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High-order processing of singular data 

Yosef Yomdin and Gal Zahavi 

Abstract. 

This paper provides a survey of some recent results (mostly in 
[68, 71, 72, 73, 74]) concerning high-order representation and process­
ing of singular data. We present these results from a certain general 
point of view which we call a "Model-Net" approach: this is a method 
of representation and processing of various types of mathematical data, 
based on the explicit recovery of the hierarchy of data singularities. As 
an example we use a description of singularities and normal forms of 
level surfaces of "product functions" recently obtained in [68, 34] and 
on this base describe in detail the structure of the Model-net represen­
tation of such surfaces. 

Then we discuss a "Taylor-net" representation of smooth functions 
consisting of a net of Taylor polynomials of a prescribed degree k (or 
k-jets) of this function stored at a certain grid in its domain. Following 
[72, 74] we present results on the stability of Hermite fitting, which is 
the main tool in acquisition of Taylor-net data. 

Next we present (following [71, 73, 74]) a method for numerical 
solving PDE's based on Taylor-net representation of the unknown func­
tion. We extend this method also to the case of the Burgers equation 
near a formed shock-wave. 

Finally, we shortly discuss (following [28, 56]) the problem of a 
non-linear acquisition of Model-nets from measurements, as well as 
some additional implementations of the Model-net approach. 

§1. Introduction 

This paper provides a survey of some recent results (mostly in [68, 
71, 72, 73, 74]) concerning high-order representation and processing of 
singular data. We try to present these results from a certain general 
point of view which we call a "Model-Net" approach. 

Model-nets provide an approach to a representation and processing 
of various types of mathematical data, based on the explicit recovery 
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of the hierarchy of data singularities. Various specific cases have been 
investigated in [14, 17], [24]-[27], [34, 56, 66, 68], [71]-[74], including rep­
resentation of high-resolution images, of curves and surfaces, high-order 
numerical methods for solving linear and non-linear PDE's, compact 
description of a free configuration space of a robot manipulator, etc. 

The representation in our approach is achieved via a "net of geomet­
ric models". This is a system of interconnected local analytic models, 
subordinated to a certain grid in (or partition of) the data domain, and 
respecting the hierarchy of singularities of the data. The main feature 
of the Model-net approach is that we try to avoid a "blind" approxima­
tion of functions with singularities by standard methods, ignoring the 
presence of singularities. Instead we construct an hierarchy of smooth 
functions in different dimensions, reflecting the hierarchy of singularities 
of the original data, and finally approximate only these smooth compo­
nents. 

Certainly, in each specific problem where singularities appear, they 
are addressed in this or another way. So the Model-net approach strongly 
overlaps with many classical methods for treatment of singularities. We 
discuss some of these overlaps in more details below. Still, we've found 
Model-nets conceptually adequate and providing a useful insight in solv­
ing specific problems via applications of Singularity Theory and high­
order methods. 

In the present paper we shall give a detailed description of a couple 
of the main mathematical ingredients in the Model-nets (restricted to 
instructive examples), and a very short overview of some other related 
mathematical problems, as well as of some implementations of Model­
nets approach. 

In Section 2 we start with an example: a Model-net representation of 
level surfaces of smooth functions. We use a description of singularities 
and normal forms of level surfaces of "product functions" recently ob­
tained in [68, 34] and on this base describe the structure of a Model-net 
representation of such surfaces. 

The problem of a representation of smooth components in Model­
nets brings us in Section 3 to one of the main mathematical topics in this 
paper- "Taylor-nets". The idea to use nets of local Taylor polynomials 
in analysis and representation of smooth functions goes back to at least 
Whitney ([61]-[65]) and Kolmogorov ([43, 44]). In the last two papers 
it was shown that Taylor-net representation is essentially optimal for 
smooth functions from the point of view of the amount of information 
to be stored. The role of Taylor nets was stressed once more in a recent 
solution of the Whitney extension problem ([30, 31]; see also [15, 19] and 
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references there). In numerical algorithms Taylor methods are tradition­
ally used in high accuracy computations of ODE's (see [9, 12, 36, 50] 
and references there) and to a much smaller extent in solving of PDE's 
(see, for example, [14, 66, 40, 41, 42]). Recently Taylor discretization 
has been applied to solving elliptic PDE's and to many other problems 
in differential equations and Dynamics by the group of the Michigan 
State University ([7]-[12], [33, 36], [50]-[52]). The results of this group 
clearly illustrate the power and efficiency of Taylor models. 

However, there is a serious stability problem which makes diffi­
cult using Taylor-nets in general numerical algorithms. This problem 
is shared by all high-order methods and it consists in an oversensitivity 
of high order derivatives to the noise in the data. Even the most initial 
step in acquisition of high-order data from the low order measurements 
- the interpolation process - is well known to be highly unstable. 

We believe that Taylor nets provide a framework where the stability 
problem can be addressed with adequate mathematical tools: "Hermite 
fitting" and "Multi-order strategy". 

In Hermite fitting we approximate the point-wise data with a poly­
nomial of lower degree than the maximally possible. Accordingly, the 
requirement of the precise interpolation is replaced by the requirement 
of the least square deviation. 

In Section 4, following [72, 7 4], we analyze the robustness of the 
Hermite fitting operator. We give some experimental and theoretical 
results from [72, 7 4] which support the following conclusion: 

If we replace Hermite interpolation by "Hermite fitting", signifi­
cantly reducing the degree of the fitting polynomial with respect to the 
maximal possible, the stiffness of the Hermite fitting operator is reduced 
in many orders of magnitude. 

