A proof of a conjecture of Degtyarev on non-torus plane sextics

Christophe Eyral and Mutsuo Oka

Abstract

. A \mathbb{D}_{10}-sextic is an irreducible sextic $C \subset \mathbb{C P}^{2}$ with simple singularities such that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ factors to the dihedral group \mathbb{D}_{10}. A \mathbb{D}_{10}-sextic is not of torus type. In this paper, we show that if C is a \mathbb{D}_{10}-sextic with the set of singularities $4 \mathbf{A}_{4}$ or $4 \mathbf{A}_{4} \oplus \mathbf{A}_{1}$, then $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ is isomorphic to $\mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}$. This positively answers a conjecture by Degtyarev.

§1. Introduction

A sextic $F(X, Y, Z)=0$ in $\mathbb{C P}^{2}$ is said to be of torus type if there is an expression of the form $F(X, Y, Z)=F_{2}(X, Y, Z)^{3}+F_{3}(X, Y, Z)^{2}$, where F_{2} and F_{3} are homogeneous polynomials of degree 2 and 3 respectively. A conjecture by the second author says that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ of the complement of an irreducible sextic C with simple singularities and which is not of torus type is abelian. In [4] we checked this for a number of configurations of singularities, but early in the year 2007, Degtyarev [1] observed that this conjecture is false in general. Especially, Degtyarev proved that there exist 8 equisingular deformation families of irreducible non-torus sextics C with simple singularities such that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ factors to the dihedral group \mathbb{D}_{10}, one family for each of the following sets of singularities: $4 \mathbf{A}_{4}, 4 \mathbf{A}_{4} \oplus \mathbf{A}_{1}, 4 \mathbf{A}_{4} \oplus 2 \mathbf{A}_{1}, 4 \mathbf{A}_{4} \oplus \mathbf{A}_{2}, \mathbf{A}_{9} \oplus 2 \mathbf{A}_{4}, \mathbf{A}_{9} \oplus 2 \mathbf{A}_{4} \oplus \mathbf{A}_{1}$,

[^0]$\mathbf{A}_{9} \oplus 2 \mathbf{A}_{4} \oplus \mathbf{A}_{2}$ and $2 \mathbf{A}_{9} .{ }^{1}$ Furthermore, in the special case where the set of singularities is $4 \mathbf{A}_{4}$, he conjectured that $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right) \simeq \mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}$ (cf. [1, Conjecture 1.2.1]). The aim of this paper is to prove this conjecture.

Hereafter, we use the term \mathbb{D}_{10}-sextic for an irreducible sextic $C \subset$ $\mathbb{C P}^{2}$ with simple singularities such that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash\right.$ C) factors to \mathbb{D}_{10} (cf. [2]). By $[1,5,8]$, a \mathbb{D}_{10}-sextic is not of torus type.

Theorem 1. If C is a \mathbb{D}_{10}-sextic with the set of singularities $4 \mathbf{A}_{4}$ (respectively $4 \mathbf{A}_{4} \oplus \mathbf{A}_{1}$), then the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ is isomorphic to $\mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}$.

According to [1], there is only one equisingular deformation family of \mathbb{D}_{10}-sextics with the set of singularities $4 \mathbf{A}_{4}$ (respectively $4 \mathbf{A}_{4} \oplus \mathbf{A}_{1}$). Therefore, to prove the theorem, it suffices to construct a \mathbb{D}_{10}-sextic C_{1} with four \mathbf{A}_{4}-singularities (respectively a \mathbb{D}_{10}-sextic C_{2} with four \mathbf{A}_{4}-singularities and one \mathbf{A}_{1}-singularity) - notice that in [1] only the existence of \mathbb{D}_{10}-sextics is proved - and show the isomorphism $\pi_{1}\left(\mathbb{C P}^{2} \backslash\right.$ $\left.C_{i}\right) \simeq \mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}$ for $i=1$ (respectively $i=2$). This is done in sections 2 and 3 respectively.

Note that when this paper was being written, Degtyarev independently found the fundamental groups $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ for all \mathbb{D}_{10}-sextics C (cf. [2]). Let us also mention that in addition to the statement about $\mathbb{D}_{10^{-}}$ sextics with four \mathbf{A}_{4}-singularities, Degtyarev's Conjecture 1.2.1 in [1] also says that $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right) \simeq \mathbb{D}_{14} \times \mathbb{Z} / 3 \mathbb{Z}$ for any \mathbb{D}_{14}-sextic C with three \mathbf{A}_{6}-singularities (a \mathbb{D}_{14}-sextic C is just an irreducible sextic with simple singularities such that $\pi_{1}\left(\mathbb{C P}^{2} \backslash C\right)$ factors to the dihedral group $\left.\mathbb{D}_{14}\right)$. This second point of the conjecture is proved in [3].

§2. An example of a \mathbb{D}_{10}-sextic with the set of singularities $4 A_{4}$ and the fundamental group of its complement

