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A note on rough differential equations with 
unbounded coefficients 

Yuzuru Inahama 

Abstract, 

By using a cutoff technique, we make a rough path approach to 
SDEs with linear growth coefficients. As an application, we improve 
Fang-Zhang's large deviation for loop group valued Brownian motion. 

§1. Introduction 

In the rough path theory, T. Lyons extended the notion of integra
tion along a path and ordinary integral differential equations (ODEs). 
See [19, 18]. The key point is that not only the path itself (i.e., the first 
level path), but also the iterated integral of the path (i.e., the second 
level path) is considered. Such a pair of the first and the second level 
paths are called a rough path. In this theory, the Ito map is determin
istic and, moreover, is continuous. (Lyons' continuity theorem or also 
known as the universal limit theorem.) This is quite different from the 
usual Ito calculus, in which the Ito map is measurable, but not contin
uous. If we put a Brownian-like measure on the space of rough path, 
then we obtain a solution of the corresponding Stratonovich stochastic 
differential equation (SDE). Thus, in the rough path theory, diffusion 
processes are obtained as the image of continuous Ito maps. 

Let O": Rd -t Mat(d,n) = Rd 18) (Rn)* and b: Rd -t Rd be nice 
coefficients with certain regularity. In this section we consider the foll
woing differential equation in R d: for a given R n-valued nice continuous 
path X, 

(1) dyt = O"(yt)dXt + b(yt)dt, Yo =0. 

The correspondence X~---+ Y = <I>(X) is called the Ito map. 
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Let us regard the equation (1) as an ODE in the rough path sense. It 
is well-known that, if a and bare of cg, then the solution Y E GQp(Rd) 
exists for any X E Gnp(Rn) and that the Ito map <I> is locally Lipschitz 
continuous with resprect to this topology. Moreover, if W is the Brow
nian rough paths, then, the first level path of Y = <I>(W) is a solution 
of the corresponding (stratonovich-type) SDE. 

It is well-known that the SDE has the strong solution even when the 
coefficients a and b are of linear growth (and locally Lipschitz). Until 
recently, there seemed to be no published papers to discuss the continuity 
theorem for the case of unbounded coefficients, although three results 
have just been published. (See Section 10-7, Friz and Victoir [8], Lejay 
[17], Gubinelli and Lejay [10]. Basically, these results are for geometric 
rough paths in finite dimensional setting, except results for Lip(2 + E: )

type coefficient in [17] are in Banach setting.) The aim of this paper is 
to show that, in some sense (almost surely with respect to the law of the 
Brownian rough paths), the solution can be written in the image of the 
Ito map in the rough path sense. (See Theorem 2.1). 

As a slight modification of (1), we have the following equation: 

(2) dY,_': = a(Y;:':)r=:dWt + a(r=:)b(Yt:)dt, Yt =o. 

Here, E: > 0 is a small parameter E: > 0 and a : [0, oo) --+ R is a nice 
function of c. We will also prove the large deviation principle of the 
Freidlin-Wentzell type and Laplace's method for Y"'. (See Proposition 
2.2 and Theorem 2.4. This is a very classical problem. See [2, 3] for 
example. When a and b are cg or ego, the rough path proof for the 
large deviation is given in [16] and the Laplace asymptotics is given in 
[1, 11, 13, 14].) 

In the last section we apply the same arguments to a certain infinite 
dimensional diffusion, namely the Brownian motion on loop groups over 
a compact Lie groups, to prove a large deviation with respect to the 
topology induced by a Besov-type norm, which is stronger than the 
usual sup-norm. (See Corollary 3.2.) This large deviation with respect 
to the usual topology was first shown in [8] and then, in [12] with the 
rough path theory. 

The method in this paper is somewhat ad-hoc because it is a com
bination of the rough path theory and the usual Ito calculus. So, one 
rnay think that the argument in this paper could be replaced with more 
sophisticated ones in such papers as [9, 17, 10]. However, the cutoff 
argument in this paper is not completely useless. For example, in this 
paper, the coefficient whose derivatives (of order 2,3) are not bounded 
is treated. (And we consider the Banach cases, too.) 
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In particular, the main example {Malliavin's loop group valued pro
cess) is such a case. In this example, the coefficient is called "Nemetskii 
map" and, with respect to this Besov-type topology Xe,q, it is of linear 
growth but not in general bounded. (See [6].) A simple computation 
shows that the derivative of a Nemetskii map is again a Nemetskii map 
of the same form, therefore not bounded either. 