"Multi-order strategy" consists in a successive processing of the 
data: from the lowest order to higher and higher ones. At each or­
der the maximal possible for this order accuracy is achieved, and then 
the next order data is included as a "correction" to the previous step. 
This approach was implemented in a Taylor-net discretization of Laplace 
equation in [66] and it provided a significant increase in stability. We 
plan to present its further applications separately. 

We believe that the Hermite fitting of. an appropriate order, com­
bined with the multi-order strategy, will ultimately allow for a robust 
acquisition and processing of Taylor-net data in a noisy environment. 

In Section 5 we describe, following [71, 72, 73, 74] a method to 
solve evolution PDE's using Taylor-net representation of the unknown 
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function. It combines an algebraic jet-extension of the original equation 
and the Hermite fitting. We also present in Section 6 some new results 
concerning the case of the Burgers equation where the already formed 
shock-waves can be treated as the evolving singularities. We shortly 
discuss also the Model-net approach to the processing of the birth of a 
shock-wave. 

Finally, in Section 7 we provide a very short overview of the problem 
of acquisition of singular data from measurements, as well as a very 
short overview of some implementations of the Model-net approach, not 
covered by the present paper. 

§2. Example: level surfaces 

In ([68], see also [34]) we propose an approach to a representation 
of level surfaces of smooth functions in ffi.3 . Specifically, we consider 
level surfaces Y(c) = {F(x1 ,x2 ,x3 ) = c} of smooth functions F(x) 
of three variables (x1 , x 2 , x3 ) = x, of a special "product" form. Our 
approach is motivated by the following consideration: surfaces usually 
appear as the boundaries of three-dimensional bodies B C ffi.3 . Let us 
assume that a connected body B c ffi.3 is defined by the inequalities 
F1(x) 2: 0, ... , Fm(x) 2: 0. For example, this is always the case for the 
surfaces produced by the Computer-Aided Design - Computer-Aided 
Manufacturing (CAD-CAM) systems, widely used in engineering. The 
interior B is exactly one of the connected components Gb of the set Go = 

{F(x) > 0}, where F = F1F2 ... Fm. So our surface is the boundary of 
B = Gb, and it is a part of the level surface Y(O) = {F(x) = 0} 

If we want to smooth out sharp edges and corners of our surface, 
one of possibiiities is to shift it slightly inside the body B by taking the 
appropriate component of the surface Y(E) = {F(x,y,z) = E}, where E 
is a small non-zero number. See Figure 1. 

In the present paper we shall not discuss in detail the specific notion 
of a "genericity" or of a "general position", used in [68]. Roughly, we say 
that the property P ofF = F1F2 ... Fm is generic if it is satisfied with 
a probability 1 for a randomly and independently picked F 1 , ... , Fm. 

However, it is important to stress that in our setting the product 
F = F1F2 ... Fm generically has non-isolated singularities along the 
crossing curves Cij of the surfaces Ci = { Fi = 0} and Cj = { Fj = 
0}, i, j = 1, ... , m. From the point of view of the classification of sin­
gularities of smooth functions in the standard setting (see [16, 18]) this 
is a very degenerate situation, appearing only in "codimension infinity". 
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Fig. 1 

So let F = F1F2 ... Fm be a generic product function. We denote 
by Ci = {Fi = 0} the zero surfaces of the functions Fi, i = 1, ... , m, by 
Cij = {Fi = 0} n {F1 = 0}, i,j = 1, ... , m, i i' j, the zero curves of the 
couples of these functions, and by Wijl = { Fi = 0} n { F1 = 0} n { Fz = 0} 
- their "triple zeroes". The following proposition describes the singular 
structure of a generic function F = F1F2 ... Fm: 

Proposition 2.1. For a generic function F = F1F2 ... Fm the 
critical set I:(F) of the function F consists of isolated non-degenerate 
(Morse} points Wi with F( wi) i' 0, of smooth curves Cij, and of isolated 
triple points Wijl, being the intersections of the zero surfaces Ci, Cj and 
Cz (and of the curves Cij, Gil and Cjz}. At the curves Cij the zero 
surfaces ci and Cj intersect transversally, and at the triple points Wijl 
the corresponding triples of the zero surfaces Ci, C1 and Cz intersect 
transversally. 

The proof is given in [68]. 
The following theorem presents one of the main results of [68]. It 

claims that each "near singular" point of a generic surface can be repre­
sented by a standard model. We refer the reader to [68] for a proof, as 
well as for a discussion of some relations to the idea of R. Thorn of an 
"organizing center" ([58]). For some "quantitative" results in Singularity 
Theory which play important role in our approach see ([67, 70]). 

Let us describe our models. We use the following notations: 

1. Y/(E) = {YI + y~- y~ = E}. 



178 Y. Yomdin and G. Zahavi 

2. Y2-(E) = {yr + y~- Y~ = -E}. 

3. Y3(E) = {YlY2 = E}. 

4. Y4(E) = {YlY2Y3 = E}. 

Here E > 0 for near-singularities, and E = 0 for singular points 
(Figure 2). 

Theorem 2.1. Let F = F 1F2 ... Fm be a generic product function. 
There exists a constant K = K(F) such that for any c E lR and Y(c) = 
{ F = c} the following is true: at each regular point x E Y (c) of the 
surface Y (c), where the sum of the absolute values of the main curvatures 
of Y (c) at x exceeds K, this surface can be parametrized as follows: 

(2.1) X1 = W1(Y1, Yz, Y3), Xz = Wz(Yl, Yz, Y3), X3 = W3(yl, Yz, Y3), 

- - ± 
with (yl, yz, y3) E Y(E), where Y(E) = Y2 (E), Y3(E), or Y4(E), and E 
is a certain positive number. 

At each singular point x E Y(c) of the surface Y(c) the same para­
metrization holds, with E = 0 in the appropriate models. 

