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Smoothness and jet schemes 

Shihoko Ishii 

Abstract. 

This paper shows some criteria for a scheme of finite type over an 
algebraically closed field to be non-singular in terms of jet schemes. For 
the base field of characteristic zero, the scheme is non-singular if and 
only if one of the truncation morphisms of its jet schemes is flat. For 
the positive characteristic case, we obtain a similar characterization 
under the reducedness condition on the scheme. We also obtain by a 
simple discussion that the scheme is non-singular if and only if one of 
its jet schemes is non-singular. 

§1. Introduction 

In 1968 John F. Nash introduced the jet schemes and the arc space 
of an algebraic and an analytic variety and posed the Nash problem ([7]). 

The jet schemes and the arc space are considered to be something 
to reflect the nature of the singularities of a variety. (The Nash problem 
itself concerns a connection between the arc space and the singularities.) 
By looking at the jet schemes over a variety, we can see some properties 
of the singularities of the variety (see [2], [3], [5], [6]) : for example, if 
X is locally a complete intersection variety, the singularities of X are 
canonical (resp. terminal) if and only if the jet scheme Xm is irreducible 
(resp. normal) for every m E N. 

For a non-singular variety X, the jet schemes are distinguished: the 
m-jet scheme Xm is non-singular for every mEN and every truncation 
morphism '1/Jm',m: Xm' ---+ Xm is smooth with the fiber A~m'-m)dimX 
for m' > m 2:: 0. Then, it is natural to ask whether these properties 
characterize the smoothness of the variety X. 

Our results are rather stronger, i.e., only one jet scheme or one 
truncation morphism is sufficient to characterize the smoothness of the 
variety X. In this paper we prove the following: 
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Proposition 1.1. Let k be a field of arbitrary characteristic and f : 
X ----+ Y a morphism of k-schemes. Then the following are equivalent: 

(i) 
(ii) 

(iii) 

f is smooth (resp. unramified, etale}; 
For every mEN, the morphism fm : Xm ----+ Ym induced from 
f is smooth (resp. unramified, etale}; 
There is an integerm EN such that the morphism fm: Xm----+ 
Ym is smooth (resp. unramified, etale). 

As a corollary of this proposition, we obtain the following: 

Corollary 1.2. Let k be a field of arbitrary characteristic. A scheme 
X of finite type over k is smooth if and only if there is m E Z~o such 
that Xm is smooth. 

Theorem 1.3. Let k be an algebraically closed field ofcharacteristic 
zero. A scheme X of finite type over k is non-singular if and only if there 
is a pair of integers 0 :=:; m < m' such that the truncation morphism 
'1/Jm' ,m : Xm' ----+ Xm is a fiat morphism. 

Here, we note that the assumption of the characteristic of the base 
field in Theorem 1.3 is necessary. We will see a counter example of this 
statement in positive characteristic(Example 5.3). 

If we assume that the scheme X is reduced, then we have a similar 
criterion as Theorem 1.3 also for the positive characteristic case. 

Theorem 1.4. Let k be an algebraically closed field of arbitrary 
characteristic. Assume the scheme X of finite type over k is reduced. 
Then X is non-singular if and only if there is a pair of integers 0 < m < 
m' such that the truncation morphism '1/Jm' ,m : Xm' ----+ Xm is fiat . 

This paper is motivated by Kei-ichi Watanabe's question. The au­
thor expresses her hearty thanks to him. The author is also grateful to 
Mircea Musta~a for his helpful comments and stimulating discussions. 

§2. Preliminaries on jet schemes 

In this paper, a k-scheme is always a separated scheme over a field 
k. 

Definition 2.1. Let X be a scheme of finite type over k and K :J k 
a field extension. A morphism Spec K[t]j(tm+l) ----+ X is called an 
m-jet of X. 

2.2. Let X be a scheme of finite type over k. Let Schjk be the cat­
egory of k-schemes and Set the category of sets. Define a contravariant 
functor :F;, : Schjk ----+Set by 

:F,! (Y) = Homk(Y X speck Spec k[tJ!(tm+1 ), X). 
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Then, :F!f. is representable by a scheme Xm of finite type over k, that is 

This Xm is called the scheme of m-jets of X or the m-jet scheme of 
X. Form< m' the canonical surjection k[t]/(tm'+1) ----? k[t]/(tm+l) 
induces a morphism '1/J?f., m : Xm' ----? Xm, which we call a truncation 
morphism. In particula~, for m = 0 ¢?;. 0 : Xm ----? X is denoted 
by 1r?;.. We denote '1/J?f.,,m and 1r?;. by '1/Jm,',m and 7rm, respectively, if 
there is no risk of confusion. By 2.2, a point z E Xm gives an m­
jet az : SpecK[t]/(tm+l) ----?X and 1r?;.(z) = az(O), where K is the 
residue field at z and 0 is the point of SpecK[t]/(tm+l). From now 
on we denote a point z of Xm and the corresponding m-jet az by the 
common symbol a. 

