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On Nash blow-up of orbifolds 

Gerard Gonzalez-Sprinberg 

Abstract. 

A short survey on the Nash blow-up of singular varieties, applica
tions and examples in particular for orbifolds, followed by some new 
results for threefolds. 

§1. Introduction 

The modification of an algebraic or analytic singular variety, in 
which every singular point is replaced by the limiting positions of the 
tangent spaces to nearby smooth points, is called the Nash blow-up (or 
modification, or transformation). 

More precisely, let S be a reduced complex variety of pure dimension 
d, and 01 the sheaf of differentials of S. Denote by Gd the grassmannian 
Grassd(01) of rank d locally free quotient sheaves of 01, and let v : 
Gd --+ S be the canonical morphism from Gd to S. 

Since on the open subset Sreg of smooth points of S the restriction of 
the sheaf 01 is locally free of rank d, then there is a section <p : Sreg --+ Gd 
which is an isomorphism onto its image. 

The Nash blow-upS of Sis defined as the scheme closure of cp(Sreg) 
in Gd. The restriction of v to S, which will also be denoted by v, is a 
proper (and projective) birational morphism, and is an isomorphism on 
cp( Sreg). The variety S is canonically equipped with a vector bundle, the 
quotient sheaf of v*(01) induced by the universal bundle of Gd, which 
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is called the Nash cotangent bundle. 

By construction the Nash blow-up of S has the universal property of 
being minimal among the proper birational models of S equipped with 
a locally free quotient of maximal rank of n 1· 

Dually, this is also a universal construction that extends the tangent 
bundle of Breg· If Sis an affine variety embedded in c_N, and Grassd(CN) 
denotes now the grassmannian of d-dimensional subspaces of c_N, then 
there is a section u of S x Grassd(CN) over Breg sending each point 
p E Breg to the couple (p, Tp(S)), where Tp(S) is the linear subspace 
associated to the tangent space of S at p. The Nash blow-up is the 
closure of u(Sreg) inS x Grassd(CN), equipped with the projection on 
the first factor. 

An equivalent way to define the Nash blow-up is to consider the sheaf 
of d-differentials n~ = /\d(f!1), which is free of rank one over Breg, and 
the associated projective bundle IP'(O~). Then the canonical morphism 
on Sis an isomorphism over Breg· The Nash blow-up is isomorphic to 
the closure of the inverse image of Breg in IP'(O~), since the image of 
<Gd by the Plucker morphism is closed in IP'(O~). There is an equivalent 
construction in the dual presentation. 

The Nash blow-up is a global and intrinsic modification , since it 
is built from the sheaf of differentials 01 of the variety S. The scheme 
structure of the limiting positions of the tangent spaces of S at regular 
points gives a deep information on the geometry of the singularities of 
s. 

In the following section we review several methods to compute and 
describe the Nash blow-up or its normalization. Some omitted complete 
proofs may be found in the references and others will appear elsewhere. 
A brief survey on some properties and applications is sketched in Sec
tion 3, such as a comparison with point blowing-up, the desingularization 
problem, the local Euler invariant. In Section 4 we give examples and 
results on the Nash blow-up for surfaces, in particular for orbifold sin
gularities, and we describe some new result-s and examples in dimension 
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three for toric orbifold singularities. Some non exhaustive references on 
the subject are given at the end. 

§2. Computing the Nash blow-up 

The computation of this transformation, though a very natural one, 
is not particularly easy in general. 

The following result proves that locally it may be obtained as the 
blowing-up of an ideal. 

Theorem 1. Let S be an integral affine variety defined by a prime 
ideal I C C[X~,· · · , XN]· Let /1, h, · · ·, fc E I be such that dfi 1\ dh 1\ 
· · ·1\dfc-:/:- 0 ge!!:erically, with c = N -d, the codimension of S. Then the 
Nash blow-up S of S is obtained by the blowing-up with center the ideal 
generated by the images in C[X1, · · · , XNJ/ I of the minors of order c of 
the jacobian matrix of /1, · · · , fc· 

Note that it is not required that the fi, i = 1, · · · , c generate I (see 
[Gl]). For a slightly more general statement where Sis only supposed 
to be reduced and equidimensional see [N]. 