This parametrization is valid in neighborhoods Ux of each point x E 

Y(c), and the size of Ux is uniformly in x bounded from below. The 
norm of the mapping \[! = (W1, Wz, W3) is uniformly bounded in x from 
above. 

Fig. 2 

In order to develop a Model-net representation of level surfaces 
Y(c) = {F = c} we need a slightly extended version of Theorem 2.1. 
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As Proposition 2.1 above states, the singular set :E(F) of the product 
function F consists of isolated Morse critical points wi with F(wi) -# 0, 
of smooth curves Cij, and of isolated triple points Wijl, being the inter­
sections of the zero surfaces Ci, Cj and Cz (and of the curves Cij, Gil 
and Cjz). 

Theorem 2.2. There exist neighborhoods Wi of the Morse points 
Wi ofF' neighborhoods wijl of the triple points Wijl and neighborhoods 
Uij of the smooth curves Cij \ U1 Wijl such that in each neighborhood Wi 
(respectively, Wijl} there are smooth coordinates (y1, y2, y3) in which 
F takes the form F = y~ ± y~ ± y~ (respectively, F= YlY2Y3)· In each 
neighborhood Uij there are smooth functions (Yb Y2) with the gradients 
of Yl, Y2 being linearly independent, such that F in this neighborhood 
takes the form F = Y1 Y2. 

Proof. This result is essentially proved in (68] (although it is not 
stated there in the above form). In particular, at the double curves Cij 
we take Yl = Fi, Y2 = F1 ... Fi-lFi+l ... Fm. Then F = Y1Y2, and it 
is easy to check that outside of the neighborhoods U1 Wijl of the triple 
points Wijl lying on the curve Cij the gradients of Y1, Y2 are linearly 
independent. At the triple point Wijl we take Yl = Fi, Y2 = Fj, Y3 = 
F1 ... Fi-lFi+l ... Fj-lFJ+l ... Fm. Then F = YlY2Y3, and it is easy to 
check that the gradients of Yb y2, Y3 are linearly independent. Q.E.D. 

Notice that Theorem 2.2 implies Theorem 2.1, with the prametriz­
ing mappings w = (W"1, w2, w3) being the inversions of the coordinate 
mappings {yl(xl,x2,x3),y2(xl,x2,x3),y3(xbx2,x3)} in the appropri­
ate neighborhoods. 

2.1. Model-net representation ofF and of Y(c) 

Now we are ready to describe the Model-net representation of the 
function F and of its level surfaces Y(c). We distinguish a "represen­
tation" which preserves the full accuracy of the data, and "approxi­
mation" (treated in Section 2.2) where scalar parameters are truncated 
and smooth components of the data are approximated up to the allowed 
error. 

2.1.1. Representation ofF Let us introduce some convenient nota­
tions. 

Definition 2.1. The critical set :E(F) ofF is called a "singular 
skeleton" of F. The union :EU(F) of all the neighborhoods Wi, Wijl, 
and Uij as defined in Theorem 2.2 is called a "near-singular support" of 
F. 
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Now the the Model-net representation MNR(F) of the function F 
comprises: 

1. The singular skeleton I; (F) of F. 

2. The near-singular support I;U(F) of F. 

3. The coordinate functions (y1 , y2 , y3 ) in each of the neighbor­
hoods Wi, together with the model F = Yt ± y~ ± y~. 

4. The coordinate functions (y1 , y2 , y3 ) in each of the neighbor­
hoods Wijl, together with the model F = YlY2Y3· 

5. The coordinate functions (y1 , y2 ) in each of the neighborhoods 
Uij, together with the model F = YlY2· 

6. The function F itself outside of its near-singular support I;U(F). 

From the point of view of Singularity Theory, what we keep at each 
singular point is the singular locus, the "normal form" of the singularity 
and the "normalizing transformation" (see [16, 18]). The normal forms 
are F = Yt ± y~ ± y~ at the Morse points Wi, F = YlY2Y3 at the triple 
points Wijl and F = Y1Y2 along the curves Cij· The normalizing coordi­
nate transformation are given by the functions y1 , Y2, y3 (respectively, 
Yl, y2), as constructed in Theorem 2.2. 

Let us stress that the MNR(F) represents F with a full accuracy: 
at this stage we just separate singular and non-singular data in the 
descriptions of the function F. 

To clarify the structure of the data in MNR( F) let us assume that 
F is a real analytic function. In this case the segments of the singular 
curves Cij are real analytic curves in JR.3 which can be parametrized by 

with '1/J}j, '1/J'fj, '1/Jtj real analytic functions. Together with the coordinates 
of the isolated singular points Wi, Wijl these functions provide a complete 
description of the singular skeleton I;(F) of F. The precise geometry of 
the near-singular support of F is not important in our representation, 
so it can be described just as a 8-neighborhood of I;(F). 

The functions (y1,Y2,y3) in each of the neighborhoods Wi, Wijl are 
represented by their infinite Taylor series 

(2.3) Ys = La~xa, s = 1,2,3, 
a 

with a= (a1, a 2, a3) multi-indices. 

To specify the representation of the functions (y1 , y2 ) in a neigh­
borhood Uij let us assume that the third coordinate x 3 is monotone on 
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the curve Cij· Then according to the representation (2.2) of this curve, 
we can write 

(2.4) Ys = L:)~(t)(x- ¢(t))", s = 1, 2, 

So what we have to store (besides the normal forms) are the coordi­
nates of the isolated singularities and the functions ¢fj(t) in (2.2), all the 
Taylor coefficients a~ in (2.3) and all the Taylor coefficients functions 
b~(t) in (2.4). 

