition of Ricci curvature in the non-smooth context of metric spaces, 
whereas Ricci curvature originated in smooth Riemannian manifolds. 
Precisely, the property for a space to satisfy a so-called curvature-dimen
sion condition CD(K, N) is interpreted as behaving in some aspects as 
a Riemannian manifold with dimension :::; N and Ricci curvature 2::: K 
at any point. Lott and Villani (18, 17] and independently Sturm (24, 25] 
managed to define a new notion of curvature-dimension CD(K, N) using 
optimal transport, a tool that was traditionally used in probability and 
statistics. They exploited some nice aspects of this theory. Two of them 
are - (i) the theory can be developed on very general sets (typically 
on Polish metric spaces (X,p)), (ii) the geodesics of the Wasserstein 
space (a metric space made of the probability. measures used in opti
mal transport) are represented as a probability measure in the space 
of the geodesics of (X, p). For details about geodesics (in the sense of 
minimizing curves) and curves in metric spaces see for instance (1, 5]. 
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Up to now there are two concepts of families of curvature-dimension: 
The first family is connected to the correspondence with the curvature
dimension theory of Bakry and Emery [3] and provides results in diffu
sion semi-group theory, such as logarithmic Sobolev inequalities (see [2]). 
In the eighties, Bakry and Emery introduced the criterion CDBE(K, N) 
(the definition of which differs from that of CD(K, N)) in order to have 
a practical necessary condition for a Riemannian manifold with a dif
fusion operator to satisfy such inequalities. The corresponding results 
are preserved by the new definition CD(K, N) (see [26]). We are more 
interested in the second family, which has a flavor of differential ge
ometry. Lott, Sturm and Villani were able to prove theorems on the 
volume of balls, for instance the generalized Bishop-Gromov theorem or 
the generalized Bonnet-Myers theorem. In this paper we are especially 
interested in the geodesic Brunn-Minkowski inequality BM9 (K, N), an 
inequality that is quite transversal in mathematics (see [4, 9, 22]) and 
that is a direct consequence of CD(K, N). We will present a method to 
disprove this Brunn-Minkowski inequality or its variants. This can be 
thought of as a contribution to the classification of the spaces satisfying 
a curvature-dimension condition among all metric measure spaces. As 
the theory of Lott, Sturm and Villani is quite recent, this classification 
is not completely finished. Our method appeared in [14] in relation with 
the case of the first Heisenberg group. 

This note is based on the talk "Synthetic Ricci curvature bounds in 
the Heisenberg group" in the first MSJ-SI in Kyoto, which explained our 
contributions in understanding the geometry of the Heisenberg group Hd 
[8, 14, 11, 12, 13]. Compared to the talk, in the article we concentrate on 
the central argument of [14] and present it in a more general framework 
including variations of the "Brunn-Minkowski inequality". I would like 
to thank the organizers of the first MSJ-SI very much for this wonderful 
and very interesting international conference. 

§1. The classical Brunn-Minkowski inequality 

We state in this section the two equivalent forms of the classical 
Brunn-Minkowski inequality. Let A and B be two subsets of JR.d. The 
Minkowski sum is defined as A+ B = {x + y E JR.d I x E A andy E B}. 
The Brunn-Minkowski inequality states 

(1) 

where Ld is the Lebesgue measure on JR.d. It is also satisfied if A and B 
are Borel sets. We know that A+ B is not always Borel but it is always 
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measurable if A and B are Borel sets [7, 23]. For further details and 
more results, see [15]. 

Let s E [0, 1] and apply the Brunn-Minkowski inequality to 

(1- s)A' = {(1- s)x E rn;.d I x E A'} and sB' = {sy E rn;.d I y E B'}. 

We obtain 

for any Borel sets A' and B' simply because we know the measure of 
the dilated sets. Notice that (1 - s )A' + sB' = { (1 - s )x + sy E JEtd I 
x E A', y E B'} is the set containing the convex combinations with ratio 
(1 - s) : s between the points of A' and the points of B'. Contrary to 
(1), this combination of A' and B' is purely affine (it is independent of 
the origin OJRd). Both inequalities are actually equivalent because (1) 
can be recovered from (2) by using A= 2A', B = 2B' and s = 1/2. 

Several proofs are known for the Brunn-Minkowski inequality (see 
[9]). One of the more recent proofs, due to McCann, makes use of the 
optimal transport theory [19]. 