2.3. The canonical inclusion k ----? k[t]j ( tm+l) induces a section 
a?;. :X~ Xm of 1r?;.. The image a?f.(x) of a point x EX is the trivial 
m-jet at x and is denoted by Xm· 

2.4. Let f : X ----? Y be a morphism of k-schemes. Then the 
canonical morphism fm : Xm ----? Ym is induced for every m EN such 
that the following diagram is commutative: 

Pointwise, for a E Xm , fm(a) is them-jet 

f o a: SpecK[t]/(tm+l) ~X~ Y. 

§3. Proof of Proposition 1.1 

Proof of Proposition 1.1. (i)=? (ii): This implication for smooth 
and etale cases is already mentioned in [1] and [4]. For the reader's 
convenience, the proof is included here. Assume for an integer m 2:: 0, a 
commutative diagram of k-schemes: 

X fm -,;,r 
m ----? Lm 

i i 
Z' ~ Z 

is given, where Z' ~ Z is a closed immersion of affine schemes whose 
defining ideal is nilpotent. This diagram is equivalent to the following 
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commutative diagram: 

X 
i 

Z' X Speck[t]/(tm+l) 

S. Ishii 

~ y 

i 
'-* Z x Speck[t]/(tm+l) 

Here, we note that Z' x Speck[t]/(tm+l) '-* Z x Speck[t]/(tm+l) is 
a closed subscheme with the nilpotent defining ideal. If f is smooth 
(resp. unramified, etale), there exists a (resp. there exists at most 
one, there exists a unique) morphism Z x Speck[t]/(tm+l)---+ X which 
makes the two triangles commutative. This is equivalent to the fact 
that there exists a (resp. there exists at most one, there exists a unique) 
morphism Z---+ Xm which makes the two triangles in the first diagram 
commutative. 
(ii)=? (iii): trivial. 
(iii)=? (i): Assume a commutative diagram, 

(1) 
X 

cpj 
Z' 

y 

i'¢ 
z 

is given, where Z' '-* Z is a closed immersion of affine schemes whose 
defining ideal is nilpotent. For an integer m ;:::: 0, by composing with 
the sections u!. :X'-* Xm, u;;, : Y '-* Ym, we obtain the commutative 
diagram: 

Xm 
fm 

Ym -u u 
(2) X 

f y -cpj i'¢ 
Z' '-t z 

Now, if fm is smooth (resp. unramified, etale), there exists a (resp. 
exists at most one, exists a unique ) morphism Z ---+ Xm such that the 
two triangles are commutative in the diagram (2). By composing this 
morphism Z ---+ Xm with 1r!. : Xm ---+ X, we obtain that there exists 
a (resp. exists at most one, exists a unique ) morphism Z ---+X such 
that the two triangles in the lower rectangle are commutative. Q.E.D. 

Proof of Corollary 1.2. In Proposition 1.1, let Y =Speck. Q.E.D. 
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§4. jet schemes of a local analytic scheme 

For the proofs of the theorems, here we set up the jet schemes for 
local analytic schemes. Let k be an algebraically closed field of arbitrary 
characteristic. The represent ability of the following functor follows from 
[8]. Here, we show the concrete form of the scheme representing the 
functor. 

Proposition 4.1. Let Af: be the affine scheme Spec~, where 

0 AN ,o is the local ring of the origin 0 E Af: and ~ is the completion 

ofOAN,o at the maximal ideal. Let :F~-[!: Sch/k---+ Set be the functor 
from the category of k-schemes to the category of sets defined as follows: 

:F~l/ (Y) := Homk(Y Xspeck Speck[t]/(tm+l),Af:). 

