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A quantization of the sixth Painleve equation 

Hajime Nagoya 

Abstract. 

The sixth Painleve equation has the affine Weyl group symmetry 
of type ni1l as a group of Backlund transformations and is written as a 
Hamiltonian system. We propose a quantization of the sixth Painleve 
equation with the extended affine Weyl group symmetry of type ni1l. 

§1. Introduction 

The Painleve equations P J (J=I, ... ,VI) were discovered by Painleve 
and Gambier around the beginning of the twentieth century, as a result 
of seeking new special functions as solutions of second-order nonlinear 
ordinary differential equations without movable singular points [11], [3]. 
After the discovery of the Painleve equations, the sixth Painleve equa­
tions was derived from the monodromy preserving deformation by R. 
Fuchs [2]. 

As for the problem of quantization of the monodromy preserving 
deformation, it was noticed by N. Resehtikhin [12] that a quantization of 
the Schlesinger equations which are deformation equations that preserve 
the monodromy of the rational connection with regular singularities can 
be viewd as the Knizhnik-Zamolodchikov equations in the conformal 
field theory. As the argument in his paper, one hope that one would 
obtain "a quantization of the sixth Painleve equation" from the Knizhik­
Zamolochikov equation in the special case and no one suceeds to obtain 
it so far. 

On the other hand, the Painleve equations are integrable systems 
in some sense. For example, they are closely related with the soliton 
equations (for example, see [6] and reference therein). Quantization of 
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the soliton equations has been studied since 90's (for example, see [I] 
and reference therein), however, quantization of (continuous) Painleve 
equations had not been studied. 

We attack the problem of quantization from the symmetry. K. 
Okamoto showed that the Painleve equations, except the first Painleve 
equation, have affine Weyl group symmetries as a group of Backlund 
transformations [10]. The sixth Painleve equation, which we deal with 

in this article, has the affine Weyl group symmetry of type ni1). The 
Painleve equations are written as Hamiltonian systems and their hamil­
tonians are polynomials in the canonical coordinates. We consider the 
following problem: does there exist a quantization of Painleve equations 
with affine Weyl group symmetry? What we mean by quantization is 
the canonical quantization, that is, a Poisson bracket is replaced with a 
commutator. 

In [7], we constructed a quantization of differential systems with 

affine Weyl group symmeties of type Af 1) [8] which includes the quantum 
second, the quantum fourth and the quantum fifth Painleve equation, 
which has the affine Weyl group symmetry of type Ai1), A~1 ) and A~1 ), 
respectively. The first Painleve equation does not have an affine Weyl 
group symmetry and its quantization is uniquely determined because its 
hamiltonian does not include unseparated terms between the canonical 
coordinate p and q. 

In this article, we construct a quantization of the sixth Painleve 
equation with the extended affine Weyl group symmetry of type ni1). 

We hope that this is a first step to understand the quantum Hamilton­
ian reduction of the Knizhnik-Zamolodchikov equations or the relation 
between quantum soliton equations and quantum Painleve equaions. 

§2. The sixth Painleve equation 

Let us recall the Hamiltonian and the Backlund transformations 
of the sixth Painleve equation. We follow the notation from [9]. The 
Hamiltonian of the sixth Painleve equation is given by 

I [ 2 (I) H = t(t -I) p q(q -I)(q- t)- p{(a0 - I)q(q -I)+ a 3 q(q- t) 

+a4(q- I)(q- t)} +a2(a1 + a2)(q- t)], 

where q, p are functions oft and ai (i = 0, I, 2, 3, 4) are parameters in 
C such that ao + a1 + 2a2 + a3 + a4 = 1. The sixth Painleve equation 
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is expressed as the Hamiltonian system 

(2) 
dq 8H dp 8H 
dt 8p' dt -8p' 

and we have 

(3) t(t -1) ~~ =2pq(q -1)(q- t)- {a4(q- 1)(q- t) 

+a3q(q- t) + (ao- 1)q(q- 1)}, 

dp 
(4) t(t- 1) dt =- p2(3q2 - 2(1 + t)q + t) + p{2(ao + a 3 + a4- 1)q 

- a4(1 + t)- a3t- ao + 1}- a2(a1 + a2). 

