An analogue of the space of conformal blocks in

 $(4 k+2)$-dimensionsKiyonori Gomi

Abstract

. Based on projective representations of smooth Deligne cohomology groups, we introduce an analogue of the space of conformal blocks to compact oriented $(4 k+2)$-dimensional Riemannian manifolds with boundary. For the standard ($4 k+2$)-dimensional disk, we compute the space concretely to prove that its dimension is finite.

§1. Introduction

As a fundamental ingredient, the space of conformal blocks (or the space of vacua) in the Wess--Zumino-Witten model has been investigated by many physicists and mathematicians. While its construction usually appeals to representations of affine Lie algebras [12, 13], the formulation by means of representations of loop groups ($[2,11,14]$) provides schemes for generalizations.

The theme of the present paper is an analogue of the space of conformal blocks in $(4 k+2)$-dimensions. The idea of introducing such an analogue is to utilize smooth Deligne cohomology groups $([1,4,5])$, or the groups of differential characters ([3]), instead of loop groups. In [7, 8], some properties of smooth Deligne cohomology groups, such as projective representations, are studied. In a recent work of Freed, Moore and Segal [6], similar representations are also studied in a context of chiral (or self-dual) $2 k$-forms ([15]) on $(4 k+2)$-dimensional spacetimes.

Our analogue of the space of conformal blocks is a vector space $\mathbb{V}(W, \lambda)$ associated to a compact oriented ($4 k+2$)-dimensional Riemannian manifold with boundary and an element λ in a finite set $\Lambda(\partial W)$. The finite set $\Lambda(\partial W)$ is the set of equivalence classes of irreducible admissible representations ([8]) of the smooth Deligne cohomology group $\mathcal{G}(\partial W)=H^{2 k+1}\left(\partial W, \mathbb{Z}(2 k+1)_{D}^{\infty}\right)$. As will be detailed in the body of

Received August 2, 2007.
this paper (Section 2), $\mathbb{V}(W, \lambda)$ consists roughly of (dual) vectors in an irreducible representation realizing λ which are invariant under actions of chiral $2 k$-forms on W.

In the case of $k=0$, we can interpret $\mathbb{V}(W, \lambda)$ as the space of conformal blocks (or modular functor [11]) based on representations of abelian loop groups. For example, we take W to be the 2-dimensional disk $W=D^{2}$. In this case, $\mathcal{G}\left(S^{1}\right)=H^{1}\left(S^{1}, \mathbb{Z}(1)_{D}^{\infty}\right)$ is isomorphic to the loop group $L U(1)$. Irreducible admissible representations give rise to irreducible positive energy representations ([10]) of the loop group $L U(1)$ of level 2 , which are classified by $\Lambda\left(S^{1}\right) \cong \mathbb{Z}_{2}$. Then the definition of $\mathbb{V}\left(D^{2}, \lambda\right)$ can be read as:

$$
\mathbb{V}\left(D^{2}, \lambda\right)=\left\{\psi: \mathcal{H}_{\lambda} \rightarrow \mathbb{C} \mid \text { invariant under } \operatorname{Hol}\left(D^{2}, \mathbb{C} / \mathbb{Z}\right)\right\}
$$

where \mathcal{H}_{λ} is an irreducible representation corresponding to λ on which the group $\operatorname{Hol}\left(D^{2}, \mathbb{C} / \mathbb{Z}\right)$ of holomorphic maps $f: D^{2} \rightarrow \mathbb{C} / \mathbb{Z}$ acts densely and linearly through the "Segal-Witten reciprocity law" $[2,11$, 14].

A property generally required for $\mathbb{V}(W, \lambda)$ is its finite-dimensionality. In the case of $k=0$, there is a result of Segal regarding the property [11]. The purpose of this paper is to prove that $\mathbb{V}(W, \lambda)$ is finite-dimensional at least in the case where W is the $(4 k+2)$-dimensional disk $D^{4 k+2}=$ $\left\{x \in \mathbb{R}^{4 k+2}| | x \mid \leq 1\right\}$. For $k>0$ we have $\Lambda\left(S^{4 k+1}\right)=\{0\}$.

Theorem 1.1. If $k>0$, then $\mathbb{V}\left(D^{4 k+2}, 0\right) \cong \mathbb{C}$.
The essential part of the proof is a fact about chiral $2 k$-forms on $D^{4 k+2}$, which we derive from [9]. (See Section 3 for detail.) The proof of Theorem 1.1 is applicable to the case of $k=0$, and we have:

$$
\mathbb{V}\left(D^{2}, \lambda\right) \cong \begin{cases}\mathbb{C}, & (\lambda=0) \\ 0 . & (\lambda=1)\end{cases}
$$

This result is consistent with the known fact about the dimension of the space of conformal blocks in the $U(1)$ Wess-Zumino-Witten model at level 2 ([11, 13]).

The finite-dimensionality of $\mathbb{V}(W, \lambda)$ for general W remains open at present. A possible approach toward the issue is to generalize Segal's idea (p.431, [11]), which should be examined in future studies.

Acknowledgments. I would like to thank M. Furuta, T. Kohno and Y. Terashima for valuable discussions and helpful suggestions.

§2. Analogue of the space of conformal blocks

In this section, we introduce the vector space $\mathbb{V}(W, \lambda)$. For this aim, we summarize some results in $[7,8]$. In particular, we review central extensions of smooth Deligne cohomology groups, a generalization of the Segal-Witten reciprocity law, and admissible representations.