2.1.2. Representation of Y(c) Formally we can say that in order to 
represent a specific level surface Y(c) = {x, F(x) = c} it is enough to 
store the representation ofF and the value of the parameter c. However, 
this way we keep irrelevant information about F "far away" from Y(c). 
To construct a Model-net representation MNR(Y(c)) of the level surface 
Y(c) by itselfwe proceed as follows: 

1. The regular part of Y(c) outside of the near-singular support 
L.U(F) ofF is stored as it is. 

2. In each of the neighborhoods Wi, Wijl the type of the model 
and the parametrizing transformations (2.1) of Theorem (2.1) above are 
stored. 

3. In each of the neighborhoods Uij the parametrizing transforma­
tions (2.1) of Theorem (2.1) above are stored. However, along the curves 
Cij these transformations can be kept in a special form. Let us assume, 
as above, that the third coordinate x3 is monotone on the curve Cij. 

Then the transformations (2.1) can be written as 

Substituting here the parametrization (2.2) of the curve Cij we get a 
one-parametric family of germs of two-dimensional coordinate transfor­
mations. We call this family a profile of the surface Y (c) along the curve 
Cii· 

In the case of a real analytic F all these data can be kept in the 
form of convergent power series, as in Section 2.1.1 above. 
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2.2. Model-net approximation ofF and of Y(c) 

In this step we perform a finite-dimensional approximation of F 
and Y with a prescribed accuracy. First of all, we truncate all the 
power series above to a finite number of terms, providing the required 
approximation accuracy. Secondly, we approximate with the prescribed 
accuracy each of the regular functions entering the MBR(F) and MBR(Y). 
These are: the function F itself outside of its near-singular support, the 
parametrizations (2.2) of the curves in the singular skeleton ofF, and 
the the remaining Taylor coefficients functions b~(t) in (2.4). 

Basically, any conventional approximation method can be used to 
approximate the regular data. The most important point is that all the 
singularities and near-singularities have been sorted out, so an exponen­
tial decrease of the error (in the number of the approximation's degrees 
of freedom} can be expected. 

In a similar way we approximate also the smooth components in the 
Model-net representation MBR(Y) of the level surface Y. 

In the next section we shortly describe a method of "Taylor-nets" 
which is especially convenient for a representation of the regular compo­
nents in the Model-net approximation. At this moment let us stress one 
important general feature of our approach: we do not try to fit our local 
models with one another exactly. Just an agreement between the neigh­
boring models within the prescribed accuracy is required. This approach 
is usually called a "non-conforming representation", and it makes our 
representation very flexible. We do not discuss this feature in detail in 
the present paper (see [24, 66]). 

§3. Taylor-net representation of smooth functions 

Taylor-net representation of a smooth function consists of a net of 
Taylor polynomials of a prescribed degree k (or k-jets) of this func­
tion stored at a certain grid in its domain. So we keep explicitly high 
order derivatives of our function at each grid point. This is a highly 
non-orthodox decision from the point of view of the traditional numer­
ical analysis, in particular, because of the sensitivity of the high-order 
derivatives to the noise. However, explicit storage of high-order deriva­
tives brings very serious advantages in accuracy and in processing effi­
ciency, so we believe that an effort to overcome the stability problem 
is well justified. Fortunately, Taylor-net representation is strongly sup­
ported by the results of the Whitney extension theory (see [61]-[65], 
[15, 19, 30, 31] and references there) and by the Kolmogorov theory of 
optimal representation of smooth functions (see [43, 44] and many other 
publications). 
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The question of an optimal representation of smooth functions has 
been investigated by Kolmogorov in his work onE-entropy of functional 
classes. The E-entropy is the logarithm of the minimal number of E­
balls covering a certain relatively compact set. The problem of an opti­
mal representation of smooth functions in Kolmogorov's setting can be 
shortly described as follows: How many bits do we need to memorize a 
Ck -function of n variables up to a prescribed a·ccuracy E > 0? Mathe­
matically, this is exactly the question of computing the E-entropy of the 
subset of Ck-functions with uniformly bounded derivatives, with respect 
to the C0- norm. 

It was shown in (43, 44] that asymptotically, the best way to memo­
rize a Ck-function up to the accuracy E > 0 is to store the coefficients of 
its k-th order Taylor polynomials (k-jets) at each point of some grid with 
the step h = 0(Eki1 ), taking into account that the neighboring jets are 
strongly correlated (this correlation is also a central tool in Whitney's 
extension theory). 

The corresponding estimate for the E-entropy of the class of Ck­
functions in the space C0 is an expression of order ( ~) 1i- • 

One of the main trade-offs in any numerical approach, based on a 
grid representation of the data, is between the density of the grid versus 
the processing complexity at each grid-point. Kolmogorov's representa­
tion tends to increase as far as possible the analytic power and flexibility 
of the local data representation at each grid-point, strongly expanding 
in this way this grid-point's "covering area". 

As a result, a density of the grid can be strongly reduced, while 
preserving the required approximation accuracy. This reduction may 
lead to a major efficiency improvement, especially in the problems with 
the large number of unknowns and parameters. 

Let us give a simple (and purely illustrative) example. Assume we 
have to approximate a function f of 10 variables on the unit cube Q, 
with the accuracy of E = 0.01. We use a uniform grid in Q with the 
step-size h and a Tailor polynomial approximation at each grid-point. 
Assuming that the derivatives of f up to the third order, are bounded by 
100, we get according to the Tailor remainder formula, that the accuracy 
of the first order Tailor polynomial approximation within the distance 
h from the grid-point is 100h2 , while the accuracy of the third order 
approximation is 10h4 • Hence to get a required overall approximation 
accuracy of E = 0.01, we must take h = 0.01 in the first case and h = 0.16 
in the second case. The size of the covering area of each point increases 
sixteen times. Hence the number of the required grid-points in the 10-
dimensional cube Q drops 1610 times. On the other side, the complexity 
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of the local representation and processing at each grid-point is roughly 
the number of the stored coefficients of the Taylor polynomial. For the 
third degree Taylor polynomial it is of order 200, while for the first degree 
Taylor polynomial it is 11. The 1:20jump in local complexity is more 
than compensated by the 1610 reduction in the number of grid-points. 