It is known that the sixth Painleve equation has the extended affine 
Weyl group symmetry of type D~1). To illustrate this, let us consider 
the field of rational functions 

(5) 

Let K be equipped with Poisson bracket defined by 

(6) {p, q} = 1, 

(7) {p, ai} = { q, ai} = {p, t} = { q, t} = { t, ai} = 0 (1 S i S 4). 

Moreover, we set 

(8) cpo = q- t, 'Pl = 1, 'P2 = -p, 'P3 = q- 1, 'P4 = q. 

We define automorphisms Bi (0 SiS 4) and r1, r3, r4 on K as follows: 

where A = ( aij) is the Cartan matrix of type D~1): 

0 -1 0 
2 -1 0 

(10) -1 2 -1 
0 -1 2 
0 -1 0 



294 

and 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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r1(ao) = a1, r1(a1) =no, r1(a2) = a2, 

r1(a3) = a4, r1(a4) = a3, 

( ) _t(q-1) ( )-_(q-t)((q-t)p+a2) 
rl q - q - t ' rl P - t( t - 1) ' 

r3(ao) = a3, r3(a1) = a4, r3(a2) = a2, 

r3(a3) =no, r3(a4) = a1, 

( ) _ t ( ) _ q ( qp + a2) 
T3 q - -, T3 p - - , 

q . t 
r4(ao) = a4, r4(al) = a3, r4(a2) = a2, 

r4(a3) =a~, r4(a4) =no, 

( ) - q - t (p) - ( q - 1 )( ( q - 1) p + Q2) 
T4 q - q _ 1 , T4 - - t _ 1 · 

Then automorphisms Si (0 sis 4) and r1, r3, r4 give a representation 
of the extended affine Weyl group of type ni1), and commute with ft. 
This describes the extended affine Weyl group symmetry of type ni1) 

on the sixth Painleve equation. 

§3. Quantization of the sixth Painleve equation 

Let K be the skew field over C with generators ij, p, a~, a2, a3, a4, 
t and the commutation relations defined by 

(20) [P, ij] = h, 

(21) [P, ai] = [ij, ai] = [P, t] = [ij, t] = [t, ai] = 0 (1 s i s 4). 

This commutation relations correspond to the Poisson bracket on the 
rational function field K. 

Let an element. ii in K be defined by 

(22) 

t(t- 1)ii =~ [ii'P(ii- 1)fJ(ii- t) + (ii- 1)fJ(ii- t)fJii + (ii- t)Pfi'P(ii- 1) 

+(ij- t)p(ij- 1)pij + (ij- 1)pqp(ij- t) + ijp(ij- t)p(ij- 1)] 

1 - 2 [(ao -1)(ijp(ij -1) + (ij- 1)Pfi) + a3(ijp(ij- t) 

+(ii- t)pij) + a4((ij -1)p(ij- t) + (ij- t)p(ij- 1))] 

+ a2(a1 + a2)(ij- t), 
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where no = 1 - n1 - 2n2 - n3 - n4. This element H is a canonical 
quantization of the Hamiltonian of the sixth Painleve equation. We 
define transformations Si (0 :::; i:::; 4) and r 1 , r3, r4 for the generators of 
IC as follows: 

where A= (aij)o~i,i9 is the Cartan matrix of type Di1) (10) and where 
cpi are defined by 

(24) cJ;o = {j- t, cj;1 = 1, cj;2 = -p, cj;3 = {j- 1, cj;4 = {j, 

and 

(25) 

(26) 
r1(no) = n1, r1(n1) =no, 

r1(n3) = n4, r1(n4) = n3, 

(27) ( ') t({j- 1) rlf,;.) --
rl q = A t , \1-' q-

({j- t)p({j- t) + n2({j- t) 
t(t- 1) 

(28) r3(no) = n3, r3(n1) = n4, r3(n2) = n2, 

(29) r3(n3) =no, r3(n4) = n1, 

(30) r3({j) = ~' r3(P) =- {jpq: n 2{j, 

(31) r4(no) = n4, r4(nt) = n3, r4(n2) = n2, 

(32) r4(n3) = nt, r4(n4) =no, 

(33) {j- t r4f,;.) ___ ({j- 1)p({j- 1) + n 2({j- 1). 
r 4 ( {j) = {j - 1' \1-' t - 1 

Proposition 1. Transformations Si {0:::; i:::; 4} and r1, r3, r4 pre­
serve the fundamental commutation relations {20}, namely, they become 
automorphisms on IC. 