2.1. Central extension

To begin with, we recall the definition of smooth Deligne cohomology $[1,4,5]$. For a non-negative integer p and a smooth manifold X, the (complexified) smooth Deligne cohomology group $H^{*}\left(X, \mathbb{Z}(p)_{D, \mathbb{C}}^{\infty}\right)$ is defined to be the hypercohomology of the following complex of sheaves on X :

$$
\mathbb{Z}(p)_{D, \mathbb{C}}^{\infty}: \mathbb{Z} \longrightarrow \underline{A}_{\mathbb{C}}^{0} \xrightarrow{d} \underline{A}_{\mathbb{C}}^{1} \xrightarrow{d} \cdots \xrightarrow{d} \underline{A}_{\mathbb{C}}^{p-1} \longrightarrow 0 \longrightarrow \cdots,
$$

where \mathbb{Z} is the constant sheaf, and $\underline{A}_{\mathbb{C}}^{q}$ the sheaf of germs of \mathbb{C}-valued q forms. We put $\mathcal{G}(X)_{\mathbb{C}}=H^{2 k+1}\left(X, \mathbb{Z}(2 k+1)_{D, \mathbb{C}}^{\infty}\right)$ for a smooth manifold X, where k is a non-negative integer fixed.

Proposition 2.1 ([7]). Let M be a compact oriented $(4 k+1)$ dimensional smooth manifold without boundary. Then there is a nontrivial central extension $\tilde{\mathcal{G}}(M)_{\mathbb{C}}$ of $\mathcal{G}(M)_{\mathbb{C}}$:

$$
1 \longrightarrow \mathbb{C}^{*} \longrightarrow \tilde{\mathcal{G}}(M)_{\mathbb{C}} \longrightarrow \mathcal{G}(M)_{\mathbb{C}} \longrightarrow 1 .
$$

The central extension $\tilde{\mathcal{G}}(M)_{\mathbb{C}}$ is induced from the group 2-cocycle $S_{M, \mathbb{C}}: \mathcal{G}(M)_{\mathbb{C}} \times \mathcal{G}(M)_{\mathbb{C}} \rightarrow \mathbb{C} / \mathbb{Z}$ defined by $S_{M, \mathbb{C}}(f, g)=\int_{M} f \cup g$, where \int_{M} and \cup are the cup product and the integration in smooth Deligne cohomology.

For a smooth manifold X, the smooth Deligne cohomology group $H^{1}\left(X, \mathbb{Z}(1)_{D, \mathbb{C}}^{\infty}\right)$ is naturally isomorphic to $C^{\infty}(X, \mathbb{C} / \mathbb{Z})$. Thus, if $k=0$ and $M=S^{1}$, then we can identify $\mathcal{G}\left(S^{1}\right)_{\mathbb{C}}$ with the loop group $L \mathbb{C}^{*}$. In this case, $\tilde{\mathcal{G}}\left(S^{1}\right)_{\mathbb{C}}$ is isomorphic to $\widehat{L \mathbb{C}^{*}} / \mathbb{Z}_{2}$, where $\widehat{L \mathbb{C}^{*}}$ is the universal central extension of $L \mathbb{C}^{*}$, ([10]).

2.2. A generalization of the Segal-Witten reciprocity law

Let W be a compact oriented $(4 k+2)$-dimensional Riemannian manifold W possibly with boundary. We denote by $A^{2 k+1}(W, \mathbb{C})$ the space of \mathbb{C}-valued $(2 k+1)$-forms on W. The Hodge star operator $*: A^{2 k+1}(W, \mathbb{C}) \rightarrow A^{2 k+1}(W, \mathbb{C})$ satisfies $* *=-1$. Notice that, in general, the smooth Deligne cohomology $\mathcal{G}\left(X_{\mathbb{C}}\right)=H^{2 k+1}\left(X, \mathbb{Z}(2 k+1)_{D, \mathbb{C}}^{\infty}\right)$
fits into the following exact sequence:

$$
0 \rightarrow H^{2 k}(W, \mathbb{C} / \mathbb{Z}) \rightarrow \mathcal{G}(W)_{\mathbb{C}} \xrightarrow{\delta} A^{2 k+1}(W, \mathbb{C})_{\mathbb{Z}} \rightarrow 0
$$

where $A^{2 k+1}(W, \mathbb{C})_{\mathbb{Z}} \subset A^{2 k+1}(W, \mathbb{C})$ is the subgroup consisting of closed integral forms. Using $*$ and δ, we define the subgroups $\mathcal{G}(W)_{\mathbb{C}}^{ \pm}$in $\mathcal{G}(W)_{\mathbb{C}}$ by

$$
\mathcal{G}(W)_{\mathbb{C}}^{ \pm}=\left\{f \in \mathcal{G}(W)_{\mathbb{C}} \mid \delta(f) \mp \sqrt{-1} * \delta(f)=0\right\}
$$

We call $\mathcal{G}(W)_{\mathbb{C}}^{+}$the chiral subgroup, since $2 k$-forms $B \in A^{2 k}(W, \mathbb{C})$ such that $d B=\sqrt{-1} * d B$ are called chiral (or self-dual) $2 k$-forms. (See $[6,15]$ for example.)

Proposition 2.2 ([7]). Let W be a compact oriented $(4 k+2)$ dimensional Riemannian manifold with boundary. Then the following map is a homomorphism:

$$
\tilde{r}^{+}: \mathcal{G}(W)_{\mathbb{C}}^{+} \longrightarrow \tilde{\mathcal{G}}(\partial W)_{\mathbb{C}}, \quad f \mapsto\left(\left.f\right|_{\partial W}, 1\right)
$$

In the case of $k=0, W$ is a Riemann surface. Since $\mathcal{G}(W)_{\mathbb{C}}^{+}$is identified with the group of holomorphic functions $f: W \rightarrow \mathbb{C} / \mathbb{Z}$, Proposition 2.2 recovers the "Segal-Witten reciprocity law" $([2,11,14])$ for $\widehat{L \mathbb{C}^{*}} / \mathbb{Z}_{2}$.