For a morphism u: Y---+ Z in Sch/k, 

ft:N ~ 
:Fmk (u): Homk(Z X Speck[t]/(tm+l),Af:) 

---+ Homk(Y x Speck[t]/(tm+l),Af) 

is defined by f f---+ f o (u x id). 
AN 

Then, :Fmk is representable by the scheme 

(Af:)m := Spec k[[xo,l, Xo,2, ... , Xo,N ]][x1,1, ... , Xl,N, . .. , Xm,l, ... , Xm,N] 

= Spec k[[xo]][xl, ... , xmJ, 

where we denote the multivariables (xi,l, Xi,2, ... , Xi,N) by Xi for the 
simplicity of notation. 

Proof. We may assume that Y is an affine scheme Spec R over k. 
Then, 

Here we have a bijection: 

by t.p f---t (7To o t.p,1T1t.p(x01), ... ,1Tlt.p(xo,N), ... ,7Tmt.p(x01), ... ,1Tmt.p(xo,N)), 
where, 

1Ti: R[t]/(tm+l)---+ R (i = 0, 1, ... , m) 



192 S. Ishii 

is the projection of R[t]/(tm+l) = R (J) Rt (J) · · · (J) Rtm ~ Rm+l to the 
i-th factor. Indeed it gives a bijection, since we have the inverse map 

by 

where 1.p E Homk(k[[x0]],R[t]/(tm+l)) is defined as follows: 
For 'f'(Xo,l, xo,2, ... , Xo,N) E k[[xo]], substituting I:::o Xi,jti into 

xo,j (j = 1, ... , N) in'/', we obtain 

in k[[xo, x1, ... , Xm, t]], where '/'i1,] 1 , ••• ,i 8 ,j8 E k[[xo]]. Define ~.p('"Y) E 
R[t]/(tm+l) by 

On the other hand, It is clear that there is a bijection 

Homk(k[[xo]][xl, ... , xmJ, R) ~ Homk(k[[xo]J, R) x RmN 

by i.p ~ (~.pjk[[x0 ]], i.p(X1,1), ... , i.p(Xl,N ), ... , i.p(Xm,I), ... , i.p(Xm,N )). By this, 
we have 

which implies 

Homk(Y x Spec k[t]/(tm+l ), Af) ~ Homk(Y, Spec k[[xo]][xl, ... , xm]) 

This completes the proof. Q.E.D. 

By this proposition, we have the following: 
~ 

Corollary 4.2. L~ C Af be a closed subscheme. Let I be the 

defining ideal of X in Af. Define a functor :F://. : Sch/k---+ Set for 
this X in the same way as in the previous proposition. 

For a power series f E k[[xo]] we define an element Fm E k[[x0]][x1, 
... , xm] as follows: 

m 

f(L Xiti) = Fo + F1t + F2t2 + · · · + Fmtm + · · · . 
i=O 
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Then, the functor F![, is represented by a scheme Xm defined in (iJ,f)m = 

Spec k[[x0]][x1, ... , xm] by the ideal generated by Fi 's ( i ::::; m) for all 
f E I. (It is sufficient to take Fi 's (i::::; m) for all generators f E I.) 

Proof. We use the notation in the proof of the previous proposition. 
There, we obtained bijections : 

\li 
~ Homk(k[[xo]][xl, ... , Xm], R). 

Here, for Y = Spec R, we have the fact that 

;:;, (Y) = Homk(k[[xo]]/ I, R[t]/(tm+l)) 

is the subset 

{rp: k[[xo]] ---4 R[t]j(tm+l) I rp('-y) = 0 for generators"( E I} 

of Homk(k[[x0]], R[t]j(tm+l )). The condition rp('-y) = 0 is equivalent to 
the conditions 1fi o rp('-y) = 0 (i = 0, 1, ... , m). Therefore, this subset is 
mapped by \fl o <P to the subset 

{ rp: k[[xo]][x1, ... ,xm] ---4 R I rp(xi,j) = ai,j, for generators"( E I, 

rflo(--v· · · · )a· · ···a· · = 0 (i = 0 1 m)} Y /'ll,)l,···,ts,]s 'l-1,]1 'ls,]s ' ' '''' · 

Let the ideal J c k[[x0]][x1, ... , Xm] be generated by 

L fil,}l, ... ,is,jsXit,}l · · 'Xi 8 ,j8 

I:e ie=i,l5oje5oN 

for generators"( E I, then it follows that our subset is equal to 

Q.E.D. 