Let $(X: Y: Z)$ be homogeneous coordinates on $\mathbb{C P}^{2}$ and (x, y) the affine coordinates defined by $x:=X / Z$ and $y:=Y / Z$ on $\mathbb{C P}^{2} \backslash\{Z=$ $0\}$, as usual. We consider the following one-parameter family of curves $C(u): f(x, y, u)=0, u \in \mathbb{C}$, where $f(x, y, u)$ is a polynomial given as $f(x, y, u)=g\left(x, y^{2}, u\right)$, with

$$
g(x, y, u):=c_{3} y^{3}+c_{2} y^{2}+c_{1} y+c_{0}
$$

[^1]and the coefficients c_{3}, \ldots, c_{0} are defined as follows:
\[

$$
\begin{aligned}
& c_{3}:=-64 u^{3}+96 u^{2}+16+16 u^{4}-64 u, \\
& c_{2}:= 196 u-4 x^{2} u^{6}-36 x u^{4}+144 x u^{3}-226 x u^{2}-164 x^{2} u+ \\
& 12 x^{2} u^{4}+192 u^{3}-289 u^{2}+223 x^{2} u^{2}-40 x+16 x^{2} u^{5}- \\
& 128 x^{2} u^{3}-52+160 x u-48 u^{4}+44 x^{2}, \\
& c_{1}:= 56+88 x-200 u+8 x^{2} u^{6}+72 x u^{4}-288 x u^{3}+454 x u^{2}+ \\
& 208 x^{2} u+2 x^{2} u^{4}-276 x^{2} u^{2}+152 x^{2} u^{3}-328 x u-192 u^{3}+ \\
& 48 u^{4}+290 u^{2}-64 x^{2}-72 x^{3}+40 x^{4}+264 x^{3} u-32 x^{2} u^{5}+ \\
& 16 x^{4} u^{5}+4 x^{3} u^{6}+166 x^{4} u^{2}-16 x^{3} u^{5}-338 x^{3} u^{2}-136 x^{4} u+ \\
& 184 x^{3} u^{3}-4 x^{4} u^{6}-80 x^{4} u^{3}-2 x^{4} u^{4}-24 x^{3} u^{4}, \\
& c_{0}:=-20-48 x+68 u-x^{6} u^{6}+144 x u^{3}-36 x^{6} u+3 x^{4} u^{6}+ \\
& 56 x^{5} u^{3}+52 x^{2} u^{2}-40 x^{2} u-120 x^{5} u^{2}+104 x^{5} u-44 x^{4} u^{2}- \\
& 4 x^{3} u^{6}-2 x^{6} u^{4}-4 x^{2} u^{6}+2 x^{5} u^{6}-8 x^{5} u^{5}+298 x^{3} u^{2}- \\
& 24 x^{2} u^{3}-240 x^{3} u+40 x^{4} u+18 x^{3} u^{4}+39 x^{6} u^{2}+16 x^{4} u^{3}- \\
& 2 x^{5} u^{4}-14 x^{2} u^{4}-12 x^{4} u^{5}+4 x^{6} u^{5}-32 x^{5}+72 x^{3}+12 x^{6}- \\
& 16 x^{4}+16 x^{2}+64 u^{3}-16 u^{4}-97 u^{2}-160 x^{3} u^{3}+16 x^{2} u^{5}+ \\
& 12 x^{4} u^{4}-228 x u^{2}+16 x^{3} u^{5}-16 x^{6} u^{3}-36 x u^{4}+168 x u .
\end{aligned}
$$
\]

All the curves $C(u)$ in that family are symmetric with respect to the x-axis. All of them have four \mathbf{A}_{4}-singularities located at $(0, \pm 1)$ and $(1, \pm 1)$, except the curves $C\left(\frac{9 \pm \sqrt{33}}{6}\right)$ which obtain, in addition, an $\mathbf{A}_{1^{-}}$ singularity at $(-1,0)$, and the curve $C(1)$ which is a non-reduced cubic (union of a smooth conic and a line). All the curves are irreducible except $C(1)$. All of them are non-torus curves.

As a test curve with four \mathbf{A}_{4}-singularities, we take the curve $C_{1}:=$ $C(11 / 5)$ defined by the equation $f_{1}(x, y):=f(x, y, 11 / 5)=0$, where

$$
\begin{aligned}
a_{0} \cdot f_{1}(x, y):= & 518400 y^{6}+\left(808511 x^{2}-1435150 x-1555825\right) y^{4}+ \\
& \left(259536 x^{4}-1580686 x^{3}-297122 x^{2}+2871550 x+\right. \\
& 1556450) y^{2}-45216 x^{6}-313968 x^{5}+503423 x^{4}+ \\
& 1177536 x^{3}-512014 x^{2}-1436400 x-519025
\end{aligned}
$$

with $a_{0}:=15625$. In Fig. 1, we show its real plane section, that is, the set $\left\{(x, y) \in \mathbb{R}^{2} ; f_{1}(x, y)=0\right\}$. (In the figures we do not respect the numerical scale.)

Theorem 2. $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right) \simeq \mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}$.

Proof. We use the classical Zariski-van Kampen theorem (cf. [10] and [9]) with the pencil given by the vertical lines $L_{\eta}: x=\eta, \eta \in \mathbb{C}$. We always take the point $(0: 1: 0)$ as the base point for the fundamental groups. This point is nothing but the axis of the pencil, which is also the point at infinity of the lines L_{η}. Observe that it does not belong to C_{1}.

The discriminant $\Delta_{y}\left(f_{1}\right)$ of f_{1} as a polynomial in y, which describes the singular lines of the pencil (notice that the line at infinity $Z=0$ is not singular), is the polynomial in x given by

$$
\begin{gathered}
\Delta_{y}\left(f_{1}\right)(x)=b_{0}(x+1) x^{10}\left(408839 x^{2}+219050 x-625\right)^{2}(x-1)^{10} \\
\left(45216 x^{5}+268752 x^{4}-772175 x^{3}-405361 x^{2}+917375 x+519025\right),
\end{gathered}
$$

where $b_{0} \in \mathbb{Q} \backslash\{0\}$. This polynomial has exactly 10 distinct roots which are all real numbers: $\eta_{1}=-7.9192 \ldots, \eta_{2}=-1, \eta_{3}=-0.7182 \ldots$, $\eta_{4}=-0.7005 \ldots, \eta_{5}=-0.5386 \ldots, \eta_{6}=0, \eta_{7}=0.0028 \ldots, \eta_{8}=1$, $\eta_{9}=1.6969 \ldots$, and $\eta_{10}=1.6974 \ldots$ The singular lines of the pencil are the lines $L_{\eta_{i}}(1 \leq i \leq 10)$ corresponding to these 10 roots. The lines $L_{\eta_{6}}$ and $L_{\eta_{8}}$ pass through the singular points of the curve. All the other singular lines are tangent to C_{1}. See Fig. 1.