Also in dimensions 1 and 2 and with the representation of degree 2 
a very strong accuracy improvement can be achieved. In particular, the 
Taylor-net discretization of the Laplace equation in the plane presented 
in [66] uses jets of degree two and a five-points neighbor stencil, where 
the Hermite fitting is applied. This scheme provides a discretization 
error of order h 10 • 

It is important to stress, that Taylor-net representation allows for a 
"point-wise processing" based on the "Jet-calculus", or "Differential Al­
gebra" (which is just the translation of the basic analytic operations to 
the jet language. See [16, 18, 24, 27] for some examples). A very serious 
progress in this direction has been achieved by the group of the Michi­
gan State University ([7]-[12], [33, 36], [50]-[52]) which has developed, 
in particular, a computer system "COSY INFINITY" implementing in 
a highly efficient way a good part of the "Jet-calculus library". We 
mention also [60] where Differential Algebra is combined with Hermite 
fitting (in a somewhat different sense from what is presented below) in 
a simulation of electron optical systems. 

§4. Hermite fitting 

We return to one of our main mathematical problems: high-order 
numerical methods are usually very sensitive to the noise in the data. In 
this section we address one of the manifestations of this difficulty, namely 
the well-known instability of Hermite interpolation. We analyze (mostly 
following [72, 7 4]) the robustness and accuracy of the interpolation and 
"fitting" operators in the process of acquisition of high order data. 

The most straightforward solution to the problem of reconstructing 
high-order derivatives of a function from its values (or from its jets of a 
lower order) on a certain grid is to interpolate these point-wise data with 
polynomials of the required degree. However, the interpolation process is 
well known to be highly unstable. Instead we use a "polynomial fitting" 
where the degree of the fitted polynomials is significantly smaller than 
the number of the input parameters. Accordingly, the requirement of the 
precise interpolation is replaced by the requirement of the least square 
fitting. Extending this procedure to the point-wise input data containing 
not only the values of the function, but also the values of some of its 
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derivatives (as our PDE discretization in Section 5 below requires) we 
get the "Hermite fitting". 

While it is classically well known that replacing interpolation by 
fitting improves stability (see [3, 5, 6, 32, 35, 49, 54]), we are not aware 
of any systematic study of the sensitivity of various fitting schemes, 
especially in a setting where the input scheme of a relatively high order 
is fixed while the degree of an approximating polynomial varies. 

In [72, 74] we've performed an initial numerical study of the "stiff­
ness" of Hermite interpolation and fitting operators in some typical situ­
ations. Before we summarize these results, let us stress that our observa­
tions and conjectures are certainly very preliminary. Besides a need for 
additional experiments, there are important theoretical questions that 
have to be answered in order to properly interpret experimental data. 
First of all, this concerns the dependence of the SVD decomposition of 
the Hermite fitting on the choice of the norms in the polynomial and jet 
spaces, as well as the role of geometric scaling of the data. Some of these 
questions have been initially addressed in [7 4, 72], Section 3 (especially, 
Subsection 3.5.3). Below we provide some considerations, showing that 
in Hermit fitting of jet-data of a relatively high order a certain "rigidity" 
appears which reduces the dependence of the SVD decomposition on the 
possible choices. 

We restrict ourselves to the following fitting scheme: the points 
x 1 , ... ,x8 in [-1.5, 1.5] are at equal distance~ from one another, sym­
metrically around 0. At each Xj the input Taylor polynomial (jet) of 
order N is given, forming the input "jet-vector" J:. For each degree 
K ~ s(N + 1) -1 we find a polynomial JK of degree K whose derivatives 
up to order Nat each grid-point provide the least square deviation from 
the input data J:. So JK = G(K,N,s)(f:), and Q(K,N,s) is our Hermite 
fitting operator. In particular, forK= s(N + 1) -1 we get the Hermite 
interpolation operator Q(N,s). 

The following estimate of the accuracy of the Hermite fitting is 
straightforward: let f be a K + 1 times continuously differentiable func­
tion in a neighborhood of the origin, with the K +1-st order derivative 
uniformly bounded by M. Take the input "jet-vector" J: formed by the 
Taylor polynomials of degree N off at the points x 1 , ... ,X8 • Finally, 
let JK = Q(K,N,s)(f:) be the Hermite fitting polynomial of J:. 

Proposition 4.1. At each point Xi and for each j = 0, 1, ... , N we 
have 

IJ(jl(xi)- (JK)(jl(xi)l ~ CMhK+l-j_ 

Proof. We consider the Taylor polynomial TK(x) of degree K of 
f at the origin. By Taylor remainder formula we find that a quadratic 
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deviation of TK from Jf is bounded by C1sMhK+l. But the deviation 
of 1K from 1:' is even smaller since 1K is the least square deviation 
polynomial. Therefore, the same bound is valid for the deviation of 
JK from 1{' at each of the points Xi. Taking into account the natural 
weighting of the norm by the powers of h we get the required result. 

Q.E.D. 

Exactly in the same way we can prove that a similar bound holds 
not only at the points Xi but anywhere in the considered interval. 