The base field may be replaced by any characteristic zero field K, 
considering the Kahler differentials for S. 

Note that the subscheme of S whose ideal is the center of the 
blowing-up giving the Nash blow-up of S may be strictly bigger than 
the singular locus of S. 

An immediate consequence of this theorem is the following. 

Corollary 1. If S is a complete intersection, then the Nash blow-up 
is obtained by blowing up the jacobian ideal. In particular then this is 
true for hypersurfaces. 

If S is not a complete intersection, then we may take an embedding 
of Sin a complete intersection W. Then the Nash blow-up of Sis the 
strict transform of Sin the Nash blow-up of W. 

The computation of the blowing-up of the jacobian ideal, or the 
ideal given in the preceding theorem may not be easy. 

In the case of a surface S we have another method to obtain the 
Nash blow-up by blowing-up closed points. Recall that a morphism 
1r : X ---+ S is called a desingularization or resolution of singularities of S 
if 1r is proper and birational and X is smooth. Usually 1r is also required 
to be an isomorphism over the regular open subset Sreg of S. 
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Theorem 2. Let 1r: X--+ S be a desingularization of a surfaceS. 
Then there is a smooth surface X obtained by a finite sequence of closed 
point blowing-ups of X giving a desingularization 1i' : X --+ S of the Nash 
blow-up S of S. 

This follows from the resolution of indeterminacies for rational maps 
of surfaces. For the computation we may apply a relative construction 
to 7r*(01)) over X to obtain a locally free rank two quotient sheaf and a 
birational morphism iJ: X--+ X. By the universal property of the Nash 
blow-up the morphism 1r o iJ factorizes through S. If X is singular, let 
X be a desingularization of X and v : X --+ X the induced birational 
morphism. The two surfaces are smooth, so v is a finite composition of 
closed point blowing-ups and X is a desingularization of S. (see [G5]). 

This method gives also precise information on the singularities of the 
Nash blow-upS or its normalization, and it may be iterated to obtain 
data on the following Nash blow-ups. 

Usually the practical use of this method is in the cases where one 
may describe the morphism 1r from the data of the smooth surface X and 
the exceptional divisor D of 1r. In some. cases the data of the weighted 
dual graph associated to D is enough, but in the general case this data is 
not sufficient. By considering 1r as a morphism contracting the divisor D, 
then the uniqueness of such a contraction morphism is assured only if the 
contracted surface S is normal. This is the reason why the normalized 
Nash blow-up is the natural object to consider and for which we may 
obtain effective results with this point of view. 

It is well adapted in particular for rational singularities, but it may 
be applied to more general surface singularities. We will give some 
examples for orbifold singularities. 

Another method that may be useful to compute the Nash blow-up 
for higher dimensional singularities, is the adaptation of the first one for 
toric singularities, as follows. 

Let S = Bu be a toric variety of dimension d associated to a cone a 
in NR, with the usual notations (see [TE]). 

Theorem 3. The Nash blow-up of a toric variety Bu is obtained 
by the blowing-up with center the ideal in qav n M] generated by the 
elements x"L-t e; such that the ei E aV n M are IR-linearly independent. 

For the proof see [Gl]. The description as a toric variety of this 
blow-up in terms of a fan gives the normalized Nash blow-up, since the 
semigroups considered here are saturated. The fan is computed as the 
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polar fan associated to the convex hull of the integer points inducing the 
above ideal. 

We give in the last section several results on Nash blow-up of toric 
singularities obtained with the last two methods. 

§3. Some properties and applications 

Given an isolated singular point s E S, the blowing-up of s and 
the Nash blow-up may be reasonably compared. The first one means 
geometrically to take the limiting positions of secants to S through s, 
and the (reduced) exceptional fiber is the projective tangent cone to 
s. The second one means to take the limiting positions of the tangent 
spaces to nearby smooth points, and the exceptional fiber is the Nash 
fiber. 

As shown in the following examples the Nash blow-up is not smooth 
in general, as well as the point blowing-up. A natural question is if it is 
possible to resolve singularities by iterating Nash blow-ups. 