§2. A rough differential equation with coefficients of linear 
growth 

2.1. A very simple review of the rough path theory 

Now we briefly recall the definition and basic properties of the space 
of geometric rough path and the Brownian rough paths. (See Lyons 
and Qian (19].) For later use, we give definitions in infinite dimensional 
setting. Let B be a real Banach space. We denote by BQ9B the projective 
tensor product. In the following we only consider the projective norm on 
B Q9 B. When B = Rn, this coincides with the usual tensor product. Let 
[0, 1] be the time interval as usual and let p E (2, 3) be the roughness, 
which will be fixed throughout the paper. 

A continuous map X= (1, Xl, X 2 ) from the simplex Ll = {(s, t)l 0 ~ 
s ~ t ~ 1} to the truncated tensor algebra r<2) (B) = R EB B EB ( B Q9 B) 
is said to be a rough path of roughness p if, for every s ~ u ~ t, 
Xs,t = Xs,u Q9 Xu,t and 

for j = 1, 2 

hold, where D = {0 = to < t1 < · · · < tN = 1} runs over all finite 
partition of [0, 1]. For two rough paths X andY, p-variation distance is 
defined as follows: 

Let x = (xt)o<t<l be a B~valued continuous path of finite total 
variation and set xL~= Xt-Xs, x;,t := J:(xu -Xs)@dxu for (s, t) E !:::,.. 

A rough path obtained in this way is called a smooth rough path (lying 
above x). A rough path obtained as the dv-limit of a sequence of smooth 
rough paths is called a geometric rough path. The space of all the B
valued geometric rough paths is denoted by GD.v(B). Thus, the space 
of B-valued continuous paths of finite total variation is continuously 
imbedded in GD.p(B). 
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Let B be another real Banach space and we denote by L(B, B) the 
set of all bounded linear maps from B to B. Let a : B -t L(B, B) be 
cg in the Frechet sense (i.e, \jJ a are continuous and bounded for all 
j = 0, 1, 2, 3). Consider the following differential equation: 

with Yo E B. 

If x is B-valued continuous and of bounded variation, then a unique 
solution y exists, which is again continuous and of bounded variation. 
Let us denote y = <P(x). Then, by Lyons' continuity theorem, the Ito 
map <P naturally extends to a continuous map from GO.p(B) to GO.p(B). 
(i.e., Y = <P(X). See Section 6.2, Lyons and Qian [19].) 

A Gaussian measure f-L on B is said to be exact (with respect to the 
projective norm on B ®B) if there exist constants a < 1 and c > 0 such 
that 

N 

JElL 1]2j-l ® 1J2J j808 ::::; cNa for all N EN. 
i=l 

Here, {1Jjh=1,2, ... are B-valued i.i.d., with the law of 1]1 being f-L· When 
dim B < oo, we can easily see that the standard normal distribution is 
exact with a = 1/2. 

Let JP> be the law of B-valued Brownian motion associated with f-L· 
This is a probability measure on the path space P(B) = {w : [0, 1] -t 

Blw is continuous and wo = 0}. 
Set 

(3) S ={wE P(B)I {W(m)}n=1,2, ... is Cauchy in GO.p(B) }, 

where w(n) is the piecewise linear approximation for w associated with 
the partition {k/2mh=l, ... ,2m of [0, 1] and W(m) is the smooth rough path 
lying above it. Then, it is proved in Ledoux, Lyons and Qian [15] that 
under exactness condition, Brownian rough paths W := limm->oo W(m) 
exist, i.e., JP>(Sc) = 0. 

When climB, climB< oo, Lyons' continuity theorem and the Wong
Zakai approximation imply that Yt := Yo + <P(W)t (0, t) satisfies the 
following Stratonovich stochastic differential equation (SDE): 

with Yo E B. 

(SDEs with a drift term can be treated in a simlar way.) 