Remark 4.3. Let X c Af/ be a closed subscheme containing the 

origin 0, Ix the defining ideal and X ~ affine scheme Spec~­
Note that the defining ideal I of X in Af is generated by Ix. For 
a polynomial f E k[x0 ] we define an element Fm E k[xo, x 1 ... , Xm] 
i~he same way as in the previous corollary. Then Xm is defined in 

(Af/)m = Speck[[x0 ]][x1, ... ,xm] by the ideal generated by Fi's (i::::; m) 
for generators f E Ix. 
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Corollary 4.4. Under the notation of Remark 4.3, it follows that 

Xm =X xxXm. 

Proof. Note that Fi E k[xo, x1, ... , xm] for a generator f of Ix and 
I is generated by Ix. Now the expressions 

Xm = Speck[xo,xl, ... ,xmJI(Fi)JEix 

Xm =Spec k[[xo]][xl, ... , Xm]/(Fi)JEix 

give the required equality. Q.E.D. 

Corollary 4.5. Under the notation of Rerr:.ark 4.3, let n?:. and n! 
be the canonical projections Xm ____, X and Xm ____, X, respectively. 
Then, we obtain the isomorphism of schemes: 

Corollary 4.6. Under the notation of Remark 4.3, replacing X by 
a sufficiently small neighborhood of 0, we obtain the equivalence that the 
truncation '!!wrphism~ Xm' ____, Xm is fiat if and only if the truncation 
morphism Xm' ____, Xm is fiat. 

Proof. "Only if' part follows from the base change property for fiat­
ness. "If' part follows from the fact that the homomorphism Ox,o ____, 
a;:; is faithfully fiat. Q.E.D. 

Definition 4. 7. A monomial X = n:=l Xi£,]£ E k[[xo]][XI, ... 'Xm] 
is called a monomial of weight w if w = ~:=l i£. For an element F E 

k[[xo]][xl, ... , Xm] the order ord F is defined as the lowest degree of the 
monomials in xo, ... , Xm that appear in F. 

Note that every monomial in Fm has weight m for f E k[[xo]]. 
The next lemma follows from the definition of Fm: 

Lemma 4.8. Let f be a non-zero power series in k[[x0 ]] of order 
2:1. 

(i) When char k= 0, a monomial n;=l XO,j£ appears in f if and 
only if for every iR 2: 0, the monomial 

r 

II Xi£,]£ 

1'=1 

appears in Fm, where ~£ iR = m. 
Hence, ord F m = ord f, and in particular F m -=/:- 0 for every 

m. 
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N 

(ii) For any characteristic, a monomial IT x~~j appears in f if and 
j=l 

only if for every it ;::: 0, the monomial 

appears in Fm, where m = Lj ejij. 

Proof. The statement of "if" part follows immediately from the 
definition of Fm for both (i) and (ii). Now assume that g = TI~=l xo,je is 
a monomial in f. By substituting Li>o Xi,jti into xo,j in this monomial, 
we obtain -

(~ i 2 g L...t xit ) = Go + G1 t + G2t + · · · . 
i?:O 

Therefore, Gm is the sum of the monomials of the form TI~=l Xi £de with 
it ;::: 0 and L£ it = m. If the characteristic of k is zero, the coefficients 
of each such monomial is nonzero. And each monomial TI~=l Xie,je in 
Gm is not canceled by the contribution from the other monomials of 
f, because the collection (j1 , .. ,jg, .. ,Jr) assigns the source monomial 
TI~=l Xo,je. This shows the statement of "only if" part of (i). For the 
proof of only if part of (ii), let g = Tij x~~j and define Gi in the same 
way as in the previous discussion. Then, the monomial Tij x:;,j appears 
with coefficient 1 in Gm for m = Lj ejij· Therefore, the coefficient of 

Tij x:;,j in Fm is the same as the coefficient of Tij x~~j in f. Q.E.D. 

Remark 4.9. The statement (i) of Lemma 4.8 does not hold for 
positive characteristic case. For example, let p > 0 be the characteristic 
of the base field k and f = xb,l E k[[xo,lll· Then Fm = xf, 1 for m =pi 
and Fm = 0 form¢. 0 (mod p). 

As we saw in the previous section, Corollary 1.2 follows immediately 
from Proposition 1.1. But here we give another proof of Corollary 1.2 
for an algebraically closed base field, since we think that it gives some 
useful insight into jet schemes. 