For curve singularities, by iteration one obtains eventually with both 
kinds ofmodifications the same result, the desingularization of the curve, 
i.e. its normalization (see [N] for the Nash blow-up). 

For surface singularities, there is a result by Zariski showing that 
an iteration of point blowing-up and normalization gives a desingular
ization (see [Z]). The method based in Theorem 2 for obtaining the 
normalized Nash blow-up may be applied in particular for rational sin
gularities (see [G5]). On the other hand Hironaka proved that after a 
finite number of Nash blow-ups the singularities obtained are rational 
(see [H]) of a special kind, the so called sandwiched singularities. This 
singularities are resolved by normalized Nash blow-ups, by applying the 
above method (see [Sp]). Then for singular surfaces there is a result 
which cari be compared to Zariski's method, by Nash blow-up instead 
of point blowing-up, and by normalization. 

The Nash blow-up may be applied to non isolated singularities and 
higher dimensional singularities, to obtain resolutions as we shall see in 
some examples. It is not known if surfaces singularities may be resolved 
by iterating the Nash blow-up without normalization. For higher di
mensions the desingularization problem by iteration of Nash blow-up or 
normalized Nash blow-up is open. 

Another idea is to combine both Nash and point blowing-up, to have 
both natural fiber bundles obtained by extending the tangent bundle 
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and the normal bundle on the fiber over a singular point, related to 
the secants or "radial" structure. The reduced structure is given by the 
limits of secants and of tangent spaces (see [W]). 

Sometimes the (normalized) Nash blow-upS of S dominates already 
the blowing-upS' of s. For surfaces this happens when the tangent cone 
at s does not have a plane as a co~ponent (see [Sn]) and this is equivalent 
to saying that the pull back on S of hyperplane sections through s have 
no base points. 

In general s does not dominate S'. Let a : S' ----+ s be the blowing
up of the fiber v-1 (s) of sinS. Then voa factorizes through O" and we 
have a commutative diagram. 

This mixed construction is also applied for example to obtain a for
mula for the local Euler obstruction (see [G3]). By definition the Chern 
class of a smooth variety is the Chern class of its tangent bundle. For sin
gular varieties, there are generalizations like the (Schwartz-MacPherson) 
Chern classes which are defined by means of the Nash cotangent bundle 
and the local Euler obstruction. A report on Chern classes of singular 
varieties is far beyond the scope of this short survey. This is an impor
tant application of the Nash blow-up that has many ramifications and 
has been applied in different contexts. 

§4. Examples and results 

1) If S is smooth, then the Nash blow-up Sis isomorphic to S. 
In fact the converse statement is also true, over any characteristic zero 
field (see [Li], [N] ) . 

2) Let S be the union of two 2-planes in C4 intersecting in only 
one point, which is singular. Then the Nash blow-up simply separates 
the two planes, and the fiber over the singular point is given by two 
points. This is an example of a not complete intersection variety. 

This may be computed by the the blowing-up centered on the ideal 
generated by the maximal minors of the jacobian matrix of a generically 
differentially independent system, as in the method of Theorem 1. 
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Compare with the blowing-up of the singular point where the fiber 
contains two lines. 

3) If S is the affine cone over a smooth projective plane curve C, 
then the singularity at the· vertex is isolated, and the exceptional fiber 
in the Nash blow-up is the dual curve of C. 

Indeed, the tangent plane is constant along any generatrix of the 
cone, and its projection, at infinity, is the tangent line to C at the point 
determined by the chosen generatrix. So the set of limiting positions of 
tangent planes near the vertex is in bijection with the tangent lines to 
C, i.e. its dual. 

4) The preceding affine cone coincides with the tangent cone at 
the vertex. 

This is an example of what happens also for the general case of 
surfaces, in which the dual variety to the projective tangent cone at 
a singular point x is always a part of the exceptional Nash fiber over 
x. For 2-dimensional hypersurfaces in general the Nash fiber contains 
also pencils of planes through special lines of the tangent cone. For 
surfaces which are not hypersurfaces we may have in the Nash fiber 
other components of families of planes which are not projective lines. 
(see [G2], [Le]). 

5) Let S be the "Whitney-Cartan umbrella" defined by the equa
tion x2 = y2 z in C3 • 

This is an example of non normal singular surface. The Nash blow
up may be computed by blowing up the jacobian ideal J = (x, yz, y 2 ). 