In order to analyze the Hermite interpolation operator G(N,s) we de­
compose the input space into the subspaces of "increasing smoothness". 
Our goal in this decomposition is to describe the stiffness of the Hermite 
fitting, as applied to the jets of different "smoothness". To achieve this 
goal we study a Singular Value Decomposition of the operator G(N,s), 

and we find the corresponding bases of the singular vectors Vi in the 
input space and Ui in the output space. We present below the singular 
values of the Hermite Interpolation operator in some specific examples. 

We fix the Euclidean coefficient-wise norm in the space of polyno­
mials of any degree. The norm in the input space of the jets is also fixed 
to be Euclidean with respect to all the jets coefficients. Here we have a 
certain choice: the norm in the space of polynomials can be chosen in a 
different way. However, what is essential for our applications to PDE's 
discretization in Section 5 below is that the norm of the input jets at 
each point of the grid is the same as the norm of the output polynomial. 
For input jets of a relatively high degree this requirement significantly 
reduces the influence of the choice of the norm on the singular value 
decomposition of the Hermite fitting operator. 

For the degree of the output polynomial comparable with the degrees 
of the input jets (see tables below) we can expect this restriction to make 
the singular values similar to "eigenvalues" (i.e. being "almost invari­
ant"). We have experimentally tested this conclusion in some examples. 
In particular, in [72, 74] we've compared the results in the tables below 
with the results for another norm: instead of the polynomial coefficients 
we use the derivatives (rescaling by the factorial of the index). 

The next table presents the singular values of the Hermite fitting 
operators on the three-point second order input (N =2) for the maximal 
possible degree K = 8 (interpolation), and forK= 7, 6, 5, 4, 3, 2. 
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Degree K-8 K-7 K-6 K -5 K-4 K-3 K-2 
-\1 0.40265 0.40265 0.40265 0.40271 0.40271 0.41342 0.44721 
-\2 0.42268 0.42268 0.42268 0.42268 0.42309 0.42309 0.44721 
-\3 0.60835 0.60835 0.60835 0.60839 0.60839 0.61439 0.63246 

(4.1) -\4 0.70422 0.70422 0.70424 0.70424 0.71265 0.71265 0 
>-s 2.2788 2.2788 2 .. 2788 2.2874 2.2874 0 0 
A6 30.055 30.055 30.122 30.122 0 0 0 
A7 180.12 180.32 180.32 0 0 0 0 
>-s 8963.3 8963.3 0 0 0 0 0 
-\g 1.53E+05 0 0 0 0 0 0 

Notice that the singular values in this table for different K satisfy 
>-.f" I':::J >-.f'. Moreover, for K" > K' the data above exhibit an "inter­
lacing" 

(4.2) 

of the singular values. In [72, 7 4] we prove this fact using the Cauchy 
interlacing theorem. 

The following table presents the singular values of the Hermite fit­
ting to a zero order jets (N = 0) sampled on 15 points, equally spaced 
on the interval [ -1.5, 1.5], for K ::::; 15. 

Degree K -15 K -14 K -12 
,\1 0.240112293 0.240112293 0.240112293 
,\2 0.29155981 0.29155981 0.29155981 
,\3 0.826716928 0.826716928 0.826716928 
-\4 3.188015031 3.188015031 3.188015031 
>-s 17.33801918 17.33801918 17.33801918 
,\6 121.5379498 121.5379498 121.5379498 
-\7 1055.429813 1055.429813 1055.429814 
>-s 11099.79737 11099.79737 11099.79737 
Ag 139622.9286 139622.9286 139623.0265 

AlQ 20904 70.162 20904 71.036 20904 71.036 
All 37341260.67 37341270.12 37370046.12 
>-12 804613192.4 805092644.3 805092644.3 
-\13 21435670947 21445551410 0 
-\14 7.44422E+11 0 0 

(4.3) >-1s 3.86761E+13 0 0 
Degree K-11 K-10 K -9 

-\1 0.240112293 0.240112293 0.240112293 
,\2 0.29155981 0.29155981 0.29155981 
>-a 0.826716928 0.826716928 0.826716928 
-\4 3.188015031 3.188015031 3.188015074 
>-s 17.33801918 17.33801925 17.33801925 
,\6 121.53795 121.53795 121.5384342 
-\7 1055.429814 1055.432069 1055.432069 
>-s 11099.81073 11099.81073 11119.1032 
-\g 139623.0265 139805.963 139805.963 

AlQ 2092562.983 2092562.983 0 
All 37370046.12 0 0 
>-12 0 0 0 
-\13 0 0 0 
-\14 0 0 0 
>-1s 0 0 0 

In the next table we take three sampling points at equal distances. 
However, in each column in this table the input is different: the order N 
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of the input jets at the three sampling points is shown over each column 
of the table. This order is chosen in such a way that in each column 
the degree of the fitting polynomial plus one is equal to the number of 
the degrees of freedom of the input. So here we always have an exact 
Hermite interpolation. 

Degree K 21, N- 6 K -18,N- 5 K -15,N- 4 

>-t 0.360437645 0.36472918 0.372406663 
A2 0.363562265 0.370581455 0.379292565 
>-a 0.415647949 0 0 431788249 0.465462266 
A4 0.427276416 0.458292554 0.487276202 
>-s 0.504989836 0.526836232 0.619940883 
A6 0.521312988 0.616384875 0.705307924 
A7 0.622538724 0.706851955 2.272098427 

>-a o. 705455456 2.271932616 29.72196737 
.>.g 2.271904922 29.71456651 179.6045381 