2.2. Almost sure existence of the solution 

In this and in the next subsetions, we work in a finite dimensional 
setting and we assume that a and b are C3 and at most of linear growth. 
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In this case, the SDE 

(4) Yo= 0. 

has the strong solution (i.e., the existence and the pathwise uniqueness 
hold for y). Here, 

A 1 
b(y) = b(y) + 2Tr[\7a(y)(a(y)*, *)], 

as usual and ( Wt)tE[O,l] is the standard n-dimensional Brownian mo
tion. Note also that, if X E BV(Rn), the corresponding ODE (1) has 
a unique solution Y, and the mapping X E BV(Rn) ~ Y E BV(Rd) is 
continuous. 

In the sequel, we will use the following notations. Let x: R-+ [0, 1] 
be a 0 3 function such that x(r) = 1 for r :::; 0 and x(r) = 0 for r ~ 1. 
(Note that X can be chosen to be 0 00 .) We set, for n = 1, 2, ... , Xn(r) = 
x(r- n) and an(Y) = a(y)xn(IYI), bn(Y) = b(y)xn(IYI), etc. Clearly, 
supports of an and bn are contained in {y E Rd I IYI :::; n + 1 }. 

Theorem 2.1. Assume that a and bare 0 3 and a, b, and bare of at 
most linear growth. Let W be the Brownian rough paths lying above the 
standard n-dimensional Brownian motion (wt)tE[O,l]· Then, there are 
an open subset CJ C GOp(Rn) and a continuous map <I>: CJ-+ GOp(Rd) 
such that the following hold: 
(i) CJ is of measure 1 with respect to the law of the Brownian rough 
paths. 
(ii) BV(Rn) C CJ and, for X E BV(Rn), t ~ <P(X)fi,t solves the ODE 
{1). 
(iii) t ~ <P(W)fi,t defined on the probability space CJ solves the SDE (4). 

Proof. Let pn = {w : C([O, 1],Rn) I Wo = 0}. For w E pn, 
w(m) E BV(Rn) denotes the mth dyadic piecewise linear approximation 
of w and W ( m) E GOp (R n) denote the geometric rough path lying above 
w(m). Set sl ={wE pn I W(m) is Cauchy in Gf!p(Rn)}. This set is 
of full measure with respect to the standard Wiener measure. We write 
W := limn-+oo W(m). By this injection w ~ W, S1 can also be regarded 
as a subset of Gf!p(Rn). Also set 

s2 ={wE pn I SUPo:::;t::;IIy(m)tl is bounded in m}. 

And S = S 1 n S2. Here, y(m) E BV(Rd) is the solution of (1) for 
X= w(m) E BV(Rn). 
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Firstly, we show that S is of full measure. In order to show it, it is 
sufficient to show that 

(5) IP'(w E pn I lim sup ly(m)t- Ytl = 0) = 1. 
m-+ooo:::;t:s:;l 

(A weak form of the Wong-Zakai approximation theorem.) 
Let k = 1, 2, ... and (Yt)tE[O,l] be as in (4). Define a stopping time 

Tk by Tk = inf { t ;::: 0 I I Yt I ;::: k} 1\ 1. Consider the following equation: 

(6) 

Set a stopping time fk by fk = inf{t;::: 0 IIY~k)l;::: k} 1\1. From (4) and 
(6), we have 

It is a routine to obtain with Burkholder's and Gronwall's inequalities 
that, almost surely, YtArkMk = y~~~kMk for all t. Note that { Tk = 1} = 
{IYtl ~ k, '<It E [0, 1]} and y = y(k) on this set. Since the coefficients 
of (6) are C~, the Wong-Zakai approximation theorem holds for y(k). 

Noting that the union U~dTk = 1} is of measure 1, we see that (5) 
holds. 