The result is a smooth surface S, but the Nash fibre over the origin 
is a smooth rational curve corresponding to a pencil of planes with a 
common axis, and with an immersed point given by the dual to the 
tangent cone, not reduced since it is a double plane. The fiber over each 
other singular point of S has only two points corresponding to the two 
planes of the tangent cone. The ~inimal resolution of S is obtained by 
contracting the rational curve inS. 

6) Let S in C3 be a singularity of type A2 defined by the equation 
xy = z3 . 

Then S, obtained by blowing-up the jacobian ideal J = (x, y, z2 ), 

has two singular points, each one of the type of an affine cone over the 
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rational curve of degree 3 in 1P'3 • The second (following) Nash blow-up 
is smooth. 

This is an example of a quotient singularity, by a cyclic group of 
order 3 acting on C2 , i.e. an orbifold. 

7) For the more general cases of two-dimensional orbifolds we have 
precise results of the normalized Nash blow-up of quotients by finite 
subgroups of S£(2, q, which give the rational double points, also called 
Klein or DuVal singularities (see [A], [B], [G5]). We will now describe 
the result for the tetrahedral case E6 , where the Nash blow-up finds an 
orbit corresponding to both the associated cube and octahedron. 

Let G be the binary tetrahedral group acting on C2 , with only the 
origin as a fixed point, and q : C2 --t S = C2 I G the quotient morphism. 
The surface S has a singularity of type E6. 

Let a : C2 --t C2 be the blowing-up of the origin of C2, and D the 
exceptional projective line in C2 • Since the origin is a fixed point of G, 
there is a pull back of the action of G on C2 and the center Z of G acts 
trivially on D , so we get the natural action of the order 12 tetrahedral 
rotation group G I Z on the sphere 8 2 f'::! D. 

The quotient q : C2 --t S = C2 I G gives a surface S with three 
singular points, P1 and P2 of type A2 , and 02 of type A1, contained 
in the line D image of D, and corresponding to the three exceptional 
orbits given respectively by the 4 vertices of a tetrahedron T, the 4 
vertices of the dual tetrahedron T* and the 6 vertices of the octahedron 
0, intersection of T and T*. 

::::l L 

l 
::::l D 

By resolving the three singular points P1, P2 and 02 of S we obtain the 
minimal desingularization X of S, with an exceptional fibre with the E6 

configuration. 

The central line L of this E6 configuration projects isomorphically 
on the line D. The intersections of the three branches with the central 
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line L are the three points P1, P2 and Q2 which project to the singular 
points of S. It turns out that the rational map 1r: X ---t S from X into 
the Nash blow-upS is not defined only in point Q1 of L (i.e. a base point 
of the polar curve), such that the cross ratio (Q1, Q2, P1, P2 ) = -1. 

Note that this point is invariant by the automorphism of the config
uration IE6 exchanging P1 andP2 and fiXing Q2. 

Let Q1 be the projection of Q1 on the projective line D. Then 
this forth point Q1 is the image of a regular G-orbit of 12 points in D, 
corresponding to the central points of the edges of the octahedron 0, 
or the intersection points of 0 with the cube given by the vertices of T 
and T*. The blowing-up of Q1 E L in X gives the forth line cutting the 
central line of the exceptional fiber in the resolution of the (normalized) 
Nash blow-up of the IE6 singularity obtained by the method of Theorem 
2. 

The desingularization of the JE6 singularity is obtained after three 
normalized Nash blow-ups. In the following diagram are given the kind 
of singularities obtained in each step, by the weighted dual graph of their 
minimal desingularizations. The self intersection of a divisor is given as 
a weight of the corresponding vertex only if it is not -2. 

1st N 

• I • -
2nd N D 3rd N 

I Smooth I - -

The desingularization of the JE6 singularity obtained by this iteration 
of normalized Nash blow-ups is not the minimal desingularization. 