§2. Generalized Brunn-Minkowski inequalities 

From the Euclidean Brunn-Minkowski inequality there are at least 
two types of generalizations: the generalized multiplicative Brunn
Minkowski inequality BMm and the generalized geodesic Brunn
Minkowski inequality BM9 . The first one occurs for a measure group 
( G, ·, J.L) if you replace + by · and Ld by J.L in inequality (1). There is 
still an undefined parameter, namely the dimension d. Hence with these 
modifications, we will denote (1) by BMm(d). Since (1+t)"':::; 1+t"' for 
any t :2': 0 and a E [0, 1], if BMm(N) holds for (G, ·, J.L) and if N' :::; N, 
the inequality BMm(N') is true as well. Once again BM(N) is written 

(3) 

for any Borel sets A and B. 
The second generalization is the geodesic Brunn-Minkowski inequal

ity BM9 (K, N). The easiest version BM9 (0, N) that we will simply 
note BM9 (N) is the generalization of (2) for N = d. For a geo
desic metric measure space (X, p, J.L) (see [5] for a definition), we pa
rametrize the minimal curves with constant speed on [0, 1]. Let then 
M 8 (x;y) = {'y(s) EX I (;r(O),'f'(1)) = (x,y) and 1' is a minimal curve} 
and call the points 1' ( s) of this definition s-intermediate points ( ~ -
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intermediate points are midpoints). Then BM9 (N) is the following in
equality 

(4) p, (M 8 (A, B)) 1/N ~ (1- s)p,(A) 11N + sp,(B) 11N 

for any s E [0, 1], M 8 (A, B) is defined by U M 8 (x, y) for any 
(x,y)EAxB 

Borel sets. If M 8 (A, B) is not measurable, replace in (4) p,(M 8 (A, B)) 
by the outer measure of M 8 (A, B). Note that (4) is a generalization 
of the Euclidean case (2) for d = N because in ~d minimal curves are 
segments so that M 8 (x, y) is the set {(1-s)x+sy}. The generalized ver
sions of the geodesic Brunn-Minkowski inequalities have become popular 
since the optimal transport proof in the Euclidean case. This proof can 
be adapted without any problems to Riemannian manifolds with Ricci 
curvature bounded from below [6, 25]. From the concavity oft--+ to: for 
a E [0, 1] we obtain that for a given geodesic metric measure space and 
N' ~ N , BM9 (N') is a consequence of BM9 (N). 

The inequality BM9 (K, N) is a generalization of BM9 (N) that is 
also BM9 (0, N). This is a natural generalization of the inequality that is 
satisfied by Riemannian manifolds of dimension :::; N and Ricci curvature 
~ K. We give the precise definition of BM9 (K, N) for N > 1 that can 
be found in [25] (see also [26]). The property BM9 (K, N) means that 
for two arbitrary Borel sets A and Bands E [0, 1] 

(5) p,(M 8 (A, B))11N ~ Tfi!:)(G)p,(A) 11N + T~,N (G)p,(B) 11N 

where 

and 

+oo, 

{ 
inf p(x,y), if K ~ 0 

(x,y)EAxB 
8= 

sup p(x, y), if K < 0 
(x,y)EAxB 

81;N sin(seJK/(N- 1)) , ( ) 

1-1/N 

sin(GJK/(N- l)) 
ifO < KG 2 < (N -1)1r2 

s, if Ke2 = o 

81/N sinh(se.J-K/(N- 1)) , ( ) 

1-1/N 

sinh(e.J-K/(N- 1)) 
if Ke2 < o. 
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Here rf•N (8) is exactly the normalized contraction rate of ratios for a 
point at distance 8 in the model spaces of constant sectional curvature 
K/(N- 1) and dimension N (Euclidean space, scaled sphere, scaled 
hyperbolic space). Note that in this case K is the best lower bound for 
the Ricci curvature. 

Other generalizations have been considered in the literature. See [9] 
for some of them. Typically, they state that a set M(A, B) obtained 
as a combination of two sets A and B has JL-measure greater than a 
function of the JL-measures of A and B or sets related to them. Note 
however that for BMg(K, N) with K =1- 0 this right-hand side is a little 
more intricate. In the next section we give an effective way to bound 
M(A, B) from above and therefore disprove some generalized Brunn
Minkowski inequality in a given metric measure space. 

§3. Estimating the Minkowski combination 

We state our method in the form of a theorem. 