Secondly, we show thatBV(Rn) c S. Since BV(Rn) c S1 is known, 
we show that BV(Rn) c S2 • Let X E BV(Rn) and let Y be the solution 
of (1). Denote by IIXIIl,[o,t] be the total variation of X restricted on the 
subinterval [0, t]. In particular, IIXIh,[o,l] = IIXIIBv· By the assumption, 
there exists a positive constant K > 0 such that llT(Y)I + lb(y)l ~ K(1 + 
IYI) for ally E Rd. Therefore, 

IYtl ~ K lot (1 + IYsl)d(IIX!Il,[o,s] + s) 

= K(IIXIIBv + 1) + K lot IYsld(IIXIIl,[o,s] + s). 
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By Gronwall's inequality, we have from this that 

IYtl::; K(JIXIIBv + 1)eiiXIIl,[o,tJ+t::; K(JIXIIBv + 1)ei1XIIav+l. 

Noting that IIX(k)IIBv ::; IIXIIBv for all k = 1, 2, ... , we see that X E s2. 
Finally, we construct <P. Set, for r = 1, 2, ... , sr = S1 n S2, where 

(7) s~ ={wE pn I sup09$1iy(k)tl::; r -1/2 for all k}. 

Let X E sl n S2 and let X E GDp(Rn) be the lift of X. Consider the 
following ODE: 

(8) 

Since ar and br are C~, we may think of the rough ODE which corre
sponds (8) as follows. Set &r : Rd -t Mat(d, n + 1) by 

ffr(Y)(~, s) = ar(Y)~ + br(y)s, 

Let Wr : GDp(Rn+l) -t GDp(Rd) be the Ito map which corresponds to 
ffr. Since &r is c~, Wr is locally Lipschitz continuous. Let L: GDp(Rn) X 

BV(R) -t GDp(Rn+l) be the continuous map, which naturally extends 
BV(Rn) x BV(R) ~ BV(Rn+1 ). Then, <Pr(X) := Wr(t(X, .\)) is the 
solution of the rough ODE (8), where At = t. Since <Pr : GDp(Rn) -t 

GDp(Rd) is continuous, there is an open neighborhood Ux of X such 
A 1 A 

that SUPo<t<l I<Pr(X)0 tl ::; r for any X E Ux. We set Or= UxES1nsrUx. 
- - ' 2 

If X E Or n Or' for r < r'' then by the uniqueness of the ODE (8) for 
r', we have <Pr(X) = <Pr'(X). Hence, we may set 0 = U~1 Or and 
<P : 0 -t GDp(Rd) by <Plor = <Pr. By the continuity of <P and the 
(weak) Wong-Zakai theorem for the SDE (4), we see that the law of 
<P(W) (WE 0) is the solution of (4). Q.E.D. 

2 .. 3. The large deviation principle of the Freidlin-Wentzell 
type 

For c E [0, 1] and a continuous function a : [0, 1] -t R, let us consider 
the following SDE: 

(9) dyf = a(yf) o sdwt + a(s)b(yf)dt, Yo= o. 
A typical example of a is a( s) = 1 or a( s) = s2 . In this subsection, by 
using the rough path theory, we prove the large deviation principle for 
the law of ye as c '\, 0. 

Let 1-ln ( c pn) be the Cameron-Martin space. For h E 'Hn, we 
consider the following ODE in the usual sense: 

(10) 
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It is obvious that yh E 1-ld. For z E pd, we set 

i(z) = {inf{llhll~n/2 I z =Yh}, if z = ~h for some hE 1-ln, 
oo, otherwzse. 

In the following theorem, there is no condition on the growth order 
of the second and the third derivatives of a and b. 

Proposition 2.2. Assume that a and b are C3 and a, b, b are of at 
most linear growth. Let yg be as in the SDE {9) and let i be as above. 
Then, the law of yc satisfies the large deviation principle as c "\. 0 with 
a good rate function i. 

Before proving this proposition, we give a simple lemma. It is well
known that the large deviation is transferred by a continuous map. That 
is called the contraction principle. The following is a slight modification 
of it. 

Lemma 2.3. LetS and 8 be polish spaces and {f.Lch>o be a family 
of probability measures on S which satisfies the large deviation principle 
with a good rate function I. SetH= {a E S I I(a) < oo}. Assume 
that f : S -+ 8 is a measurable map and U is an open subset of S 
such that flu is continuous and H C U. Then, {f.Lc o f- 1 h>o satisfies 
the large deviation principle with a good rate function i, where I(b) = 
inf{J(a) I a E f- 1 ({b})}. 