Fig. 1. Real plane section of C_{1}

We consider the generic line $L_{\eta_{6}-\varepsilon}$ and choose generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{6}-\varepsilon} \backslash C_{1}\right)$ as in Fig. 2, where $\varepsilon>0$ is small enough. The ξ_{j} 's are (the homotopy classes of) lassos oriented counterclockwise (see [7] for the definition) around the intersection points of
$L_{\eta_{6}-\varepsilon}$ with C_{1}. In the figures, a lasso oriented counter-clockwise is always represented by a path ending with a bullet, as in Fig. 3. The Zariski-van Kampen theorem says $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right) \simeq \pi_{1}\left(L_{\eta_{6}-\varepsilon} \backslash C_{1}\right) / G_{1}$, where G_{1} is the normal subgroup of $\pi_{1}\left(L_{\eta_{6}-\varepsilon} \backslash C_{1}\right)$ generated by the monodromy relations associated with the singular lines of the pencil. To determine these relations, we fix a system of generators $\sigma_{1}, \ldots, \sigma_{10}$ for the fundamental group $\pi_{1}\left(\mathbb{C} \backslash\left\{\eta_{1}, \ldots, \eta_{10}\right\}\right)$ as follows: each σ_{i} is (the homotopy class of) a lasso oriented counter-clockwise around η_{i} with base point $\eta_{6}-\varepsilon$. Its tail is a union of real segments and half-circles around the exceptional parameters $\eta_{j}(j \neq i)$ located between the base point $\eta_{6}-\varepsilon$ and η_{i}. Its head is a circle around η_{i}. For example, for $i=4$, the lasso σ_{4} is obtained when the variable x moves on the real axis from $x:=\eta_{6}-\varepsilon$ to $x:=\eta_{5}+\varepsilon$ (in short, from $x:=\eta_{6}-\varepsilon \rightarrow \eta_{5}+\varepsilon$), makes half-turn counter-clockwise on the circle $\left|x-\eta_{5}\right|=\varepsilon$, moves on the real axis from $x:=\eta_{5}-\varepsilon \rightarrow \eta_{4}+\varepsilon$, runs once counter-clockwise on the circle $\left|x-\eta_{4}\right|=\varepsilon$, then comes back on the real axis from $x:=\eta_{4}+\varepsilon \rightarrow \eta_{5}-\varepsilon$, makes half-turn clockwise on the circle $\left|x-\eta_{5}\right|=\varepsilon$, and moves on the real axis from $x:=\eta_{5}+\varepsilon \rightarrow \eta_{6}-\varepsilon$ (cf. Fig. 4). For $i=6$, we get σ_{6} just by moving x once counter-clockwise on the circle $\left|x-\eta_{6}\right|=\varepsilon$. The monodromy relations around the singular line $L_{\eta_{i}}$ are obtained by moving the generic fibre $F \simeq L_{\eta_{\varepsilon}-\varepsilon} \backslash C_{1}$ isotopically 'above' the loop σ_{i} so defined, and by identifying the generators $\xi_{j}(1 \leq j \leq 6)$ with their own images by the terminal homeomorphism of this isotopy. For details see $[10,9]$. Most of the remaining of the proof is to determine these relations.

Fig. 2. Generators at $x=\eta_{6}-\varepsilon$

Fig. 3. Lasso oriented counter-clockwise

Fig. 4. Lasso σ_{4}

Monodromy relations at $x=\eta_{5}$

In Fig. 5 , we show how the generators at $x=\eta_{6}-\varepsilon$ (cf. Fig. 2) are deformed when x moves on the real axis from $x:=\eta_{6}-\varepsilon \rightarrow \eta_{5}+\varepsilon$. The line $L_{\eta_{5}}$ is tangent to the curve at two distinct simple points (i.e., nonsingular points) $P_{-}=\left(\eta_{5},-0.6132 \ldots\right)$ and $P_{+}=\left(\eta_{5},+0.6132 \ldots\right)$, and the intersection multiplicity of this line with the curve at these points is 2 . Therefore, by the implicit function theorem, the germ $\left(C_{1}, P_{ \pm}\right)$is given by

$$
x-\eta_{5}=\alpha_{ \pm} \cdot(y \mp 0.6132 \ldots)^{2}+\text { higher terms },
$$

where $\alpha_{ \pm} \neq 0$. So, when x runs once counter-clokwise on the circle $\left|x-\eta_{5}\right|=\varepsilon$, the variable y makes half-turn on the dotted circle around $\pm 0.6132 \ldots$ (cf. Fig. 5), and therefore the monodromy relations at $x=\eta_{5}$ are given by

$$
\begin{equation*}
\xi_{6}=\xi_{5} \quad \text { and } \quad \xi_{2}=\xi_{1} \tag{1}
\end{equation*}
$$