Theorem 1. Let U, V c ~d be open sets, M : U x V -+ ~d a smooth 
map and a, b, o three points such that M(a, b) = o. Let I be a smooth 
map from V to U such that I(b) =a, I(V) = U and M(I(p),p) = o for 
p E V. Let Br C V be a Euclidean ball of center b and radius r and 
Ar = I(Br)· Then we have 

l. .Cd(M(Ar,Br)) < 2dJ (M )(b) 
1m sup .C (B ) _ ac a , 
r-->0+ d r 

where Ma is the map p-+ M(a,p). Moreover for J1, = f.Cd with contin
uous and positive density f, 

l . JL·(M(Ar.Br)) < 2df(o) J (M )(b) 
l:::~~P JL(Br) . - f(b) ac a . 

Remark 2. If Jac(Ma)(b) =1- 0 the existence of I, U and V with 
the required assumptions is a consequence of the implicit· function the
orem. The case Jac(Ma) = 0 is quite special because then we have 
l. Cd(M(Ar,Br)) _ 0 
liD Cd(B ) - . 

r~o+ r 

Proof. We give the proof for the Lebesgue measure .Cd. The second 
result is just a consequence of the first one and the continuity of f. It 
appears actually in the proof that M( An Br) (that contains o) has a 
diameter tending to 0 when r goes to 0. We take the points a, b, o, the 
sets· Br, Ar and the maps I, M as in the statement of the theorem. We 
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consider the set Mr := M(An Br) and will prove that it is included in a 
certain set whose .Cd-measure is equivalent to Jac(Ma).Cd(Br ). The key 
to this fact is 

(6) M(Ar,Br)= U M(l(p),q)= U M(I(p),p+(q-p)). 
p,qEBr p,qEBr 

The set M(Ar, Br) shall have a small measure because each point M(I(p), 
p + (q- p)) is close too= M(I(p),p). We will use differentiation tools 
to quantify this idea. We assumed that M is 0 00-differentiable on U. 
For any q E V let Mq be the map M(q, ·). We now write 

(7) M(I(p),p + (q- p)) 

=0 + DMI(p)(p).(q- p) 

+ [M (I(p),p+ (q- p))- DMI(p)(p).(q- p)] 

=DMa(b).(q- p) + [(DMI(p)(p)- DMa(b)) .(q- p)] 

+ [M (l(p),p + (q- p))- DMI(p)(p).(q- p)] . 

For p and q close to b, the two last terms of the previous sum are small 
and can be bounded using the continuity of DMI(p)(P) and the second 
derivative of M at (a, b). When r tends to zero, p and q become close 
to band 

sup I (DMI(p)(p)- DMa(b)) .(q- p) 
p,qEBr 

+ M(I(p),p + (q- p))- DMI(p)(p).(q- P)l = o(r). 

Therefore, as Br- Br = { v E JJld I v = p- q p, q E Br} is B(O, 2r), the 
Euclidean ball of center 0 and radius 2r, the relations (6) and (7) give 
the following set inclusion 

(8) M(Ar,Br) c DMa(b).(B(0,2r)) +B(O,c-(r)r) 

where c-(r) is a non-negative function which tends to zero when r tends 
to zero. We observe now that the 1/r-dilated set of the right-hand set 
in (8) is the c-(r)-parallel set of DMa(b).(B(O, 2)). As the measure of 
DMa(b).(B(O, 2)) + B(O, c-(r)) tends to the one of DMa(b).(B(O, 2)), the 
measure of DMa(b).(B(O, 2r)) + B(O, c-(r)r) is equivalent to the measure 
of DMa(b).(B(O, 2r)). But 

.Cd(DMa(b).(B(O, 2r))) = 2d.Cd(DMa(b).(B(O, r))) 

= 2d Jac(Ma)(b).Cd(Br) 
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and we can conclude the claim by combining this identity with (8). 
Q.E.D. 

We now give some examples of applications developed in [13] and [14]. 