Proof. (i) Let 0 c 8 be an open set and assume that c := infyEO I(y) < 
oo. For any li > 0, there exists bE 0 such that 

c+li>I(b)=inf{I(a) I aEf- 1({b})}. 

f- 1 (0) includes f- 1(0) n U, which is open in U, and hence inS. So, 
there exists a E U n f- 1 ( {b}) such that c + li >I( a). From this we see 
that 

-(c+li) :S -I(a) :S -inf{J(x) I x E Unf-1 (0)} 

:S lim inf c2 log f.Lc(U n f-1 ( 0)) :S lim inf c2 log f.Lc(f- 1 ( 0) ), 
c~O c~O 

where we used the large deviation for {f.Lch>o in the third inequality. 
Letting li "\. 0, we obtain the desired inequality. 
(ii) Let F c 8 be a closed set. Then, U n f- 1 (F) is closed in U with 
respect to the relative topology, that is, U n F = U n f- 1(F) for some 
closed subset F of S. Since uc n f- 1(F) c uc, f- 1(F) c F n uc, 
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where the right hand side is closed in S. By using the large deviation 
for {Pe: }e:>O, we have 

lim sup c2 log Pe:(f- 1 (F)) ::::; lim sup c2 log Pe:(F n UC) 
c~O c~O 

::::; - inf{I(x) I X E F n uc} =- inf{I(x) I X E f- 1 (F)}. 

It is a routine to prove the goodness of f. Q.E.D. 

Proof of Proposition 2. 2. Set At = t and A = {a>. I a E R} C 
BV(R). Consider the following ODE for wE pn: 

(11) dy(k, a)t = O"(y(k, a)t)dw(k)t+b(y(k, a)t)d(a>.t), y(k, a)o = 0. 

For a E R, set S(a) = 81 n S2(a), where 

S2(a) ={wE pn I SUPo::;t:s;IIY(k,a)tl is bounded ink}. 

Set S2(at in the same way as in (7) and set S(at = 8 1 n S2(at. 
For x E S(at and its lift X, there exist open set Ux,a C GDp(Rn) 

and Vx,a C A such that supo<t<l l\li,.. o L(X', >.')6 t I ::::; r for any (X',>.') E 
Ux,a X Vx,a· Then, as before; set ' 

0,.. = U{Ux,a x Vx,a I x E S(ar,a E R} and 0 = U~1 0,... 

By setting <I>(X', >.') = \li,.. o L(X', >.') for (X',>.') E 0,.., we have a well
defined continuous map <I> : 0 ---7 GDp (R d). 

ForcE [0, 1], let lP'e: be the law of the scaled Brownian rough paths 
cW and let Oa(e:)>-. be a point mass at a(c)>. E A. Then, the product 
measuse lP'e: x Oa(e:)>-. is a probability measure on GDp(Rn) x A. In the 
same way as in the proof of Theorem 2.1, we can prove that, for any c, 
(i) lP'e: x Oa(e:)>-.(0) = 1, and (ii) the law of <I> 1 under lP'e: x Oa(e:)>-. is the 
same as the law of ye:. 

Ledoux-Qian-Zhang [16] proved that (lP'e:)c>o satisfies the Schilder 
type large deviation principle. Hence, (lP'e: x Oa(e:)>-.)e:>O satisfies the type 
large deviation principle on GDp(Rn) x A with a good rate function I, 
where, for (h, a') E GDp(Rn) x R, 

I(h, a'>.) = { llhll~n/2, if hE r:n and a' = a(O), 
oo, otherwise 

Now we may use Lemma 2.3 to complete the proof. Q.E.D. 
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2.4. Laplace's method 
In this subsection we consider Laplace's method for the SDE (4). 

This is the precise asymptotics for the large deviation studied in the 
previous subsection. As in the case of the large deviation (Proposoition 
2.2), there is no condition on the growth of the derivatives of order 
2,3, ... of CJ and b. 

This kind of problem for SDEs has been extensively studied. From 
[2, 3] for finete dimensional SDEs to deeper results in the context of 
the Malliavin calculus and in the infinite dimensional setting. The first 
proof via the rough path theory was done in [1]. 