>-10 29.71383269 179.5979873 8811.484996 
All 179 0 5969907 8806.90793 142455.3704 
>-12 8806.142731 142244.144 17859407.86 
>-ta 142193.1041 17639671.94 254365662.9 
At4 17619862.71 253344356.1 53631680658 
>-ts 253274918.6 53145607750 1.65943E+12 
At6 52860538116 1.57545E+12 0 
At7 1.55338E+ 12 5.59641E+14 0 
>-ts 5.39069E+14 1.21428E+16 0 
.>.19 1.20845E+16 0 0 
A20 5.80461E+18 0 0 

(4.4) .>.21 2.59599E+20 0 0 
Degree K -12,N- 3 K -9,N- 2 K- 6,N- 1 

>-t 0.38203034 0.402650826 0.4315 
>-2 0.397468701 0.422678113 0.5127 
>-a 0.495501188 0.608347055 0.7552 
A4 0.594626284 0 0 704219496 2.3085 
>-s 0. 7144424 77 2.278831052 30.9946 
A6 2.273008659 30.0548157 180.7111 
A7 29.74871692 180.1176427 0 
>-a 179.6340419 8963.263908 0 
.>.g 8856.993934 153126.6911 0 

AlQ 144423.3667 0 0 
All 18498528.84 0 0 
>-12 255469801.1 0 0 
>-ta 0 0 0 
At4 0 0 0 
>-ts 0 0 0 
At6 0 0 0 
Al7 0 0 0 
>-ts 0 0 0 
.>.19 0 0 0 
A20 0 0 0 
>-21 0 0 0 

These examples suggest that roughly till the index N + 2 the singular 
values of the Hermite interpolation operator Q(N,s) are of "order of one" 
Then there is a relatively narrow interval of indices i where the growth 
of Ai looks exponential, but with a moderate ratio. Finally the ratio of 
the exponential growth of Ai jumps up. 

As the tables (4.1) and (4.3) show, the same pattern holds also for 
the largest singular value (the norm) of the Hermite fitting operator, as 
the input is fixed while the degree of the fitting polynomial varies. 
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In [72, 74] we provide more examples of various Hermite interpola­
tion schemes. In all these examples the above observation holds. 

It is relatively easy to explain the first part of the above pattern in 
singular values: the polynomial of an order K :::; N can be reconstructed· 
from neighboring jets of the same or higher order just ba an "averaging". 
Let us stress once more that this "normalization" is provided by our 
choice of the same norm for the input jets and for the output polynomial. 

However, it is exactly the "intermediate range" where we can hope 
to get a high-order fitting, still preserving a low noise sensitivity. So it 
would be important to find a mathematical explanation of the behavior 
of Ai in the intermediate and the final ranges. We hope that the following 
simple results (which overlap with some classical and modern results 
in the same direction - see [4, 5, 6, 21, 54]) provide at least a partial 
explanation: 

Theorem 4.1. Let x1, ... ,x8 be a uniform grid in [-1,1]. Let 
Y = (y1, ... , Ys), with 2".:j=1 yJ = 1 be a zero order interpolating data. 

Let Pt(x) be the polynomial of degree d:::; s providing the least square de-

viation from Y. Then M = max[-l,lJIPt(x)l does not exceed 2Td(~~!) 
where Td(x) = cos(d arccos(x)) is the d-th Chebyshev polynomial. In 

particular, M :::; 2 exp(5dJI). 

Proof. Since 2".:j=1 yJ = 1 we have IYj I :::; 1 for each j. The square 
deviation of Y from the identical zero polynomial is equal to 2".:j=1 yJ = 

1. The polynomial Pt(x) provides the least square deviation from Y 
andhence2".:j=1(yj-Pt(xj)?:::; 1. We conclude that IYj-Pt(xj)l:::; 1 
for each j, and hence IPt(xj)l:::; 2 for each j. Q.E.D. 

Now we use the following simple lemma (compare [4, 5, 21, 29, 55]): 

Lemma 4.1. Let P(x) be a polynomial of degree d. If IP(xj)l :::; 
. 2+4 

1, J = 1, ... ,s then M = max[-l,lJIP(x)l does not exceed Td( 2 _4_) 
where Td(x) = cos(d arccos(x)) is the d-th Chebyshev polynomial. In 

particular, M :::; exp(5dJI). 

Proof. Let for a subset A of [-1, 1] M(E,A) denote the minimal 
number of E-intervals covering A. Let~ C [-1, 1] be the set on which 
IP(x)l :::; 1. ~ consists of at most ~ intervals. Hence we have the 
following bound for M ( E, ~): 

(4.5) 
1 d 

M(E, ~):::; ~J.L(~) + 2' 



190 Y. Yomdin and G. Zahavi 

where J.L(A) is the Lebesgue measure of A. Now by assumption the set 
A contains the uniform grid {xj}, j = 1, ... , sand hence M(~, A)~ s. 
We conclude that 

(4.6) 
d 

f-L = J.L(A) ~ 2- - . 
s 

Now we use the following Remez inequality (see [55, 29]): 

Let P(x) be a polynomial of degree d. Then 

(4.7) 
4- J.L(A) 

max[-l,lJIP(x)l::; Td( J.L(A) ), 

where A c [-1, 1] is the set in [-1, 1] on which IP(x)l ::; 1. Td(x) = 
cos(d arccos(x)) is the d-th Chebyshev polynomial. 

As a corollary we get (see [29], Corollary 3.2): 

(4.8) max[-l,l]IP(x)l::; exp(5dJ2- J.L(A)). 

Now combining (4.12) and (4.13) with (4.11) we obtain 

(4.9) 
2+4 

M = max[-l,lJIP(x)l::; Td( 2 _ ~). 
s 

In particular, 

(4.10) M::; exp(5d/¥). 

This completes the proof of the lemma and of Theorem 4.1. Q.E.D. 