2.3. Admissible representations

We can think of the group $\mathcal{G}(X)_{\mathbb{C}}=H^{2 k+1}\left(X, \mathbb{Z}(2 k+1)_{D, \mathbb{C}}^{\infty}\right)$ as a complexification of the (real) smooth Deligne cohomology $\mathcal{G}(X)=$ $H^{2 k+1}\left(X, \mathbb{Z}(2 k+1)_{D}^{\infty}\right)$ defined as the hypercohomology of the following complex of sheaves:

$$
\mathbb{Z}(2 k+1)_{D}^{\infty}: \mathbb{Z} \longrightarrow \underline{A}^{0} \xrightarrow{d} \underline{A}^{1} \xrightarrow{d} \cdots \xrightarrow{d} \underline{A}^{2 k} \longrightarrow 0 \longrightarrow \cdots,
$$

where \underline{A}^{q} is the sheaf of germs of \mathbb{R}-valued q-forms.
For a compact oriented $(4 k+1)$-dimensional Riemannian manifold M without boundary, admissible representations of $\mathcal{G}(M)$ are introduced in [8]. An admissible representation $\rho: \mathcal{G}(M) \times \mathcal{H} \rightarrow \mathcal{H}$ of $\mathcal{G}(M)$ is a certain projective representation on a Hilbert space \mathcal{H}, and gives a linear representation $\tilde{\rho}: \tilde{\mathcal{G}}(M) \times \mathcal{H} \rightarrow \mathcal{H}$ of the central extension $\tilde{\mathcal{G}}(M)$ induced from the natural inclusion $\mathcal{G}(M) \subset \mathcal{G}(M)_{\mathbb{C}}$:

The set $\Lambda(M)$ of equivalence classes of irreducible admissible representations of $\mathcal{G}(M)$ is a finite set [8]. For example, if $H^{2 k+1}(M, \mathbb{Z})$ is torsion free, then we can identify $\Lambda(M)$ with $H^{2 k+1}\left(M, \mathbb{Z}_{2}\right)$. We write $\left(\tilde{\rho}_{\lambda}, \mathcal{H}_{\lambda}\right)$ for the linear representation of $\tilde{\mathcal{G}}(M)$ realizing $\lambda \in \Lambda$.

Proposition 2.3 ([8]). Let M be a compact oriented $(4 k+1)$ dimensional Riemannian manifold without boundary. For $\lambda \in \Lambda(M)$, there exists an invariant dense subspace $\mathcal{E}_{\lambda} \subset \mathcal{H}_{\lambda}$, and the representation $\tilde{\rho}_{\lambda}: \tilde{\mathcal{G}}(M) \times \mathcal{E}_{\lambda} \rightarrow \mathcal{E}_{\lambda}$ extends to a linear representation $\tilde{\rho}_{\lambda}$: $\tilde{\mathcal{G}}(M)_{\mathbb{C}} \times \mathcal{E}_{\lambda} \rightarrow \mathcal{E}_{\lambda}$ of $\tilde{\mathcal{G}}(M)_{\mathbb{C}}$.

We notice that $\tilde{\rho}_{\lambda}(f): \mathcal{E}_{\lambda} \rightarrow \mathcal{E}_{\lambda}$ is generally unbounded, so that the action of $\tilde{\mathcal{G}}(M)_{\mathbb{C}}$ on \mathcal{E}_{λ} does not extends to the whole of \mathcal{H}_{λ}.

In the case of $k=0$ and $M=S^{1}$, we can identify $\mathcal{G}\left(S^{1}\right)$ with the loop group $L U(1)$, which has $\mathcal{G}\left(S^{1}\right)_{\mathbb{C}} \cong L \mathbb{C}^{*}$ as a complexification. Admissible representations of $\mathcal{G}\left(S^{1}\right)$ give rise to positive energy representations of level 2. As is known [10], the equivalence classes of irreducible positive energy representations of $L U(1)$ of level 2 are in one to one correspondence with the elements in $\Lambda\left(S^{1}\right) \cong \mathbb{Z}_{2}$. A positive energy representation of $L U(1)$ extends to a representation of $L \mathbb{C}^{*}$ on an invariant dense subspace.

2.4. Analogue of the space of conformal blocks

We use Proposition 2.2 and Proposition 2.3 to formulate our analogue of the space of conformal blocks:

Definition 2.4. Let W be a compact oriented ($4 k+2$)-dimensional Riemannian manifold with boundary. For $\lambda \in \Lambda(\partial W)$, we define $\mathbb{V}(W, \lambda)$ to be the vector space consisting of continuous linear maps $\psi: \mathcal{E}_{\lambda} \rightarrow \mathbb{C}$ invariant under the action of $\mathcal{G}(W)_{\mathbb{C}}^{+}$through \tilde{r}^{+}:

$$
\begin{aligned}
\mathbb{V}(W, \lambda) & =\operatorname{Hom}\left(\mathcal{E}_{\lambda}, \mathbb{C}\right)^{\operatorname{Im} \tilde{r}^{+}} \\
& =\left\{\psi: \mathcal{E}_{\lambda} \rightarrow \mathbb{C} \mid \psi\left(\tilde{\rho}_{\lambda}\left(\tilde{r}^{+}(f)\right) v\right)=\psi(v) \forall v \in \mathcal{E}_{\lambda}, \forall f \in \mathcal{G}(W)_{\mathbb{C}}^{+}\right\}
\end{aligned}
$$

Since the subgroup \mathbb{C}^{*} in $\tilde{\mathcal{G}}(M)_{\mathbb{C}}=\mathcal{G}(M)_{\mathbb{C}} \times \mathbb{C}^{*}$ acts on \mathcal{E}_{λ} by the scalar multiplication, we can formulate $\mathbb{V}(W, \lambda)$ in terms of the projective representation $\left(\rho_{\lambda}, \mathcal{E}_{\lambda}\right)$ corresponding to $\left(\tilde{\rho}_{\lambda}, \mathcal{E}_{\lambda}\right)$:

$$
\begin{aligned}
\mathbb{V}(W, \lambda) & =\operatorname{Hom}\left(\mathcal{E}_{\lambda}, \mathbb{C}\right)^{\operatorname{Im} r^{+}} \\
& =\left\{\psi: \mathcal{E}_{\lambda} \rightarrow \mathbb{C} \mid \psi\left(\rho_{\lambda}\left(r^{+}(f)\right) v\right)=\psi(v), \forall v \in \mathcal{E}_{\lambda}, \forall f \in \mathcal{G}(W)_{\mathbb{C}}^{+}\right\},
\end{aligned}
$$

where $r^{+}: \mathcal{G}(W)_{\mathbb{C}}^{+} \rightarrow \mathcal{G}(\partial W)_{\mathbb{C}}$ is the restriction: $r^{+}(f)=\left.f\right|_{\partial W}$.