We impose the following conditions on the functions F and G. In 
what follows, we especially denote by D the Frechet derivatives on 
BV(Rn) and pd. In the following, for hE Hn, we denote by 8: Hn _, 
Hd the mapping defined by h f-+ yh as in (10). 

(Hl): F and G are real-valued bounded continuous functions defined 
on Pd. 

(H2): The function FA := F o 8 + II · ll~n/2 defined on Hn attains its 
minimum at a unique point 1 E Hn. We will write¢:= 8(1) = Y~'. 

(H3): The functions F and G are m + 3 and m + 1 times Frechet dif
ferentiable on a neighborhood B(¢) of¢ E pd, respectively. Moreover 
there exist positive constants M 1 , ... , Mn+ 3 such that 

IDk F(1J)[y, ... , y] I :::; MkiiYII~d, k = 1, ... , m + 3, 
IDkG(1J) [y, ... , y] I :::; MkiiYII~d, k = 1, ... , m + 1, 

hold for any 17 E B(¢) andy E pd. 

(H4): At the point 1 E Hn, we consider the Hessian A := D 2 (F o 
8)(1)lrtnxJin. As a bounded self-adjoint operator on Hn, the operator 
A is strictly larger than - Idrtn in the form sense. 

Now we are in a position to state our main theorem. The explicit 
values of the constants { cxm};;;'=0 are the same as in the case of an SDE 
with bounded coefficients. 

Theorem 2.4. Assume that a, CJ and b in (9) are coo and that 

CJ, b, b are of at most linear growth. Under conditions (Hl)-(H4) we 
have the following asymptotic expansion: 

(12) 

lE [ G(y") exp (- F(y")/ s2 ) J = exp (-FA( l)/s2 ) exp (- c(r)js) 

·(cxo + 0:1E + · · · + O:mEm + O(sn+l)), 
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where the constant c(1) in (12) is given by c(r) := DF(¢)[21 (1)]. Here 
3 1 ( 1) E pd is the unique solution of the differential equation 

(13) dBt- V'cr(¢t)[Bt, dlt]- a(O) · \7b(¢t)[Bt]dt 

= a' (0) · b( <Pt)dt with Bo = 0. 

Proof. We give a sketch of proof. First, note that 

(14) 

lE [ G(y6 ) exp ( - F(y6 ) I c2 ) J 

= 1 G( <P(X, .A') 1 ) exp ( - F( <P(X, .>.') 1 ) 1 c2 ) 
GDv(Rn)xBV(R) 

X d(lP' 6 X ba(c:)>-.) (X, .A') 

Let U and U be open neighborhoods of 1 E GOp(Rn) and a(O).A E 

BV(R), respectively. By the large deviation for y6 (see (2.2)), the inte
gration (14) above outside U xU' is dominated by exp( -(k+ FA( l))lc2 ) 

for some positive constant k. Therefore, it does not contribute. So, it is 
sufficient to consider the integration (14) above on U xU'. If we choose 
a sufficiently small U, U', then there exists r > 0 such that <[> = <1?,.. on 
the neighborhood U xU'. Therefore, the problem is reduced to the case 
of bounded cr and b, which is done (in the rough path context) by Aida 
[1], Inahama [11], and Inahama and Kawabi [13, 14]. Q.E.D. 

§3. An application for the large deviation for a diffusion pro
cess on loop goups 

In this section we apply the arguments in the previous sections to 
the case of infinite dimensional diffusions. The example we treat here is 
the Brownian motion on loop groups over a compact Lie groups. Large 
deviation for such a process with respect to the usual sup-norm was 
first shown by Fang and Zhang [8], then by Inahama and Kawabi [12] 
by the method of [16]. On the other hand, Brzezniak and Elworthy [6] 
constructed this process as a solution of an SDE on a M-type 2 Banach 
space. We prove in this section that the large deviation of Fang and 
Zhang holds with respect to the stronger topology, too. 