Monodromy relations at $x=\eta_{4}$

In Fig. 6, we show how the generators at $x=\eta_{5}+\varepsilon$ (cf. Fig. 5) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{5}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{5}-\varepsilon \rightarrow \eta_{4}+\varepsilon$. The singular line $L_{\eta_{4}}$ is tangent to the curve at one simple point P and the intersection multiplicity of this line with the curve at P is 2 . Then, as above, the monodromy relation at $x=\eta_{4}$ is simply given by

$$
\begin{equation*}
\xi_{4}=\xi_{3} \tag{2}
\end{equation*}
$$

Fig. 5. Generators at $x=\eta_{5}+\varepsilon$

Fig. 6. Generators at $x=\eta_{4}+\varepsilon$

Monodromy relations at $x=\eta_{3}$
In Fig. 7, we show how the generators at $x=\eta_{4}+\varepsilon$ (cf. Fig. 6) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{4}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{4}-\varepsilon \rightarrow \eta_{3}+\varepsilon$. The line $L_{\eta_{3}}$ is also tangent to the curve at one simple point with intersection multiplicity 2 , and the monodromy relation we are looking for is given
by

$$
\begin{equation*}
\xi_{5}=\xi_{3} \xi_{1} \xi_{3}^{-1} \tag{3}
\end{equation*}
$$

The monodromy relations around the singular lines $L_{\eta_{2}}$ and $L_{\eta_{1}}$ do not give any new information. The movement of the 6 complex roots of the equation $f_{1}(\eta, y)=0$ for $\eta_{1} \leq \eta \leq \eta_{2}$ can be chased easily using the real plane section of $g(x, y, 11 / 5)=0$ (cf. Fig. 8). Indeed, from this picture, one gets the movement of the 3 real roots of the equation $g(\eta, y, 11 / 5)=0$ for $\eta_{1} \leq \eta \leq \eta_{2}$. The movement of the 6 complex roots of $f_{1}(\eta, y)=0, \eta_{1} \leq \eta \leq \eta_{2}$, can be then easily deduced (we recall that $\left.f_{1}(\eta, y)=g\left(\eta, y^{2}, 11 / 5\right)\right)$. For details see [6].

Fig. 7. Generators at $x=\eta_{3}+\varepsilon$

Monodromy relations at $x=\eta_{6}$

By (1), (2) and (3), Fig. 2 (which shows the generators at $x=\eta_{6}-\varepsilon$) is the same as Fig. 9, where

$$
\zeta_{1}:=\xi_{3} \xi_{1} \cdot \xi_{3} \cdot\left(\xi_{3} \xi_{1}\right)^{-1}
$$

The line $L_{\eta_{6}}$ passes through the singular points $(0,1)$ and $(0,-1)$ which are both \mathbf{A}_{4}-singularities. Puiseux parametrizations of the curve at these points are given by
(4) $\quad x=t^{2}, \quad y=1+\frac{1}{2} t^{2}+\frac{359}{200} t^{4}+\frac{726}{125} \sqrt{22} t^{5}+$ higher terms

Fig. 8. Real plane section of $g(x, y, 11 / 5)=0$

Fig. 9. Generators at $x=\eta_{6}-\varepsilon$
and
(5) $\quad x=t^{2}, \quad y=-1-\frac{1}{2} t^{2}-\frac{359}{200} t^{4}-\frac{726}{125} \sqrt{22} t^{5}+$ higher terms respectively. Equations (4) show that when $x=\varepsilon \exp (i \theta)$ moves once counter-clockwise on the circle $\left|x-\eta_{6}\right|=\varepsilon$, the topological behavior of
the two points near 1 in Fig. 9 looks like the movement of two satellites (corresponding to $t=\sqrt{\varepsilon} \exp (i \nu), \nu=\theta / 2, \theta / 2+\pi$) accompanying a planet. The movement of the planet is described by the term $t^{2} / 2$. It runs once counter-clockwise around 1 (this movement can be ignored in our case). The movement of the satellites around the planet is described by the term $\frac{726}{125} \sqrt{22} t^{5}$. Each of them makes (5/2)-turn counter-clockwise around the planet. Therefore the monodromy relation at $x=\eta_{6}$ that comes from the singular point $(0,1)$ is given by

$$
\begin{equation*}
\xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1}=\xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \tag{6}
\end{equation*}
$$

Similarly, equations (5) show that the monodromy relation at $x=\eta_{6}$ that comes from the singular point $(0,-1)$ is also given by (6).

Monodromy relations at $x=\eta_{7}$

In Fig. 10, we show how the generators at $x=\eta_{6}-\varepsilon$ (cf. Fig. 9) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{6}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{6}+\varepsilon \rightarrow \eta_{7}-\varepsilon$, where

$$
\omega:=\xi_{3} \xi_{1} \xi_{3}^{-1}\left(=\xi_{5}=\xi_{6}\right)
$$

The line $L_{\eta_{7}}$ is tangent to C_{1} at two simple points, in both cases with intersection multiplicity 2 , and the monodromy relations at $x=\eta_{7}$ reduce to the following single relation:

$$
\begin{equation*}
\xi_{1} \xi_{3} \xi_{1}=\xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \tag{7}
\end{equation*}
$$

Fig. 10. Generators at $x=\eta_{7}-\varepsilon$

Monodromy relations at $x=\eta_{8}$

In Fig. 11, we show how the generators at $x=\eta_{7}-\varepsilon$ (cf. Fig. 10) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{7}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{7}+\varepsilon \rightarrow \eta_{8}-\varepsilon$, where

$$
\begin{aligned}
& \zeta_{1}:=\left(\xi_{3} \xi_{1}\right) \cdot \xi_{3} \cdot\left(\xi_{3} \xi_{1}\right)^{-1} \\
& \zeta_{2}:=\xi_{1}^{-1} \cdot \zeta_{1} \cdot \xi_{1} \\
& \zeta_{3}:=\xi_{1}^{-1} \cdot \omega \cdot \xi_{1} \\
& \zeta_{4}:=\left(\omega \xi_{1}\right)^{-1} \cdot \xi_{1} \cdot\left(\omega \xi_{1}\right) \\
& \zeta_{5}:=\left(\omega \xi_{1}\right)^{-1} \cdot \xi_{1}^{-1} \omega \xi_{1} \cdot\left(\omega \xi_{1}\right)=\xi_{1}^{-1} \xi_{3} \xi_{1}(\text { by }(7)), \\
& \zeta_{6}:=\left(\xi_{3} \xi_{1} \xi_{1}\right)^{-1} \cdot \xi_{1} \cdot\left(\xi_{3} \xi_{1} \xi_{1}\right)
\end{aligned}
$$