The minimal desingularization equipped with a fiber bundle extend
ing the tangent bundle of Breg is the minimal desingularization of the 
Nash blow-up. 
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8) For the icosahedral singularity lEs the desingularization is ob
tained with five normalized Nash blow-ups, as follows. 

l 
1st N 

• I • • • ·I - I. • 

I-· 
• • • .I 

2ndN 3rd N 

I~ -3 -4 - • • • • • • • - - -
• 

4th N 
1·3 

-3 
·31 

5th N - • - I Smoothj 

Note that the singularity of the first normalized Nash blow-up of lEs 
( and of JE6) is not an orbifold singularity (since the dual graph of the 
minimal resolution is not a subgraph of the A- lDl -JE types). 

9) Nash blow-up of two-dimensional toric orbifolds. 

Any two-dimensional normal toric singularity is an orbifold since it 
may be obtained as a quotient by a finite cyclic subgroup of GL(2, C). 

With the usual notations, let Bu or S(q,n) be the affine toric variety 
associated to the cone a = ((1, 0), (q, n)) in NR., with q and n integers 
such that 1 :=::; q < n, gcd(q, n) = 1. The Hilbert basis or minimal 
generating system G ={Po, · · · ,Ps+I} of the semigroup anN is given 
by the Jung:__Hirzebruch continued fraction 

nj(n- q) = a1 -1/ a2- 1 · · · - 1/a8 , with ai ~ 2 Vi, by 

Po = (1, 0), H = (1, 1) and Pi+l = aiPi - Pi-1 for 1 :=::; i :=::; s. 

In the case q = 0, and n = 1, then a is a regular cone, Bu is smooth 
and G contains the two extremal vectors. 

The minimal desingularization X of Bu is given by the fan cut out 
from a by the lines f through the points of G, and the dual graph r is 
a chain with s vertices. 
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P 0 =(1,0) 

We denote by Li, 1 :::; i :::; s, the ordered vertices of the chain and 
the smooth rational curves they represent. The self intersection of Li 
in X is -ai. The graph r is represented also by the Newton polygon 
from P1 to Ps of the convex hull of the semigroup generated by G. Each 
segment ofthe Newton polygon has either a central vertex or a central 
edge. The minimal desingularization of the Nash blow-up of Su and the 
normalized Nash blow-up are described as follows. 

Theorem 4. LetS = Su be a two-dimensional toric singularity and 
X its minimal desingularization. With the above notations, we have the 
following results. 

a) The minimal desingularization X of the Nash blow-up Bu is 
obtained by blowing-up the points in X represented by the central edges 
ofr. 

b) The normalized Nash blow-up of S is obtained by contracting 
the strict transform Li of Li in X into a point if an only if ai = 2 , 
s > 1 and Li is not central, or ai = 3 , 1 < i < s. 

The degree of the Nash cotangent bundle on each exceptional com
ponent may be also obtained ([G1], [G5]). 

The fan that gives the normalized Nash blow-up is cut out in u by 
the lines passing through points in G, or points of the form Pi + Pi+1 , 

other than those associated to contracted divisors. Then this fan is given 
by the lines through Pi if ai > 3, or if ai = 3 for i = 1 or i = s, or if 
ai = 2 and Pi is central in its face in the Newton polygon, or through 
Pi + Pi+l if Pi and Pi+l are the extremities of a central edge in the 
Newton polygon. 
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For example if q 1, i.e. in the case An, for n > 1 we obtain 
the following dual graphs for the minimal desingularization of the Nash 
blow-up. The black vertices are associated to the exceptional divisors, 
and the white vertices are associated to divisors not contracted by the 
desingularization morphism. 

-1 

I~ • • 10 1-~ • n even 
-2 -3 -2 • -2 

Nash blow-up of An 

-2 

I~ ~1°1 • n odd 
-2 ~I 

It follows that the singularities obtained are also toric, and that 
there are strictly fewer exceptional components in the minimal desingu
larization of each singularity . Then we obtain: 

Corollary 2. A desingularization of Sa is obtained by a finite num
ber of iterations of normalized Nash blow-ups. 

In fact the number of normalized Nash blow-ups required to resolve 
the singularity may be given precisely in terms of the Jung-Hirzebruch 
continued fraction of n/(n- q). It is much less (asymptotically loga
rithmic) than the number of blowing-ups centered at the maximal ideals 
required to obtain a desingularization. 