Let q E [1, oo) and 8 E (0, 1). For an Rn-valued function f defined 
on [0, 1], set 

q 11 q 1111 lf(xl)- j(x2)lq llflle,q := Jf(x)J dx + I Jl+& dx1dx2 
0 0 0 X1 - X2 q 
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and W 0·q([0,1];Rn) := {! E Lq([0,1];Rn) lllflle,q < oo}. If q E [2,oo), 
we,q([O, 1]; Rn) isM-type 2 Banach space (seep. 71, [6]). If 1/q < e, 
we,q([O, 1]; Rn) is continuously imbedded in C([O, 1]; Rn) (seep. 66, [6]). 
In this case we may set X~q = {! E W 0•q([O, 1]; Rn) I f(O) = f(1) = 0}. 

If q > 2, 1/q < e < 1/2, then the triplet (X~q' 1i0,tJo) becomes an 
abstract Wiener space, where 1{0 = {hE 1in I h(O) = h(1) = 0} and 
tJo is the d-dimensional pinned Wiener measure (see [4] or p. 73, [6]). 
Indeed, we can easily see that EJ.Lo [II · ll~,q] < oo since EJ.Lo [lf(xl) -

f(x2)1q] :::; clx1- x2lq/2 for some constant c = Cq· 

Let a E Ct(Rd;M(d,n)) and v E Ct(Rd;Rd). Set 

by 

for f E Xf,q, g E X~q' T E [0, 1]. Similarly, b : X/,q --+ X/,q is defined 

from v. Then, 17, b and b are of linear growth, C3 in the Frechet sense, 
and thier derivatives are bounded on any bounded set (see [6] for the 
definition of Tr in the definition of b). 

Consider the SDE (9) for these 17 and b, which is well-defined as an 
SDE over an M-type 2 Banach space. Set 

JCn = {g: [0, 1]--+1i0 I absolutely continuous and f01 llg~II~Cidt < oo}. 

As before, for z E P(X/,q), we set 

i(z) = {inf{llhllkn/2 I z = Yh}, if z = ~h for some hE /Cn, 
oo, otherwzse. 

Proposition 3.1. Assume q > 3 and 1/q < e < 1/2, and fJ and b 
are ct. Define 17 and bas above and let yt: be as in the SDE {9) and let 
i be as above. Then, the law of yt: satisfies the large deviation principle 
as E '\. 0 with a good rate function i. 

Proof. Basically, the proof goes in the same way as in the finite 
dimensional case. So, we give a sketch of proof. 
(i) The Wong-Zakai approximation theorem for SDEs on M-type 2 Ba
nach spaces is given by [5]. 
(ii) Existence of a cutoff function does not seem very obvious in this 
Banach setting, because the norm function is not always smooth. As we 
will see, however, under this assumption we can prove that (a power of) 
the norm function is C3 . Therefore, a C3 cutoff function exists. Note 
that the assumption q > 3 is used here. 
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First, we consider the case d = 1. Let G(f) = 11/ll~,q for f E Xfq· 
By a straight forward computation, 

\lG(f)(h)jq = fo1
1f(x)lq-1sgn(f(x))h(x)dx 

1111 lf(xl)- f(x2)lq-1sgn(f(xl)- j(x2))(h(x1)- h(x2))d d + X1 X2, 
o · o lx1- x2I1+Bq 

\l2G(f)(h1, h2)jq(q- 1) = 11 IJ(x)lq-2h1(x)h2(x)dx 

+ {1 { 1 lf(x1)- J(x2)lq-2 Il~=1 (hi(x1)- hi(x2)) dx1dxz, 
lo lo lx1- x2ll+Bq 

\l3G(f)(h1, h2, h3) { 1 3 
q(q _ 1)(q _ 2) = lo lf(x)lq- sgn(f(x))h1(x)h2(x)h3(x)dx 

+ { 1 { 1 lf(x1)- j(x2)lq-3sgn(f(x1)- j(x2)) 
lo lo lx1- x2ll+Bq 

3 

x IT (hi(xl)- hi(xz))dxldxz. 
i=l 

From these, there exists c > 0 such that ll'liG(J)II :S cllfllq-i fori= 
1, 2, 3. Thus, we have shown that G is of C3 and derivatives are bounded 
on every bounded set. 