Remark 1. One may wonder why we use representations of $\tilde{\mathcal{G}}(M)_{\mathbb{C}}$ on pre-Hilbert spaces to formulate $\mathbb{V}(W, \lambda)$, instead of unitary representations of $\tilde{\mathcal{G}}(M)$ on Hilbert spaces. The reason is that we cannot introduce a counterpart of the chiral subgroup $\mathcal{G}(W)_{\mathbb{C}}^{+}$to $\mathcal{G}(W)$. Notice, however, that we can formulate $\mathbb{V}(W, \lambda)$ as
$\mathbb{V}(W, \lambda)=\left\{\psi: \mathcal{H}_{\lambda} \rightarrow \mathbb{C} \mid \psi\left(\rho_{\lambda}\left(r^{+}(f)\right) v\right)=\psi(v), \forall v \in \mathcal{E}_{\lambda}, \forall f \in \mathcal{G}(W)_{\mathbb{C}}^{+}\right\}$
because \mathcal{E}_{λ} is dense in \mathcal{H}_{λ}.

\S 3. Calculation of $\mathbb{V}\left(D^{4 k+2}, \lambda\right)$

In this section, we prove Theorem 1.1. As preparations for the proof, we review in some detail the construction of irreducible representations of Heisenberg groups in [10]. We also study chiral $2 k$-forms on $\mathbb{R}^{4 k+2}$ by the help of results in [9].

3.1. Representation of Heisenberg group

For a compact oriented $(4 k+1)$-dimensional Riemannian manifold M without boundary, the group $\mathcal{G}(M)_{\mathbb{C}}$ admits the decomposition:

$$
\begin{aligned}
\mathcal{G}(M)_{\mathbb{C}} & \cong\left(A^{2 k}(M, \mathbb{C}) / A^{2 k}(M, \mathbb{C})_{\mathbb{Z}}\right) \times H^{2 k+1}(M, \mathbb{Z}) \\
& \cong\left(\mathbb{H}^{2 k}(M, \mathbb{C}) / \mathbb{H}^{2 k}(M, \mathbb{C})_{\mathbb{Z}}\right) \times d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right) \times H^{2 k+1}(M, \mathbb{Z})
\end{aligned}
$$

where $\mathbb{H}^{2 k}(M, \mathbb{C})$ is the group of \mathbb{C}-valued harmonic $2 k$-forms on M, $\mathbb{H}^{2 k}(M, \mathbb{C})_{\mathbb{Z}}=\mathbb{H}^{2 k}(M, \mathbb{C}) \cap A^{2 k}(M, \mathbb{C})_{\mathbb{Z}}$ the subgroup of integral harmonic $2 k$-forms, and $d^{*}: A^{2 k+1}(M, \mathbb{C}) \rightarrow A^{2 k}(M, \mathbb{C})$ the formal adjoint of the exterior differential. Thus, in particular, if M is such that $H^{2 k+1}(M, \mathbb{Z})=0$, then $\mathcal{G}(M)_{\mathbb{C}} \cong d^{*}\left(A^{2 k+1}(M, \mathbb{Z})\right)$. The representations $\left(\tilde{\rho}_{\lambda}, \mathcal{E}_{\lambda}\right)$ of $\tilde{\mathcal{G}}(M)_{\mathbb{C}}$ in Proposition 2.3 are built on a projective representation (ρ, E) of $d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right)$. We review here the construction of (ρ, E) following [10], and give a simple consequence.

As in [8], we define the Hermitian inner product $(,)_{V}$ on the vector space $d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right)$ by that induced from the Sobolev norm $\|\cdot\|_{s}$ with $s=1 / 2$. (Our convention is that $(,)_{V}$ is \mathbb{C}-linear in the first variable, which differs from that in [10].) On the completion $V_{\mathbb{C}}$ of $d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right)$, we define the linear map $J: V_{\mathbb{C}} \rightarrow V_{\mathbb{C}}$ by $J=\tilde{J} /|\tilde{J}|$, where $\tilde{J}: d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right) \rightarrow d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right)$ is the differential operator $\tilde{J}=* d$. Then J is a complex structure compatible with $(,)_{V}$, and satisfies:

$$
(\alpha, J \bar{\beta})_{V}=\int_{M} \alpha \wedge d \beta
$$

for $\alpha, \beta \in d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right)$. By means of J, we decompose $V_{\mathbb{C}}$ into $V_{\mathbb{C}}=W \oplus \bar{W}$, where J acts on W and \bar{W} by $\sqrt{-1}$ and $-\sqrt{-1}$, respectively.