Proof of Corollary 1.2. We may assume that (X, 0) C (A);, 0) is 
a closed subscheme with a singularity at 0, where N is the embedding 
dimension of (X, 0). Then every element f E Ix has order greate~an 

1. By this, every element Fi of the defining ideal Ix"' of Xm in (Af)m 
has order greater than 1. Here, note that Ix"' =f. 0, since Ix =f. 0 and 
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Fo = f for f E Ix. Therefore the Jacobian matrix of Ix= is the zero 
matrix at the trivial m-jet Om E Xm at 0, which shows that Om is a 
singular point in Xm for every m. Q.E.D. 

§5. Proofs of theorems 1.3, 1.4 

5.1. For t~proof of the theorems, we fix the notation as follows: 

Let (X,O) C (A{',O) be a singularity of embedding dimension N. Let 
0 :::; m ::..___m', Rm = k[[xo]][xl, ... , xmJ, I C Rm the defining ideal of 

Xm in (Af)m, Rr;;::__ = k[[xo]][xl, .. ,Xm, .. Xm'] and I' C Rm' the defining 

ideal of Xm' in (Af)m'· Let M be the maximal ideal of Rm generated 
by Xo, ... ,Xm· 

Lemma 5.2. Under the notation as in 5.1, if there is an element 
F E I' nM Rm' such that F tj_ M I'+ I Rm', then the truncation morphism 
7/Jm' ,m : Xm' ----+ Xm is not fiat. 

Proof. The truncation morphism 7/Jm' ,m : Xm' ----+ Xm corresponds 
to the canonical ring homomorphism Rml I ----+ Rm' I I'. The non­
flatness follows from the non-injectivity of the canonical homomorphism: 

Ml I 0Rrn/I Rm' I I'----+ Rm 1 I I'. 

Since we have an isomorphism of the first module 

MII®Rrn/I Rm)I' ~ MRm)(MI' +IRm'), 

the existence of an element F E I' n M Rm' such that F tj_ M I' + I Rm' 
gives the non-injectivity. Q.E.D. 

Proof of Theorem 1.3. Assume that the base field k is algebraically 
closed and of characteristic zero and (X, 0) is a singular point of a scheme 
X of finite type over k. Then we will deduce that every truncation 
morphism 7/Jm',m : Xm' ----+ Xm (m' > m 2: 0) is not fiat. For this, it is 

sufficient to prove that 7/Jm',m : Xm' ----+ Xm (m' > m 2: 0) is not fiat~ 

Corollary 4.6. So we may assume that X is a closed subscheme of A{' 
~h the embedding dimension N. Let Ix be the defining ideal of X in 

A{'. We use the notation of 5.1. Let f be an element in Ix with the 
minimal order d. Note that d 2: 2, as N is the embedding dimension. 
Then, by Lemma 4.8, (i), Fm+l is not zero and presented as 

Fm+l = gl (xo)Xm+l,l + · · · + gN(xo)Xm+l,N + g' (xo, ... , Xm), 

where ordFm+l = d and some of gi's are not zero. We should note 
that ord gi = d - 1 for all non-zero gi 's. As ord gi 2: 1, for every i and 
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ordg' 2: 1, the element Fm+1 is in MRm'· It is clear that Fm+1 E I'. 
On the other hand, as ord I = ord I' = d, it follows that ord M I' 2: d + 1 
and the initial term of an element I Rm' of order d is the initial term of 
an element of I. Hence, the initial term of an element in M I'+ I Rm' of 
order d should be the initial term of an element of I, therefore it should 
be a polynomial in x 0 , .•• , Xm. However, the initial term of Fm+1 is not 
of this form, which implies Fm+1 ¢ MI' + IRm'· By Lemma 5.2, the 
non-flatness of '1/Jm',m: Xm' ~ Xm follows for every pair (m, m') with 
0 ~ m < m'. Q.E.D. 

Example 5.3. The condition chark=O is necessary for Theorem 
1.3. Indeed, there are counter examples for Theorem 1.3 in case of 
positive characteristic. For example, let X be a scheme defined by xg 1 
in A~ = Spec k[x0 ,1] over a field k of characteristic p. Let r be an integ~r 
with 0 < r < p Then, for any positive integer q, we have 

Xpq+r = Spec k[xo,l. x1,1, ... , Xpq+r,1l/ (xb,1, ... , x~, 1 ) 

and 
Xpq =Spec k[xo,1, x1,1, .. , Xpq,1]/(xb,1, ... , x~, 1 ). 