(To determine dotted lassos, we use the relation (7).) The singular line $L_{\eta_{8}}$ passes through the singular points $(1,1)$ and $(1,-1)$ which are both \mathbf{A}_{4}-singularities, and Puiseux parametrizations of C_{1} at these points are given by
$x=1+t^{2}, \quad y=1-\frac{61}{144} t^{2}-\frac{7063}{13824} t^{4}-\frac{125}{684288} \sqrt{22} t^{5}+$ higher terms
and
$x=1+t^{2}, \quad y=-1+\frac{61}{144} t^{2}+\frac{7063}{13824} t^{4}+\frac{125}{684288} \sqrt{22} t^{5}+$ higher terms
respectively. As above, these equations show that the monodromy relation at $x=\eta_{8}$ is written as

$$
\begin{equation*}
\xi_{1} \xi_{3} \xi_{1} \xi_{3} \xi_{1}=\xi_{3} \xi_{1} \xi_{3} \xi_{1} \xi_{3} \tag{8}
\end{equation*}
$$

Fig. 11. Generators at $x=\eta_{8}-\varepsilon$

The monodromy relations around the singular lines $L_{\eta_{9}}$ and $L_{\eta_{10}}$ do not give any new information (details are left to the reader).

Now, by the previous relations, it is easy to check that the vanishing relation at infinity $\xi_{6} \xi_{5} \xi_{4} \xi_{3} \xi_{2} \xi_{1}=e$, where e is the unit element, is written as

$$
\begin{equation*}
\xi_{3} \xi_{1} \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{1}=e \tag{9}
\end{equation*}
$$

This relation, combined with (7), shows that (6) is equivalent to

$$
\begin{equation*}
\xi_{1} \xi_{3} \xi_{1} \cdot \xi_{1} \xi_{3} \xi_{1}=e \tag{10}
\end{equation*}
$$

Finally, we have proved that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right)$ is presented by the generators ξ_{1} and ξ_{3} and the relations (7), (8), (9) and (10).

Simplification of the presentation

By (10), the relation (8) can be written as

$$
\xi_{3} \xi_{1}=\xi_{1} \xi_{3} \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3} \xi_{1} \xi_{3}
$$

that is,

$$
\begin{equation*}
\xi_{3} \xi_{1}=\left(\xi_{1} \xi_{3}\right)^{4} \tag{11}
\end{equation*}
$$

In addition, the relation (7) can be written as

$$
\xi_{1} \xi_{3} \xi_{1} \cdot \xi_{3} \cdot\left(\xi_{1} \xi_{3} \xi_{1}\right)^{-1}=\xi_{3} \xi_{1} \xi_{3}^{-1}
$$

Combined with (10), this gives

$$
\xi_{1} \xi_{3} \xi_{1} \cdot \xi_{3} \cdot\left(\xi_{1} \xi_{3} \xi_{1}\right)=\xi_{3} \xi_{1} \xi_{3}^{-1}
$$

which is nothing but (11). Since the vanishing relation at infinity (9) is trivially equivalent to (10), it follows that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right)$ is presented by the generators ξ_{1} and ξ_{3} and the relations (10) and (11). Hence, after the change $a:=\xi_{1} \xi_{3} \xi_{1}$ and $b:=\xi_{1} \xi_{3}$, the presentation is given by

$$
\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right) \simeq\left\langle a, b \mid a^{2}=e, a b a=b^{4}\right\rangle
$$

Now, we observe that $b^{15}=e$ and b^{5} is in the centre of $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right)$. Indeed, since $a^{2}=e$, the relation $a b a=b^{4}$ gives $b^{16}=a b^{4} a=b$, that is, $b^{15}=e$ as desired. To show that b^{5} is in the centre of $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right)$ we write:

$$
\begin{array}{r}
b^{5} a b^{-5} a^{-1}=b \cdot b^{4} \cdot a b^{-5} a^{-1}=b \cdot a b a \cdot a b^{-5} a^{-1}= \\
b a \cdot b^{-4} \cdot a^{-1}=b a \cdot a^{-1} b^{-1} a^{-1} \cdot a^{-1}=e
\end{array}
$$

Hence $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right)$ is also presented as:

$$
\begin{aligned}
\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{1}\right) \simeq & \left\langle a, b \mid a^{2}=e, a b a=b^{4}, b^{15}=e, b^{5} a=a b^{5}\right\rangle \\
\simeq & \langle a, b, c, d| a^{2}=b^{15}=e, a b a=b^{4}, b^{5} a=a b^{5} \\
& \left.c=b^{6}, d=b^{5}, d a=a d, d b=b d, d c=c d\right\rangle \\
\simeq & \langle a, b, c, d| a^{2}=b^{15}=e, a b a=b^{4}, c=b^{6}, d=b^{5} \\
& \left.b=c d^{-1}, d a=a d, d b=b d, d c=c d\right\rangle \\
\simeq & \langle a, c, d| a^{2}=c^{5}=d^{3}=e, a c d^{-1} a=c^{4} d^{-1} \\
& d a=a d, d c=c d\rangle \\
\simeq & \langle a, c, d| a^{2}=c^{5}=d^{3}=e, a c a=c^{4}, d a=a d \\
& d c=c d\rangle \\
\simeq & \mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}
\end{aligned}
$$