10) On Nash blow-up of three-dimensional toric orbifolds. 

We describe here some results on the three-dimensional toric case of 
singularities obtained as a quotient of C3 by a finite abelian subgroup of 
GL(3, C). There is not a complete description as in the two-dimensional 
case. 

In general the toric singularities which are quotients by (abelian) 
groups are associated with simplicial cones, and are called V-manifolds. 

Let us consider first the terminal toric orbifold singularities Sa, in 
the sense of Mori theory. In dimension two, terminal implies regular, so 
these examples exist only in dimension at least three. In this case the 
tetrahedron with vertices the origin and the extremal primitive vectors 
of the simplicial cone CJ is simple. This means that the only integer 
points in the tetrahedron are the vertices. 
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C1) Then, using the White-Frumkin terminal lemma (see [0]), we 
find that there is a basis of the free abelian group N '=="' Z3 such that 
a = ((1, 0, 0), (0, 1, 0), (k, 1, n)), with k and n integers, gcd(k, n) = 1, 
1:::; k < n. 

C2) This presentation of a is not unique, but up to permutation 
of coordinates or the extremal primitive vectors defining the simplicial 
cone, there are essentially only two other representations , by replacing 
the third vector by (n- k, 1, n) or (p, n- p, n) with pk = 1(n). 

C3) For such a cone a in Nrrt, then the dual in Mrrt, with the usual 
notations, is av = ((n,O,-k),(O,n,-1),(0,0,1)). 

C4) The Hilbert basis of the semigroup anN is given by the 
extremal primitive vectors, and the points Fi = ( fik/n l, 1, i), 0 < i < n. 

(k.l,n)=F 
n 

C5) The Jung-Hirzebruch continued fractions ofn/k and n/(n-k) 
are used to describe the Hilbert basis G(av) of the dual cone semigroup 
av nM. Let {Po,··· ,Ps+l} and {Qo, ··· ,Qt+l} be defined by 

nf(n- k) = a1 -1/ a2- 1 · · · - 1/a8 , with ai 2: 2 Vi, 

n/k = b1 -1/ b2- 1 · · · - 1/bt, with bi 2: 2 Vi, 

Qo = (0, 0, 1), Ql = (1, 0, 0), Qi+l = biQi- Qi-1 for 1:::; i :St. 

The three extremal primitive vectors belong to these sequences as 
Po, Qo and Ps+l = Qt+l = (n, 0, -k). The Hilbert basis G(av) of 
av n M is the set of the Pi's, the Qi's and the point (0, 1, 0). Note that 
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the P;, 's belong to the wall of CTv generated by Po and Ps+l, the Qi's to 
the wall generated by Q0 and Qt+l, and (0, 1, 0) to the wall generated 
by Po and Qo. 

(0,9,lF'Q 0 

f> (J,n-1.,-1) 
1 

C6) In particular we obtain that if CT is a terminal cone, then the 
Hilbert basis G(CTv) of the dual is contained in the walls of CTv. The 
converse is not true in general. 

C7) We compute the Nash blow-up in the case k = 1 by the 
method of Theorem 3. The fan obtained is the following. 

(1,1,n) 

(1,0,0) (0, 1,0) 

The cones denoted by A1 and A 2 are regular. 

The cones denoted by B1 and B 2 are isomorphic, if n is odd, to 
((1, 0, 0), (0, 1, 0), (0, 2, n- 2}), and to ((1, 0, 0), (0, 1, 0), (0, 1, n/2- 1)) 
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if n is even. They may be resolved by iteration of normalized Nash 
blow-ups, as in the two-dimensional case. Though not terminal cones, 
the structure of their Hilbert bases is similar to the two dimensional 
case, belonging to the non regular cone facet, plus the opposite extremal 
primitive vector. 

The last cone of the fan, denoted by C, is isomorphic, if n is even, 
to ((1, 0, 0), (0, 1, 0), (1, 1, n/2)), and to ((1, 0, 0), (0, 1, 0), (2, 2, n)) if n is 
odd. This last cone is not terminal. 