The case d 2: 2 can be done in a similar way with 

a(f) = t( f 1lfi(xWdx + ( {1 l/i(x1)- fi1(x:)lq dx1dx2) 
i=l lo lo lo lx1-x2l + q 

for f = (!1, ... , !d), since c- 1 11/ll~,q :S G(f) :S cllfll~,q for some constant 
c > 0. 
(iii) We must show that the Brownian rough paths exist. By [15], it 
suffices to see "the exactness condition" holds for J-Lo and XJ:q Q9 XJ:q (the 
projective norm). Let () < h < 1/2. Then, h-H6lder norm is stronger 
than the norm of XJ:q· For such a Holder norm and a Gaussian measure 
satisfying E~Lo [lf(xl)- j(x2)l2] :S clx1- x2l, the exactness holds (seep. 
575, [15]). Therefore, XJ:q Q9 XJ:q and J-Lo are exact, too. Q.E.D. 

As a corollary of Proposition (3.1), we can slightly improve Fang and 
Zhang's large deviation for loop group-valued Brownian motion ([8]). We 
will show below that it also holds for the W 8,q-topology. Note that, in 
[6], this process is treated as the main example of the SDE theory on M 
type-2 Banach spaces. 
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Let G be a compact connected Lie group of dimension n. Its Lie 
algebra g is equipped with an Ada-invariant inner product. Let Ai, (1 :::; 
i :::; n) be an orthonormal basis of g, which are naturaly regarded as left
invariant vector fields on G. Imbed G into Rd for sufficiently large d 
so that the unit element e E G is mapped to the origin of Rd. Extend 
A so that it is compactly supported. (Again we call this Ai-) Set, for 
y E Rd, a(y) = [A1 (y), ... , An(Y)] E Mat(d, n) (i.e., ith column vector 
of a is Ai) and set v = 0. 

For this a and v(= 0), construct u and b(= 0) as above and consider 
the SDE (9). Then, the law of y 10 is a probability measure on the path 
space over the loop group, i.e., 

(15) {z E C([O, 1], Xl,q) I z(t)(T) E G, z(O)(T) = e = z(t)(O) = z(t)(1)}. 

When s = 1, (yj )o<t<l is first appeared in Malliavin [20] and is called 
the Brownian motion over loop group, since its generater is the Gross 
Laplacian. 

Let J:d = {l E C([O, 1], Rd) I l(O) = l(1) = 0} with the usual sup
norm. Large deviation for y 10 on 

{z E C([O, 1],£d) I z(t)(T) E G,z(O)(T) = e = z(t)(O) = z(t)(1)}. 

As s "'., 0 was first shown by Fang and Zhang [8], and then by Inahama 
and Kawabi [12] via the rough path theory. Using Proposition 3.1, we 
can improve slightly. 

Corollary 3.2. Let e, q be as in Proposition 2.2 and let y10 be the 
(scaled) Brownian motion over loop group as above. Then, the law of y10 

satisfies the large deviation principle on the space described in ( 15) as 
s "'., 0 with a good rate function. 

Proof. This is immediately shown from (3.1). Q.E.D. 

Remark 3.3. In Proposition 3.1 and Corollary 3.2, the case 2 < 
q :::; 3 is not mentioned. But, by the following argument, this case is also 
true. So, the large deviation holds for all q > 2. 

Let 2 < q :::; 3. Then by the expression of the derivatives of G and 
a simple inequality 

x,y E R, 

we see that V 2 G is (q- 2)-Holder continuous. 
Lyons' continuity theorem holds under the following Lip(2 +E)-type 

condition; 
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(A) the coefficient is in Lip(2 +E) (0 < E :::; 1), that is, the coefficient 
and its derivatives of order 1,2 are bounded and the second derivative is 
E-unformly Holder continuous. 

This extension is shown by Davie [7] in finite dimensional setting and 
cannnot be used in our context. But, it also holds in Banach-setting (see 
Section 5.3, [18] or pp. 343~344, [17]). 

By using this extension and choosing p so that 2 < p < q =: 2 + E, 
we can prove Proposition 3.1 and Corollary 3.2 for the case 2 < q:::; 3. 
(Here, pis the roughness.) Note also that, in Section 2, (local) Lipschitz 
continuity of the Ito map is not actually used. Only continuity is used. 
To the author's knowledge, this is the first application of Lip(2 +E)-type 
extension of Lyons' continuity theorem to a concrete example. 
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