Then we let $E=\mathbb{C}\left\langle\epsilon_{\xi} \mid \xi \in W\right\rangle$ be the vector space generated by the symbols ϵ_{ξ} corresponding to $\xi \in W$, and $\langle\rangle:, E \times E \rightarrow \mathbb{C}$ the Hermitian inner product $\left\langle\epsilon_{\xi}, \epsilon_{\eta}\right\rangle=e^{2(\xi, \eta)_{V}}$. For $v_{+} \in W$ and $v_{-} \in \bar{W}$, we define $\rho\left(v_{+}+v_{-}\right): E \rightarrow E$ by

$$
\rho\left(v_{+}+v_{-}\right) \epsilon_{\xi}=\exp \left(-\left(v_{+}, \overline{\left(v_{-}\right)}\right)_{V}-2\left(\xi, \overline{\left(v_{-}\right)}\right)_{V}\right) \epsilon_{\xi+v_{+}}
$$

We can verify $\rho(v) \rho\left(v^{\prime}\right) \epsilon_{\xi}=e^{\sqrt{-1}\left(v, J \bar{v}^{\prime}\right)_{v}} \rho\left(v+v^{\prime}\right) \epsilon_{\xi}$ for $v, v^{\prime} \in V_{\mathbb{C}}$, so that we have a projective representation $\rho: V_{\mathbb{C}} \times E \rightarrow E$. Because the group 2-cocycle $S_{M, \mathbb{C}}$ on $d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right)$ has the expression :

$$
S_{M, \mathbb{C}}(\alpha, \beta)=\int_{M} \alpha \wedge d \beta \quad \bmod \mathbb{Z}
$$

we get the projective representation $\rho: d^{*}\left(A^{2 k+1}(M, \mathbb{C})\right) \times E \rightarrow E$.
In general, $\rho(\alpha): E \rightarrow E$ is unbounded. However, if α belongs to the real vector space $d^{*}\left(A^{2 k+1}(M)\right)$ underlying $d^{*}\left(A^{2 k}(M, \mathbb{C})\right)$, then $\rho(\alpha): E \rightarrow E$ is isometric. Thus, $\rho(\alpha)$ extends to a unitary map on the completion $H=\bar{E}$ of E, and we have an irreducible projective unitary representation $\rho: d^{*}\left(A^{2 k+1}(M)\right) \times H \rightarrow H$. As is shown in [10], we can identify \bar{E} with a completion of the symmetric algebra $S(W)$ by the mapping $\epsilon_{\xi} \mapsto e^{\xi}=\sum_{j=0}^{\infty} \xi^{j} / j$!.

Lemma 3.1. Let (ρ, E) be as above.
(a) The vector space $\operatorname{Hom}(E, \mathbb{C})^{W}$ is generated by the continuous linear map $\chi: E \rightarrow \mathbb{C}$ defined by $\chi(v)=\left\langle v, \epsilon_{0}\right\rangle:$

$$
\operatorname{Hom}(E, \mathbb{C})^{W}=\mathbb{C}\langle\chi\rangle
$$

(b) We have $\operatorname{Hom}(E, \mathbb{C})^{W}=\operatorname{Hom}(E, \mathbb{C})^{U}$ for a dense subspace U in W.

Proof. To prove (a), we begin with proving the W-invariance of χ. Notice that $\chi\left(\epsilon_{\xi}\right)=1$ for all $\xi \in W$. For $f \in W$ and $v=\sum_{j} c_{j} \epsilon_{\xi_{j}} \in E$, we have:

$$
\begin{aligned}
\chi(v) & =\sum_{j} c_{j} \chi\left(\epsilon_{\xi_{j}}\right)=\sum_{j} c_{j} \\
\chi((\rho(f) v) & =\sum_{j} c_{j} \chi\left(\rho(f) \epsilon_{\xi_{j}}\right)=\sum_{j} c_{j} \chi\left(\epsilon_{\xi_{j}+f}\right)=\sum_{j} c_{j} .
\end{aligned}
$$

Hence χ is invariant under the action of W, and $\mathbb{C}\langle\chi\rangle \subset \operatorname{Hom}(E, \mathbb{C})^{W}$. To see $\mathbb{C}\langle\chi\rangle \supset \operatorname{Hom}(E, \mathbb{C})^{W}$, we show that any $\psi \in \operatorname{Hom}(E, \mathbb{C})^{W}$ is of the form $\psi=c \chi$ for some $c \in \mathbb{C}$. For $v=\sum_{j} c_{j} \epsilon_{\xi_{j}} \in E$, the invariance of ψ leads to:

$$
\begin{aligned}
\psi(v) & =\sum_{j} c_{j} \psi\left(\epsilon_{\xi_{j}}\right)=\sum_{j} c_{j} \psi\left(\rho\left(\xi_{j}\right) \epsilon_{0}\right)=\sum_{j} c_{j} \psi\left(\epsilon_{0}\right) \\
& =\psi\left(\epsilon_{0}\right) \sum_{j} c_{j}=\psi\left(\epsilon_{0}\right) \chi(v)
\end{aligned}
$$

If we put $c=\psi\left(\epsilon_{0}\right)$, then $\psi=c \chi$. For (b), it suffices to prove the inclusion $\operatorname{Hom}(E, \mathbb{C})^{U} \subset \operatorname{Hom}(E, \mathbb{C})^{W}$. So we will show $\psi \in \operatorname{Hom}(E, \mathbb{C})^{U}$ is also invariant under W. For $f \in W$, there is a sequence $\left\{f_{n}\right\}$ in U converging to f. Notice that $\rho(\cdot) v: W \rightarrow E$ is continuous for $v \in E$. Now, we have:

$$
\psi(\rho(f) v)=\psi\left(\rho\left(\lim _{n \rightarrow \infty} f_{n}\right) v\right)=\lim _{n \rightarrow \infty} \psi\left(\rho\left(f_{n}\right) v\right)=\lim _{n \rightarrow \infty} \psi(v)=\psi(v)
$$

so that $\psi \in \operatorname{Hom}(E, \mathbb{C})^{W}$.
Q.E.D.

Remark 2. The key to Lemma 3.1 (b) is that the map $\rho(\cdot) v: W \rightarrow E$ is continuous for each $v \in W$. The representations $\tilde{\rho}_{\lambda}: \tilde{\mathcal{G}}(M)_{\mathbb{C}} \times \mathcal{E}_{\lambda} \rightarrow \mathcal{E}_{\lambda}$ in Proposition 2.3 have the same property [8].