C8) A second family of examples, similar to the two dimensional 
affine cone over a rational curve in IF is the three dimensional cone 
IJ = ((1, 0, 0), (0, 1, 0), (n- 1, n- 1, n)). The Hilbert basis contains only 
one more point besides the vertices, the Nash fan is the elementary 
subdivision of IJ induced by this point, and it is a regular fan. This 
is a (highly) non complete intersection example. The normalized Nash 
blow-up is smooth. 

C9) As a last example, consider a terminal cone with k = 2. The 
Newton polytope in IJ v corresponding to the ideal described in Theorem 
3 seen from the origin looks like the following. 

The Nash fan induced in the dual space contains a cone which is not 
simplicial, so the corresponding affine toric variety is not an orbifold. 

As it was the case with the normalized Nash blow-up of the two 
dimensional orbifold singularities IE6 and JE8. 



148 G. Gonzalez-Sprinberg 

(I,O;l) (0.1.0) 

References 

[A] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 
(1966), 129-136. 

[B] E. Brieskorn, Rationale singularitiiten komplexer Fliichen Invent. Math., 4 
(1968), 336-358. 

[G1] G. Gonzalez-Sprinberg, Eventails en dimension 2 et Transformation de 
Nash, Secretariat Mathematique de l'Ecole Norm. Sup., Paris, 1977. 

[G2] ___ , Calcul de !'invariant local d'Euler pour les singularites quotient 
de surfaces, C. R. Acad. Sci. Paris Ser. A-B, 288 (1979), 989-992. 

[G3] ___ , L'obstruction locale d'Euler et le theoreme de MacPherson, 
Asterisque, 82-83 (1981), 7-23. 

[G4] ___ , Cycle maximal et invariant d'euler local des singularites isolees de 
surfaces, Topology, 21 (1982), 401-408. 

[G5] ___ , Resolution de Nash des points doubles rationnels, Ann. Inst. 
Fourier, 32 (1982), 111-178. 

[G6] ___ , Desingularisation des surfaces par des modifications de Nash nor-
malisees, Seminaire Bourbaki, Asterisque, 145-146 (1987), 187-207. 

[H] H. Hironaka, On Nash blowing-up, In: Arithmetic and Geometry II, Progr. 
Math., 36, Birkhiiuser, 1983, pp. 103-111. 

[Li] J. Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. 
Math. Soc., 21 (1969), 422-426. 

[Le] LeD. Trang, Limites d'espaces tangents et obstruction d'Euler des surfaces, 
Asterisque, 82-83 (1981), 45-69. 

[LT] LeD. Trang and B. Teissier, Limites d'espaces tangents en geometrie an
alytique, Comment. Math. Helv., 63 (1988), 540-578. 



On Nash blow-up of orbifolds 149 

[N] A. Nobile, Some properties of the Nash blowing-up, Pacific J. Math., 60 
(1975), 297-305. 

[OJ T. Oda, Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb. 
(3), 15, Springer-Verlag, 1988. 

[P] R. Piene, Ideals associated to a desingularization, In: Algebraic Geometry, 
Lecture Notes in Math., 732, Springer-Verlag, 1979, pp. 503-517. 

[R] 0. Riemenschneider, Deformationen von Quotientensingularitiiten (nach 
zyklischen Gruppen), Math. Ann., 209 (1974), 211-248. 

[Sn] J. Snoussi, The Nash modification and hyperplane sections on surfaces, 
Bull. Braz. Math. Soc. (N.S.), 36 (2005), 309-317. 

[Sp] M. Spivakovsky, Sandwiched singularities and desingularization of surfaces 
by normalized Nash transformations, Ann. of Math. (2), 131 (1990), 
411-491. 

[T] B. Teissier, The hunting of invariants in the geometry of discriminants, Real 
and Complex Singularities, Proc. Oslo, 1977. 

[TE] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Em
beddings I, Lecture Notes in Math., 339, Springer-Verlag, 1973. 

[W] H. Whitney, Tangents to an analytic variety, Ann. of Math. (2), 81 (1965), 
469-549. 

[Z] 0. Zariski, The reduction of singularities of an algebraic surface, Ann. of 
Math. (2), 40 (1939), 639-689. 

Institut Fourier 
Universite Grenoble I 
Prance 

E-mail address: gonsprinl!lujf-grenoble. fr 