It is clear that Xpq+r is flat over Xpq, while X is singular. 

Proof of Theorem 1.4. As in the proof of the previous theorem, 
we will show the non-flatness of the truncation morphisms, if (X, 0) 
is singular. As X is reduced, some fiber of the truncation morphism 
'1/Jm',m : Xm' ~ Xm has dimension ~ (m'- m) dim(X, 0) for a small 
affine neighborhood X of 0, if '1/Jm' ,m is flat. (If X is of equi-dimensional, 
then the fiber has dimension (m'- m) dim( X, 0).) Hence, if '1/Jm',m is 
flat, by Corollaries 4.5, 4.6, the dimension of the fiber over a closed 
point in (?r~)- 1 (0) by the morphism ;r.;;; : "£;;;; ~ Xm is ~ (m'­
m)dim(X,O). With remarking this fact and Co~ary 4.6, we may as-

sume that X is a singular closed subscheme of Af: for the embedding 
dimension N of (X, 0). 

First assume m' < d(m + 1). Note that for every g E Ix, 

fori< d(m+ 1). This is because every monomial in Gi has a factor xe,j 

with e ·~ m, since the weight of Gi is i ( < d( m + 1)) and ord Gi 2: d. 
Let Om be the trivial m-jet at 0. As '1/J;},m(Om) is defined in .A_(m'-m)N 

by the ideal generated by Gi 's with i ~ m' for g E Ix, it follows that 

.t,-1 (0 ) ,...., .A_N(m'-m) 
o/m',m m - ' 
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which is a fiber of dimension N(m'- m) > (m'- m) dim( X, 0). There­
fore, '1/Jm' ,m is not fiat, because otherwise the fiber dimension would be 
(m'- m) dim( X, 0) as we saw before. 

Therefore, we may assume that m' :?: d(m + 1), where d = ordix. 
Let f E Ix have the order d. Let IJj x~~i be a monomial with the 
minimal degree in f. Then, L:j ej = d and therefore ej ~ d for every j. 
Let e be one of non-zero ej's. By the assumption m' :?: d(m + 1), there 
is a positive integer i such that m < ie < m'. Let s be minimal among 
such i's. Then Fse E I' is clear and also we have Fse E M Rm' under the 
notation of 5.1. Indeed, if a monomial rr~=1 Xil,ji of Fse has a factor 
Xit,jt with it :?: m + 1, let this it be i1. Then i1 :?: m + 1 > (s- 1)e. By 
this, 

Lit < se - ( s - 1 )e = e ~ d ~ u. 
t;61 

Therefore, there is at least one f such that it ~ 1 ~ m. Hence every 
monomial of Fse is contained in MRm'· Now let e = e1. As 

is a monomial of f of the minimal order d, by Lemma 4.8, 

e II e3 
Xs,1 Xo,j 

#1 

is a monomial of Fse. Therefore, ord Fse = d. This monomial does not 
appear in any element of M I' + I Rm'. Indeed, ord M I' :?: d + 1 and the 
initial term of an element of I Rm' of order d must be the initial term of 
an element of I, because of ordi =d. Therefore, every initial monomial 
of an element of I Rm' of order d is of the form 

since I is generated by Fi's with i ~ m for f E Ix. As x;,1 IJ#1 x~~i is 
not of this form, we obtain Fse tj. I Rm' + M I'. By this and Lemma 5.2, 
it follows that Xm' ---+ Xm is not fiat for m' > m > 0. Q.E.D. 

Remark 5.4. In the proof of Theorem 1.4, we used the condition 
m :?: 1. It is not clear if the same statement as in the Theorem 1.4 
follows for m = 0 in positive characteristic case, i.e., If the base field is 
of positive characteristic, X is reduced and 1r m' = 'l/Jm' ,o : Xm' ---+ X is 
flat for some m' > 0, then is X non-singular? 
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But in particular, if m' = 1, it holds true. This is seen as follows: 
For an affine scheme X of finite type over k, the fiber of a point x E 

X by the projection 1r1 : X 1 -----t X is the Zariski tangent space of 
the point. Therefore dimJr1 1 (x) = embdim(X,x). If (X,O) is singular 
and reduced, dimJr1 1(x) > dim(X,O), while there are points in a small 
neighborhood of 0 such that the fiber dimension is dim(X, 0). Hence, 1r1 

is not flat. 
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