3.2. Chiral $2 k$-forms on $\mathbb{R}^{4 k+2}$

The Laplacian $\Delta=d d^{*}+d^{*} d$ preserves $d^{*}\left(A^{2 k+1}\left(S^{4 k+1}, \mathbb{C}\right)\right)$. For an eigenvalue ℓ of Δ, we define V_{ℓ} to be the following eigenspace:

$$
V_{\ell}=\left\{\beta \in d^{*}\left(A^{2 k+1}\left(S^{4 k+1}, \mathbb{C}\right)\right) \mid \Delta \beta=\ell \beta\right\}
$$

The complex structure J, introduced in the previous subsection, preserves V_{ℓ}. (In particular, $J=* d / \sqrt{\ell}$ on V_{ℓ}.) So we have the decomposition $V_{\ell}=W_{\ell} \oplus \bar{W}_{\ell}$, where J acts on W_{ℓ} and \bar{W}_{ℓ} by $\sqrt{-1}$ and $-\sqrt{-1}$, respectively.

Proposition 3.2. There is the following relation of inclusion:

$$
\bigoplus_{\ell} W_{\ell} \subset \operatorname{Im}\left\{\iota^{*}: A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{+} \rightarrow A^{2 k}\left(S^{4 k+1}, \mathbb{C}\right)\right\} \subset W
$$

where \bigoplus means the algebraic direct sum, ℓ runs through all the distinct eigenvalues, $\iota: S^{4 k+1} \rightarrow \mathbb{R}^{4 k+2}$ is the inclusion, and $A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{ \pm}$ are the following vector spaces:

$$
A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{ \pm}=\left\{B \in A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right) \mid d B \mp \sqrt{-1} * d B=0\right\}
$$

For the proof, we use some results shown by Ikeda and Taniguchi in [9]. To explain the relevant results, we introduce some notations. Let $S^{i}\left(\mathbb{R}^{4 k+1}\right)$ and $\Lambda^{p}\left(\mathbb{R}^{4 k+1}\right)$ be the spaces of the symmetric tensors of degree i and anti-symmetric tensors of degree p. We put $P_{i}^{p}=$ $S^{i}\left(\mathbb{R}^{4 k+1}\right) \otimes \Lambda^{p}\left(\mathbb{R}^{4 k+1}\right) \otimes \mathbb{C}$, and regard P_{i}^{p} as a subspace in $A^{p}\left(\mathbb{R}^{4 k+1}, \mathbb{C}\right)$. We then define the vector spaces:

$$
\begin{aligned}
H_{i}^{p} & =\operatorname{Ker} \Delta \cap \operatorname{Ker} d^{*} \cap P_{i}^{p} \\
{ }^{\prime} H_{i}^{p} & =\operatorname{Ker} d \cap H_{i}^{p} \\
{ }^{\prime \prime} H_{i}^{p} & =\operatorname{Ker} i\left(r \frac{d}{d r}\right) \cap H_{i}^{p}
\end{aligned}
$$

where $i\left(r \frac{\partial}{\partial r}\right)$ is the contraction with the vector field $r \frac{d}{d r}=\sum_{j=1}^{4 k+2} x_{j} \frac{d}{d x_{j}}$.
Notice that the standard action of $S O(4 k+2)$ on $\mathbb{R}^{4 k+2}$ makes ' H_{i}^{p} and " H_{i}^{p} into $S O(4 k+2)$-modules. Similarly, V_{ℓ} is also an $S O(4 k+2)$ module. From [9] (Theorem 6.8, p. 537), we can derive:

Proposition 3.3 ([9]). Let $\ell_{1}<\ell_{2}<\ell_{3}<\cdots$ be the sequence of distinct eigenvalues of Δ on $d^{*}\left(A^{2 k+1}\left(S^{4 k+1}, \mathbb{C}\right)\right)$. For $i \in \mathbb{N}$, we have:
(a) The pull-back by the inclusion

$$
\iota^{*}: A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right) \rightarrow A^{2 k}\left(S^{4 k+1}, \mathbb{C}\right)
$$

and the exterior differential

$$
d: A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right) \rightarrow A^{2 k+1}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)
$$

induce the following isomorphisms of $S O(4 k+2)$-modules:

$$
V_{\ell_{i}} \stackrel{\iota^{*}}{\longleftrightarrow}{ }^{\prime \prime} H_{i}^{2 k} \xrightarrow{d}{ }^{\prime} H_{i-1}^{2 k+1} .
$$

(b) The $S O(4 k+2)$-module $V_{\ell_{i}}$ decomposes into two distinct irreducible modules having the same dimensions.

Remark 3. More precisely, the sequence $\left\{\ell_{i}\right\}_{i \in \mathbb{N}}$ is given by $\ell_{i}=$ $(2 k+i)^{2}$, and the dimension of the two irreducible modules in $V_{\ell_{i}}$ is $\binom{4 k+i}{2 k}\binom{2 k+i-1}{2 k}$.

We also note the next lemma for later use:
Lemma 3.4. Let $(,)_{L^{2}}$ be the L^{2}-norm on $A^{2 k+1}\left(D^{4 k+2}, \mathbb{C}\right)$.
(a) For $B, B^{\prime} \in A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)$, we have:

$$
\left(\iota^{*} B, J \iota^{*} B^{\prime}\right)_{V}=-\left(d B, * d B^{\prime}\right)_{L^{2}}
$$

(b) If $B \in A^{2 k+1}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)$ obeys $(J-\sqrt{-1}) \iota^{*} B=0$, then:

$$
\left\|H^{+}\right\|_{L^{2}}^{2}-\left\|H^{-}\right\|_{L^{2}}^{2} \geq 0
$$

where $H^{ \pm}=(1 \pm \sqrt{-1} *) d B / 2$. Similarly, if $(J+\sqrt{-1}) \iota^{*} B=0$, then:

$$
\left\|H^{-}\right\|_{L^{2}}^{2}-\left\|H^{+}\right\|_{L^{2}}^{2} \geq 0
$$

Proof. We can readily show (a) combining properties of (,) $)_{V}$ and J with Stokes' theorem. Notice that the eigenspaces $\operatorname{Ker}(1 \pm \sqrt{-1} *)$ in $A^{2 k+1}\left(D^{4 k+2}, \mathbb{C}\right)$ are orthogonal to each other with respect to the L^{2} norm. Then the inequalities in (b) follow from $\left(\iota^{*} B, \iota^{*} B\right)_{V} \geq 0$ and (a).
Q.E.D.