§3. An example of a \mathbb{D}_{10}-sextic with the set of singularities

 $4 \mathbf{A}_{4} \oplus \mathbf{A}_{1}$ and the fundamental group of its complementIn this section, we consider the curve $C_{2}:=C\left(\frac{9+\sqrt{33}}{6}\right)$ defined by the equation $f_{2}(x, y):=f\left(x, y, \frac{9+\sqrt{33}}{6}\right)=0$, where

$$
\begin{aligned}
d_{0} \cdot f_{2}(x, y):= & 3867-6 x^{3} y^{2} \sqrt{33}+6480 x+54 y^{2} x \sqrt{33}+ \\
& 219 x^{2} y^{4} \sqrt{33}-933 x^{4} \sqrt{33}+960 x^{3} \sqrt{33}-405 \sqrt{33}- \\
& 9270 y^{2}+2896 x^{5}+3723 x^{4}-8000 x^{3}-4838 x^{2}- \\
& 1376 x^{6}-432 x^{5} \sqrt{33}+810 y^{2} \sqrt{33}+1146 x^{2} \sqrt{33}- \\
& 432 x \sqrt{33}+288 x^{6} \sqrt{33}-1770 x^{2} y^{2} \sqrt{33}+6939 y^{4}- \\
& 1536 y^{6}+10102 x^{2} y^{2}-8298 y^{2} x-3056 x^{4} y^{2}- \\
& 405 y^{4} \sqrt{33}-2933 x^{2} y^{4}+1818 y^{4} x+3482 x^{3} y^{2}+ \\
& 528 x^{4} y^{2} \sqrt{33}+378 y^{4} x \sqrt{33},
\end{aligned}
$$

with $d_{0}:=(3867-405 \sqrt{33}) /\left(-\frac{677}{18}-\frac{109}{18} \sqrt{33}\right)$ (cf. section 2$)$. We recall that this curve has four \mathbf{A}_{4}-singularities located at $(0, \pm 1)$ and $(1, \pm 1)$, and one \mathbf{A}_{1}-singularity situated at $(-1,0)$. In Fig. 12, we show its real plane section. Near the singular point $(-1,0)$, the equation of C_{2} has the following form:

$$
\frac{4}{9}(4 \sqrt{33}+39)(x+1)^{2}+\left(\frac{8}{3}+\frac{8}{9} \sqrt{33}\right) y^{2}+\text { higher terms }=0
$$

As the leading term $\frac{4}{9}(4 \sqrt{33}+39)(x+1)^{2}+\left(\frac{8}{3}+\frac{8}{9} \sqrt{33}\right) y^{2}$ has no real factorization, the point $(-1,0)$ is an isolated point of the real plane section of the curve.

Fig. 12. Real plane section of C_{2}

Theorem 3. $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{2}\right) \simeq \mathbb{D}_{10} \times \mathbb{Z} / 3 \mathbb{Z}$.
Proof. We use again the Zariski-van Kampen theorem with the pencil given by the vertical lines $L_{\eta}: x=\eta, \eta \in \mathbb{C}$. Observe that the axis of the pencil $(0: 1: 0)$ does not belong to C_{2}. The discriminant $\Delta_{y}\left(f_{2}\right)$ of f_{2} as a polynomial in y is the polynomial in x given by

$$
\Delta_{y}\left(f_{2}\right)(x)=e_{0}\left(6592 x^{4}-14128 x^{3}+1872 x^{3} \sqrt{33}-7589 x^{2}-\right.
$$

$$
\left.5397 x^{2} \sqrt{33}+14586 x+1242 x \sqrt{33}+11499+4347 \sqrt{33}\right)(x+1)^{2}
$$

$$
(x-1)^{10} x^{10}\left(16069 x^{2}+10680 x+774 x \sqrt{33}-10917+1890 \sqrt{33}\right)^{2}
$$

where $e_{0} \in \mathbb{R} \backslash\{0\}$. This polynomial has exactly 9 roots which are all real numbers: $\eta_{1}=-2.2525 \ldots, \eta_{2}=-1, \eta_{3}=-0.9452 \ldots, \eta_{4}=$ $-0.7814 \ldots, \eta_{5}=0, \eta_{6}=0.0039 \ldots, \eta_{7}=1, \eta_{8}=1.7717 \ldots$, and $\eta_{9}=$ $1.7740 \ldots$ The singular lines of the pencil are the lines $L_{\eta_{i}}(1 \leq i \leq 9)$ corresponding to these 9 roots (notice that the line at infinity is not singular). The lines $L_{\eta_{i}}$, for $i=2,5,7$, pass through the singular points of the curve. All the other singular lines are tangent to C_{2}. See Fig. 12. The line $L_{\eta_{3}}$ intersects the curve at 4 distinct non-real points. It is tangent to C_{2} at ($\left.\eta_{3}, \pm 0.2270 \ldots i\right)$ and the intersection multiplicity of $L_{\eta_{3}}$ with C_{2} at these two points is 2.

We consider the generic line $L_{\eta_{5}-\varepsilon}$ and choose generators ξ_{1}, \ldots, ξ_{6} of the fundamental group $\pi_{1}\left(L_{\eta_{5}-\varepsilon} \backslash C_{2}\right)$ as in Fig. 13. The Zariski-van Kampen theorem says that $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{2}\right) \simeq \pi_{1}\left(L_{\eta_{5}-\varepsilon} \backslash C_{2}\right) / G_{2}$, where G_{2} is the normal subgroup of $\pi_{1}\left(L_{\eta_{5}-\varepsilon} \backslash C_{2}\right)$ generated by the monodromy
relations around the singular lines $L_{\eta_{i}}(1 \leq i \leq 9)$. The latter are given as follows.