Proof. We can check that by straightforward calculations. For ex­
ample, we check that r 1 preserves (20): 

[r r,;.) r (A)]= [ ({j- t)p({j- t) t({j -1)] 
l\1-' ' 1 q t( t - 1) ' {j - t 

{j-t [ A {j-1] A =- -p,-A- (q-t) 
t-1 q-t 

=~ ({j- 1- ({j- t)) =h. 
t-1 

Q.E.D. 
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Lemma 1. The automorphisms Si {0 ::; i ::; 4} act fi as follows: 

(34) 

~ ~ ao ( q(q- 1) ) 
so(H) = H + ( 1) q- ao , - a4- (ao + a1 + 2a2)t , 

tt- q-t 
. (35) 

s1(H) = fi, 
(36) 

~ ~ 1 
s2(H) = H + t(t _ 1) ((1- ao + a1)a2t- a2(a1 + a2 + a3)), 

(37) 

(H) = jj (ao - 1)a3 
S3 + (t- 1) ' 

(38) 

s4 (H) = jj + (ao- 1)a4. 
t 

Proof. These relations immediately follows from the definitions of 
the Hamiltonian fi and automorphisms Si· For example, we check (37): 

t(t- 1)s3(H) 

~ 0!3 { = t(t- 1)H + G -4qp(q- t) - 4(q- t)pq 

-2(q- 1)p q(q- t) - 2q(q- t) p(q -1) + 6a3q(q- t)} 
q-1 q-1 q-1 

{ a3q(q- t) } - a3 -(ao- 1)q- qp(q- t)- (q- t)pq + - a4(q- t) 
q-1 

+ (a2a3 + a3(a1 + a2 + a3))(q- t) 

= t(t- 1)H + (ao- 1)a3t. 

Q.E.D. 

Let o be the C-derivation on K defined by 

(39) 
1 ~ acp 

o(cp) = h[H, cp] + at (cp E K). 
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We write down b(q) and b(p) in the following. 

(40) 

t(t- 1)b(q) =q(q- 1)p(q- t) + (q- t)pq(q- 1) 

- {oo4(q- 1)(q- t) + oo3q(q- t) + (ooo -1)q(q- 1)}, 

( 41) 

t(t- 1)b(p) =- (pqpq + qp2q + qpqp) + 2(1 + t)pqp- tp2 

+ ( ooo + 003 + 004 - 1) (pq + qp) 

+ p{ -oo4(1 + t)- oo3t- ooo + 1}- 002(001 + oo2). 

Theorem 1. The automorphisms si (0 :::; i :::; 4} and r 1 , r 3 , r 4 

define a representation of the extended affine Weyl group of type Di1) 

and commute with the C-derivation b. 

Proof. We can check by straightforward calculations that Si (0 :::; 
i:::; 4) and r 1 , r 3 , r 4 satisfy the following relations: 

(42) s7 = 1, SiSj = SjSi (i,j =/=- 2), 

(43) Si82Si = S2SiS2 (i = 0, 1, 3, 4), 

(44) rT=1 (i=1,3,4), rkrz=rm ({k,l,m}={l,3,4}), 

(45) riSj=Sa;(j)ri (i=1,3,4; j=0,1,2,3,4), 

where (Ji (i = 1, 3, 4) are the permutations defined by 

(46) (Jl = (01)(34), (}3 = (03)(04), (}4 = (04)(13). 

This proves the first statement. 
For the second statement, it is enough that we show b(si(cpi)) 

si(b(cpi)) for i = 0, 1, 2, 3, 4, and b(ri(p)) = ri(b(p)) and bh(q)) 
ri(b(q)) for (i = 1, 3, 4). From Lemma 1, si(H) are equivalent to the 
Hamiltonian fi plus commutative parts. Then, the computation to con­
firm commutativity between b and si is the same as the classical case. 
As for commutativity between band ri, also we can check that by direct 
computations. 

Q.E.D. 
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