Proposition 3.3 and the above lemma yield:
Lemma 3.5. The map ι^{*} induces the following isomorphisms for $i \in \mathbb{N}$:

$$
{ }^{\prime \prime} H_{i}^{2 k} \cap A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{+} \cong W_{\ell_{i}}, \quad{ }^{\prime \prime} H_{i}^{2 k} \cap A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{-} \cong \bar{W}_{\ell_{i}} .
$$

Proof. Notice that the action of $S O(4 k+2)$ on $V_{\ell_{i}}$ is compatible with J. So $W_{\ell_{i}}$ and $\bar{W}_{\ell_{i}}$ are $S O(4 k+2)$-modules. The dimensions of $W_{\ell_{i}}$ and $\bar{W}_{\ell_{i}}$ are the same, since they are complex-conjugate to each other. Similarly, since the $S O(4 k+2)$-action on ${ }^{\prime} H_{i-1}^{2 k+1}$ is compatible with the Hodge star operator $*$, the vector spaces $\left({ }^{\prime} H_{i-1}^{2 k+1}\right)^{ \pm}={ }^{\prime} H_{i-1}^{2 k+1} \cap \operatorname{Ker}(1 \mp$ $\sqrt{-1} *)$ are also $S O(4 k+2)$-modules with the same dimensions. Thus, by Proposition 3.3, $W_{\ell_{i}}$ is isomorphic to one of $\left({ }^{\prime} H_{i-1}^{2 k+1}\right)^{ \pm}$through $d \circ\left(\iota^{*}\right)^{-1}$, and $\bar{W}_{\ell_{i}}$ is isomorphic to the other. To settle the case, we appeal to Lemma 3.4 (b). Then the case of $W_{\ell_{i}} \cong\left({ }^{\prime} H_{i-1}^{2 k+1}\right)^{+}$and $\bar{W}_{\ell_{i}} \cong\left({ }^{\prime} H_{i-1}^{2 k+1}\right)^{-}$ is consistent. Now the isomorphisms $d:{ }^{\prime \prime} H_{i}^{2 k} \cap A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{ \pm} \rightarrow$ $\left({ }^{\prime} H_{i-1}^{2 k+1}\right)^{ \pm}$complete the proof.
Q.E.D.

The proof of Proposition 3.2. By Lemma 3.5 we have:

$$
W_{\ell_{i}} \subset \operatorname{Im}\left\{\iota^{*}: A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{+} \rightarrow A^{2 k}\left(S^{4 k+1}, \mathbb{C}\right)\right\}
$$

which leads to the first inclusion in Proposition 3.2. For the second inclusion, we recall that the subspaces W and \bar{W} in $V_{\mathbb{C}}$ are orthogonal with respect to $(,)_{V}$. So, it suffices to verify the image $\iota^{*}\left(A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{+}\right)$ is orthogonal to \bar{W}. By Lemma 3.5, we also have:

$$
\bar{W}_{\ell_{i}} \subset \operatorname{Im}\left\{\iota^{*}: A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{-} \rightarrow A^{2 k}\left(S^{4 k+1}, \mathbb{C}\right)\right\}
$$

Thus, by the help of Lemma 3.4 (a), we see that $\iota^{*}\left(A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{+}\right)$is orthogonal to each $\bar{W}_{\ell_{i}}$. Because $\bigoplus_{i} W_{\ell_{i}}$ forms a dense subspace in W, the image $\iota^{*}\left(A^{2 k}\left(\mathbb{R}^{4 k+2}, \mathbb{C}\right)^{+}\right)$is orthogonal to \bar{W}.
Q.E.D.

3.3. Proof of the main result

We now compute $\mathbb{V}\left(D^{4 k+2}, \lambda\right)$.
First, we consider the case of $k>0$. In this case, we have:

$$
\mathcal{G}\left(S^{4 k+1}\right)_{\mathbb{C}}=A^{2 k}\left(S^{4 k+1}, \mathbb{C}\right) / A^{2 k}\left(S^{4 k+1}, \mathbb{C}\right)_{\mathbb{Z}} \cong d^{*}\left(A^{2 k+1}\left(S^{4 k+1}, \mathbb{C}\right)\right)
$$

The projective unitary representation (ρ, H) reviewed in Subsection 3.1 realizes the unique element in $\Lambda\left(S^{4 k+1}\right)=\{0\}$, and E gives the invariant dense subspace in Proposition 2.3.

Theorem 3.6. If $k>0$, then $\mathbb{V}\left(D^{4 k+2}, 0\right) \cong \mathbb{C}$.
Proof. Note that $\mathcal{G}\left(D^{4 k+2}\right)_{\mathbb{C}}^{+}=A^{2 k}\left(D^{4 k+2}, \mathbb{C}\right)^{+} / A^{2 k}\left(D^{4 k+1}, \mathbb{C}\right)_{\mathbb{Z}}$. Proposition 3.2 leads to: $U \subset \operatorname{Im} r^{+} \subset W$, where the dense subspace U in W is given by $U=\bigoplus_{i \in \mathbb{N}} W_{\ell_{i}}$. This relation of inclusion implies:

$$
\operatorname{Hom}(E, \mathbb{C})^{U} \supset \operatorname{Hom}(E, \mathbb{C})^{\operatorname{Im} r^{+}} \supset \operatorname{Hom}(E, \mathbb{C})^{W}
$$

Therefore Lemma 3.1 establishes the theorem.
Q.E.D.