Fig. 13. Generators at $x=\eta_{5}-\varepsilon$

Fig. 14. Generators at $x=\eta_{4}+\varepsilon$

Monodromy relations at $x=\eta_{4}$

In Fig. 14, we show how the generators at $x=\eta_{5}-\varepsilon$ (cf. Fig. 13) are deformed when x moves on the real axis from $x:=\eta_{5}-\varepsilon \rightarrow \eta_{4}+\varepsilon$.

The line $L_{\eta_{4}}$ is tangent to the curve at one simple point with intersection multiplicity 2. Therefore, as above, the monodromy relation around this line is given by

$$
\begin{equation*}
\xi_{4}=\xi_{3} \tag{12}
\end{equation*}
$$

Monodromy relations at $x=\eta_{3}$
In Fig. 15, we show how the generators at $x=\eta_{4}+\varepsilon$ (cf. Fig. 14) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{4}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{4}-\varepsilon \rightarrow \eta_{3}+\varepsilon$. The singular line $L_{\eta_{3}}$ is tangent to C_{2} at two non-real simple points, in both cases with intersection multiplicity 2 , and therefore the monodromy relations we are looking for are given by

$$
\xi_{5}=\xi_{3} \xi_{2} \xi_{3}^{-1} \quad \text { and } \quad \xi_{6}=\left(\xi_{5} \xi_{3} \xi_{2}\right) \cdot \xi_{1} \cdot\left(\xi_{5} \xi_{3} \xi_{2}\right)^{-1}
$$

Equivalently,

$$
\begin{equation*}
\xi_{5}=\xi_{3} \xi_{2} \xi_{3}^{-1} \quad \text { and } \quad \xi_{6}=\left(\xi_{3} \xi_{2} \xi_{2}\right) \cdot \xi_{1} \cdot\left(\xi_{3} \xi_{2} \xi_{2}\right)^{-1} \tag{13}
\end{equation*}
$$

Fig. 15. Generators at $x=\eta_{3}+\varepsilon$

Monodromy relations at $x=\eta_{2}$

In Fig. 16, we show how the generators at $x=\eta_{3}+\varepsilon$ (cf. Fig. 15) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{3}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{3}-\varepsilon \rightarrow \eta_{2}+\varepsilon$.

The line $L_{\eta_{2}}$ passes throuh the singular point $(-1,0)$ which is an \mathbf{A}_{1-} singularity. At this point, the curve has two branches K_{1} and K_{2} given by

$$
\begin{array}{ll}
K_{1}: & x=-1+\frac{1}{331} \sqrt{3310-5958 \sqrt{33}} y+\text { higher terms }, \\
K_{2}: & x=-1-\frac{1}{331} \sqrt{3310-5958 \sqrt{33}} y+\text { higher terms. }
\end{array}
$$

These equations show up that when x runs once counter-clockwise on the circle $\left|x-\eta_{2}\right|=\varepsilon$, the points near the origin in Fig. 16 run once counter-clockwise around it. So the monodromy relation at $x=\eta_{2}$ is given by

$$
\xi_{3} \xi_{2} \xi_{3}^{-1}=\xi_{6} \cdot \xi_{3} \xi_{2} \xi_{3}^{-1} \cdot \xi_{6}^{-1}
$$

which can also be written, by (13), as

$$
\xi_{2} \xi_{1}=\xi_{1} \xi_{2}
$$

Fig. 16. Generators at $x=\eta_{2}+\varepsilon$

Monodromy relations at $x=\eta_{1}$

In Fig. 17, we show how the generators at $x=\eta_{2}+\varepsilon$ (cf. Fig. 16) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{2}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{2}-\varepsilon \rightarrow \eta_{1}+\varepsilon$.

The line $L_{\eta_{1}}$ is tangent to C_{2} at one simple point, with intersection multiplicity 2 , and the monodromy relation at $x=\eta_{1}$ is given by

$$
\left(\xi_{3} \xi_{2}\right) \cdot \xi_{1} \cdot\left(\xi_{3} \xi_{2}\right)^{-1}=\xi_{3} \xi_{2} \xi_{3}^{-1}
$$

that is,

$$
\begin{equation*}
\xi_{1}=\xi_{2} \tag{14}
\end{equation*}
$$

In particular, by (13), it implies

$$
\begin{equation*}
\xi_{5}=\xi_{6} . \tag{15}
\end{equation*}
$$

Fig. 17. Generators at $x=\eta_{1}+\varepsilon$

Monodromy relations at $x=\eta_{5}$
By (12), (13), (14) and (15), Fig. 13 (which gives the generators at $\left.x=\eta_{5}-\varepsilon\right)$ is the same as Fig. 18, where

$$
\omega:=\xi_{3} \xi_{1} \xi_{3}^{-1}\left(=\xi_{5}=\xi_{6}\right)
$$

The line $L_{\eta_{5}}$ passes through the singular points $(0,1)$ and $(0,-1)$ which are both \mathbf{A}_{4}-singularities. Puiseux parametrizations of C_{2} at these points are given by

$$
x=t^{2}, \quad y=1+\frac{1}{2} t^{2}+\beta_{4} t^{4}+\beta_{5} t^{5}+\text { higher terms }
$$

and

$$
x=t^{2}, \quad y=-1-\frac{1}{2} t^{2}-\beta_{4} t^{4}-\beta_{5} t^{5}+\text { higher terms }
$$

respectively, where $\beta_{4}, \beta_{5} \in \mathbb{R} \backslash\{0\}$. We deduce that the monodromy relation at $x=\eta_{5}$ is given by

$$
\begin{equation*}
\xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1}=\xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \tag{16}
\end{equation*}
$$