Example 1. Consider the Heisenberg group Hd seen as ~d with the 
Carnot-Caratheodory distance Pee and M the midpoint map M 112 (in 
our previous papers we denoted Hd by IHin ford= 2n+ 1). Therefore for 
any x andy such that M 112 is a single point {m}, we set M(x,y) = m 
and it is characterized by Pee(x, m) = Pee(Y, m) = !Pee(x, y). Take 
o = 0, b = (1, 0, ... , 0) and a= ( -1, 0, ... , 0). Then we proved in [14] 
that Jac(Ma) = 2a~2 • In [14] we saw moreover that .Cd(Ar) = .Cd(Br ). 
Therefore BM9 (N) is not satisfied for any N 2: 0 because !.Cd(Ar) 11N + 
!.Cd(Br)l/N = .Cd(Br)l/N would imply .Cd(M(Ar,Br))/.Cd(Br) 2: 1N 
which is eventually false for small enough r. Indeed with Theorem 1 we 
see that this ratio is asymptotically smaller than ~ = 2g:2 • 

Example 2. The Heisenberg group is not only a metric space, it is 
also a group. Prior to our work, there has been some research interest 
in BMm for the Heisenberg group in relation with the isoperimetric 
problem [16, 21]. Leonardi and Monti proved for instance that BMm(3) 
holds in H3 . For N greater than d, we prove that BMm(N) does not 
hold in Hd by using Theorem 1. We keep the same points o, a, b as 
in Example 1 and I is now the map p --+ p-1 . This transformation 
turns out to be simply the scalar multiplication by -1. Then Ar is 
a ball with the same measure as Br. Moreover one can easily prove 
that J ac(Ma) = 1. Then .Cd (M{ Ar, Br)) is asymptotically smaller than 
2d.Cd(Br)· Raise it to the power 1/N (for N >d) and it is smaller than 
(.Cd(Ar))l/N + (.Cd(Br))l/N. 

Example 3. The Grusin plane is the sub-Riemannian structure ob
tained on ~2 when we take the "orthonormal basis" ( 8x, x8y). Hence 
observe that outside the singular set {x = 0}, the two half-planes are 
non-complete Riemannian manifolds. In [13] we proved that BM9 (K, N) 
does not hold for any K and N. Thanks to the dilations of this space, it 
is possible to reduce the argument to a contradiction of BM9 (N). For 
that we consider as before the mid-point map forM, we take a= (0, 0), 
o = ( -1, 0) and b = ( -2, 0). We have Jac(Ma) = 2-4 and I is a local 
diffeomorphism near b with Jac(I) = ~- Then .C2 (Ar) "' .c2 C,:rl and 

.C2(M(Ar,Br)} :::; f(r) with f(r) "' .c2 ~Br). Then one can easily see 
that BM9 (N) does not hold for any N. 

In the end of these notes we would like to present other possible 
examples to which Theorem 1 could apply. The theory of Lott-Villani 
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and Sturm is recent and it is not clear which spaces satisfy CD(K, N) 
and the implied property BM9 (K, N). We have seen in Example 1 that 
the Heisenberg groups do not satisfy BM9 (0, N). Nor do they satisfy 
BM9 (K, N) for any K because as in Example 3 there is a scaling argu
ment using dilations. Contact manifolds seem also to be excluded from 
the class of spaces satisfying BM9 (K, N) because their nilpotent ap
proximations (pointwise tangent limit in some Gromov-Hausdorff sense) 
are Heisenberg groups (possibly non-isotropic). As in Example 3 again 
it seems that for this question we can assume K = 0 because coun
terexamples could be found for a small enough scale. Indeed for small 
scales Tf'N is almost equal to s = T~'N. More generally it seems that 
there is no hope to find a space with some property BM9 (K, N) in sub
Riemannian geometry. We sketch in two steps the rough idea of what 
could be a proof of such a general result. Firstly compute Jac(Ma) and 
Jac(I) for non-isotropic Heisenberg groups and Carnot-Caratheodory 
groups [10, 20] and disprove BM9 by using Theorem 1. Then write 
down a correct proof showing that the argument passes to the limit for 
the large class of sub-Riemannian structures that have these spaces as 
pointwise nilpotent approximations. 

According to non-published computations of Bakry and his collab
orators, the half Grusin plane (see Example 3), i.e. the Grusin plane 
intersected with { x > 0}, does not satisfy CD(O, N) for any N < +oo 
when it is equipped with the weighted measure f-L = xdxdy. Note that 
this measure is different from dxdy considered in Example 3 or from the 
Riemmanian volume, i.e. dlx'IY. This result can be proved by analyzing 

the Bakry-Emery criterion CDBE(O, N) because the half Grusin plane 
is simply a Riemannian manifold and f-L is an invariant measure of an 
elliptic operator that does not satisfy the criterion. Surprisingly how
ever CD(O, oo) (see [26] for a definition) seems to be satisfied, which 
gives evidence that changing the reference measure may provide an un
expected example. As far as we are concerned in this note, we would like 
to obtain another proof that CD(O, N) is false for N < +oo by making 
use of Theorem 1. 
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