In the case of $k=0$, we have the familiar decomposition:

$$
\mathcal{G}\left(S^{1}\right)_{\mathbb{C}}=L \mathbb{C}^{*} \cong \mathbb{C} / \mathbb{Z} \times\left\{\phi: S^{1} \rightarrow \mathbb{R} \mid \int \phi(\theta) d \theta=0\right\} \times \mathbb{Z}
$$

As is mentioned, admissible representations of $\mathcal{G}\left(S^{1}\right)$ are equivalent to positive energy representations of $L U(1)$ of level 2. For $\lambda \in \Lambda\left(S^{1}\right)=$ $\mathbb{Z}_{2}=\{0,1\}$, the invariant dense subspace \mathcal{E}_{λ} in Proposition 2.3 is given by $\mathcal{E}_{\lambda}=\bigoplus_{\xi \in \mathbb{Z}} E_{\lambda+2 \xi}$, where $E_{\lambda+2 \xi}=E$ is the pre-Hilbert space in Subsection 3.1 and the subgroup of constant loops $\mathbb{C} / \mathbb{Z} \subset \mathcal{G}\left(S^{1}\right)_{\mathbb{C}}$ acts on $E_{\lambda+2 \xi}$ by weight $\lambda+2 \xi$.

Proposition 3.7. For $\lambda \in \Lambda\left(S^{1}\right)=\mathbb{Z}_{2}$, we have:

$$
\mathbb{V}\left(D^{2}, \lambda\right) \cong \begin{cases}\mathbb{C}, & (\lambda=0) \\ 0 . & (\lambda=1)\end{cases}
$$

Proof. Clearly, constant loops $S^{1} \rightarrow \mathbb{C} / \mathbb{Z}$ extend to holomorphic $\operatorname{maps} D^{2} \rightarrow \mathbb{C} / \mathbb{Z}$. So we use Proposition 3.2 to obtain:

$$
\mathbb{C} / \mathbb{Z} \times U \subset \operatorname{Im} r^{+} \subset \mathbb{C} / \mathbb{Z} \times W
$$

where $U=\bigoplus_{i \in \mathbb{N}} W_{\ell_{i}}$. Since \mathbb{C} / \mathbb{Z} acts on $E_{\lambda+2 \xi}$ by weight $\lambda+2 \xi$, we have:

$$
\operatorname{Hom}\left(\mathcal{E}_{\lambda}, \mathbb{C}\right)^{\mathbb{C} / \mathbb{Z}} \subset \prod_{\xi \in \mathbb{Z}} \operatorname{Hom}\left(E_{\lambda+2 \xi}, \mathbb{C}\right)^{\mathbb{C} / \mathbb{Z}} \cong\left\{\begin{array}{cc}
\operatorname{Hom}\left(E_{0}, \mathbb{C}\right), & (\lambda=0) \\
\{0\} & (\lambda=1)
\end{array}\right.
$$

Thus, if $\lambda=1$, then $\mathbb{V}\left(D^{2}, \lambda\right)=\{0\}$. In the case of $\lambda=0$, we have:

$$
\operatorname{Hom}\left(E_{0}, \mathbb{C}\right)^{U} \supset \operatorname{Hom}\left(E_{0}, \mathbb{C}\right)^{\operatorname{Im} r^{+}} \supset \operatorname{Hom}\left(E_{0}, \mathbb{C}\right)^{W}
$$

Now, Lemma 3.1 completes the proof. Q.E.D.

References

[1] J.-L. Brylinski, Loop spaces, Characteristic Classes and Geometric Quantization. Birkhäuser Boston, Inc., Boston, MA, 1993.
[2] J.-L. Brylinski and D. A. McLaughlin, The geometry of degree-4 characteristic classes and of line bundles on loop spaces. II, Duke Math. J., 83 (1996), 105-139.
[3] J. Cheeger and J. Simons, Differential characters and geometric invariants, Lecture Notes in Math., 1167 (1985), Springer-Verlag, 50-80.
[4] P. Deligne and D. S. Freed, Classical field theory, In: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2, Princeton, NJ, 1996/1997, Amer. Math. Soc., Providence, RI, 1999, pp. 137-225.
[5] H. Esnault and E. Viehweg, Deligne-Beilinson cohomology, In: Beilinson's Conjectures on Special Values of L-Functions, Perspect. Math., 4, Academic Press, Boston, MA, 1988, pp. 43-91.
[6] D. S. Freed, G. W. Moore and G. Segal, Heisenberg groups and noncommutative fluxes, Ann. Physics, 322 (2007), 236-285, arXiv:hep-th/0605200.
[7] K. Gomi, Central extensions of gauge transformation groups of higher abelian gerbes, J. Geom. Phys., 56 (2006), 1767-1781, arXiv:hepth/0504075.
[8] K. Gomi, Projective unitary representations of smooth Deligne cohomology groups, arXiv:math/0510187.
[9] A. Ikeda and Y. Taniguchi, Spectra and eigenforms of the Laplacian on S^{n} and $P^{n}(C)$, Osaka J. Math., 15 (1978), 515-546.
[10] A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press, New York, 1986.
[11] G. Segal, The definition of conformal field theory, In: Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004, pp. 421-577.
[12] A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Stud. Pure Math., 19, Academic Press, Boston, MA, 1989, pp. 459-566.
[13] K. Ueno, On conformal field theory, In: Vector Bundles in Algebraic Geometry, Durham, 1993, London Math. Soc. Lecture Note Ser., 208, Cambridge Univ. Press, Cambridge, 1995, pp. 283-345.
[14] E. Witten, Free fermions on an algebraic curve, In: The Mathematical Heritage of Hermann Weyl, Durham, NC, 1987, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988, pp. 329-344.
[15] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys., 22 (1997), 103-133, arXiv:hep-th/9610234.

Graduate school of Mathematical Sciences
The University of Tokyo
Komaba 3-8-1, Meguro-Ku
Tokyo, 153-8914
Japan
Current address
The Department of Mathematics
The University of Texas at Austin
1 University Station C1200, Austin
TX 78712-0257
USA

E-mail address: kgomi@math.utexas.edu