Fig. 18. Generators at $x=\eta_{5}-\varepsilon$

Monodromy relations at $x=\eta_{6}$

In Fig. 19, we show how the generators at $x=\eta_{5}-\varepsilon$ (cf. Fig. 18) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{5}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{5}+\varepsilon \rightarrow \eta_{6}-\varepsilon$, where

$$
\begin{aligned}
& \zeta_{1}:=\xi_{1}^{-1} \omega \xi_{1} \\
& \zeta_{2}:=\left(\omega \xi_{1}\right)^{-1} \cdot \xi_{1} \cdot\left(\omega \xi_{1}\right) \\
& \zeta_{3}:=\left(\omega \xi_{1}\right)^{-1} \cdot \xi_{1}^{-1} \omega \xi_{1} \cdot\left(\omega \xi_{1}\right)
\end{aligned}
$$

The line $L_{\eta_{6}}$ is tangent to the curve at two simple points, in both cases with intersection multiplicity 2 . So, once more, the monodromy relation around this tangent line is simply given by

$$
\begin{equation*}
\xi_{1} \xi_{3} \xi_{1}=\xi_{3} \xi_{1} \xi_{3}^{-1} \cdot \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{3}^{-1} \tag{17}
\end{equation*}
$$

Fig. 19. Generators at $x=\eta_{6}-\varepsilon$

Monodromy relations at $x=\eta_{7}$

In Fig. 20, we show how the generators at $x=\eta_{6}-\varepsilon$ (cf. Fig. 19) are deformed when x makes half-turn counter-clockwise on the circle $\left|x-\eta_{6}\right|=\varepsilon$, then moves on the real axis from $x:=\eta_{6}+\varepsilon \rightarrow \eta_{7}-\varepsilon$ (use the relation (17) to determine all the lassos). The line $L_{\eta_{7}}$ passes through the singular points $(1,1)$ and $(1,-1)$ which are both \mathbf{A}_{4}-singularities, and Puiseux parametrizations of the curve at these points are given by

$$
x=1+t^{2}, \quad y=1+\gamma_{2} t^{2}+\gamma_{4} t^{4}+\gamma_{5} t^{5}+\text { higher terms }
$$

and

$$
x=1+t^{2}, \quad y=-1-\gamma_{2} t^{2}-\gamma_{4} t^{4}-\gamma_{5} t^{5}+\text { higher terms }
$$

respectively, where $\gamma_{2}, \gamma_{4}, \gamma_{5} \in \mathbb{R} \backslash\{0\}$. Hence the monodromy relation at $x=\eta_{7}$ is given by

$$
\begin{equation*}
\xi_{3} \xi_{1} \xi_{3} \xi_{1} \xi_{3}=\xi_{1} \xi_{3} \xi_{1} \xi_{3} \xi_{1} \tag{18}
\end{equation*}
$$

Fig. 20. Generators at $x=\eta_{7}-\varepsilon$

The monodromy relations around the singular lines $L_{\eta_{8}}$ and $L_{\eta_{9}}$ do not give any new information (details are left to the reader).

Now, by the previous relations, it is easy to check that the vanishing relation at infinity is written as

$$
\begin{equation*}
\xi_{3} \xi_{1} \xi_{1} \cdot \xi_{3} \xi_{1} \xi_{1}=e \tag{19}
\end{equation*}
$$

This relation, combined with (17), shows that (16) is equivalent to

$$
\begin{equation*}
\xi_{1} \xi_{3} \xi_{1} \cdot \xi_{1} \xi_{3} \xi_{1}=e \tag{20}
\end{equation*}
$$

Finally, we have proved that the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash C_{2}\right)$ is presented by the generators ξ_{1} and ξ_{3} and the relations (17), (18), (19) and (20). We conclude exactly as in section 2.
Q.E.D.

References

[1] A. Degtyarev, Oka's conjecture on irreducible plane sextics, J. London Math. Soc. (2), 78 (2008), 329-351.
[2] A. Degtyarev, On irreducible sextics with non-abelian fundamental group, in this volume.
[3] A. Degtyarev and M. Oka, A plane sextic with finite fundamental group, in this volume.
[4] C. Eyral and M. Oka, On the fundamental groups of the complements of plane singular sextics, J. Math. Soc. Japan, 57 (2005), 37-54.
[5] D. T. Pho, Classification of singularities on torus curves of type (2,3), Kodai Math. J., 24 (2001), 259-284.
[6] M. Oka, Symmetric plane curves with nodes and cups, J. Math. Soc. Japan, 44 (1992), 375-414.
[7] M. Oka, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo, 3 (1996), 399-443.
[8] M. Oka and D. T. Pho, Classification of sextics of torus type, Tokyo J. Math., 25 (2002), 399-433.
[9] E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933), 255-260.
[10] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305328.

Christophe Eyral
Max-Planck Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Mutsuo Oka
Department of Mathematics
Tokyo University of Science
26 Wakamiya-cho, Shinjuku-ku
Tokyo 162-8601
Japan
E-mail address: eyralchr@yahoo.com
oka@rs.kagu.tus.ac.jp

[^0]: Received December 7, 2007.
 Revised May 30, 2008.
 2000 Mathematics Subject Classification. Primary 14H30; Secondary $14 \mathrm{H} 20,14 \mathrm{H} 45,14 \mathrm{H} 50$.

 Key words and phrases. Fundamental group, irreducible non-torus plane sextic.

 This research was supported by the Max Planck Institut für Mathematik in Bonn.

[^1]: ${ }^{1}$ We recall that a point P in a curve C is said to be an \mathbf{A}_{n}-singularity ($n \geq 1$) if the germs (C, P) and $\left(\left\{x^{2}+y^{n+1}=0\right\}, O\right)$ are topologically equivalent as embedded germs, where O is the origin in \mathbb{C}^{2}.