Corollary 1. The maximum norm of the Hermite fitting of order 

d on the uniform grid of s points in [-1, 1] does not exceed 2Td(~~1) ::; 

2exp(5d~). • 

Notice that ford fixed and s growing the both bounds in Theorem 
4.1 and Corollary 1 above tend to 2. This justifies to some extent our 
expectation that the robustness of the Hermite fitting of order d on the 
uniform grid of s points in [-1, 1] increases with s. 

Because of the relation between the norm of the Hermite fitting of 
different orders, and the corresponding singular values of the Hermite 
interpolation, this corollary provides also a partial explanation to the 
accelerating growth of the singular values observed above. 

In a similar way we can prove the following extension of Theorem 
4.1: 
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Theorem 4.2. Let x1 , ... ,xs be a uniform grid in [-1, 1}. Let 

J = (j1, ... ,js), with I:7=1 11Jzll 2 = 1 be a k-th order interpolating data 
(the scalar product on the jet space being coordinate-wise). Let PJ(x) 
be the polynomial of degree d, k :::; d:::; (k + l)s- 1, providing the least 
square deviation from J. Then M = max(-l,lJIPJ(x)l does not exceed 

3 + 2( ± )kTd(~~~ ). In particular, M :::; 3 + 2(± )k exp(5d~). 

Proof. Since I:7=1 lljzll 2 = 1 we have 11Jzll 2 :::; 1 for each j. The 
square deviation of J from the identical zero polynomial is equal to 1 and 
hence the square deviation of PJ ( x) from J does not exceed 1. Exactly 
as in the proof of Theorem 3.8.1 we conclude that the absolute value of 
each of the derivatives up to order k of PJ(xz), l = 1, ... , s does not 
exceed 2. 

Now we apply Lemma 4.1 to the k-th derivative (Pj)(k) (x) of PJ(x). 
We conclude that the maximum of its absolute value on [ -1, 1] does not 

exceed A= 2Td(~~! ). Next, the k -1-st derivative of PJ(x) is bounded 

by 2 at each grid-p~int x1, ... , X 8 , and therefore its maximum on [-1, 1] 
is at most 2 + ±A. For the maximum of the k - 2-d derivative we get a 
bound 2 + ± (2 +±A) = 2 + 2± + ( ± )2 A. Continuing in the same way (and 
assuming d,s;::: 3) we finally get M = max[-l,l]IPJ(x)l:::; 3 + (i)kA. 
This completes the proof of Theorem 4.2. Q.E.D. 

Assuming that our bounds are reasonably sharp, the immediate con­
clusion would be that passing to the k-th order jet data improves the 
fitting stability by a factor ( ± )k, independently of d. 

Remark. The result of Lemma 4.1 above has been extended to 
arbitrary discrete subsets in higher dimension in [69], where a general 
"discrete Remez inequality" is proved. We plan to present the corre­
sponding generalizations of the above results on Hermite fitting to higher 
dimensions and to arbitrary discrete "sampling subsets" in [72]. 

The results and the numerical observations in [71, 74] open a number 
of seemingly interesting mathematical questions: 

1. Do the bounds of Theorem 4.1 (Theorem 4.2) accurately reflect 
the true behavior of the singular values? Our experimental data provide 
a certain initial support for the approach of Theorems 4.1 and 4.2. 

2. In the process of a Singular Value Decomposition we produce a 
sequence of orthogonal piecewise-polynomials Vi and a sequence of or­
thogonal polynomials ui (orthogonality- with respect to the coordinate­
wise scalar product). What are their properties and their relation to the 
classical orthogonal polynomials? 
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3. Is it true that the "smoothness" of the piecewise-polynomials 
Vi (in the Whitney sense - see [61]-[65]) is measured by the size of the 
singular value Ai? 

4. One can hope that the estimates above provide an approach to 
the following general problem: 

Assume that we can measure the values of a Ck-function f (with the 
ck -norm of f explicitly bounded) at any required point with a known 
accuracy. What is the optimal strategy to reconstruct a Taylor-net rep­
resentation off and what accuracy of reconstruction can be achieved? 

Assume in addition that we can interpret the measurement errors as 
a random noise. What is the answer in this case? 

Notice that the approach of [69] provides a partial answer to this 
question in terms of the geometry of the sampling set. 

Already at this initial stage the numerical and theoretical results 
above show that if we replace Hermite interpolation by Hermite fitting, 
significantly reducing the degree of the fitting polynomial with respect 
to the maximal possible, the stiffness of the Hermite fitting operator is 
reduced in many orders of magnitude. 

§5. Jet discretization of PDE's 

In this section we explain, following [71, 73, 74] how to write down 
a system of ordinary differential equations which describes the evolution 
of the Taylor-net data for the solution of an evolution PDE. For other 
discretization methods for solving different types of PDE's, based on 
Taylor-nets, and for a general background see [14, 40, 41, 42, 66], [7]­
[12], [33, 36], [50]-[52]. 

Assuming that the equation and its solutions are sufficiently smooth, 
we reduce the initial PDE to a relatively compact system of ordinary 
differential equations. The unknowns of this system are the (time de­
pending) Taylor coefficients of the solution with respect to the space 
variable, up to a certain fixed order N, computed at a certain fixed 
space-grid x 1 , ••. , X 8 • More accurately, we represent the solution as: 

(5.1) 

N . 
_ "'ui(t) . 

u(x,t)lx=x, ~Pi(x,t)- L.t-.-1 (x-xiF· 
j=O J. 

The derivatives u{ (t), i = 1, ... , s, j = 0, ... , N, of the Tay­
lor polynomials Pi(x, t), form the unknowns of the constructed system 
of the ordinary differential equations. The initial values u{ (0), i = 
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1, ... , s, j = 0, ... , Nat the moment t = 0 are provided by the Taylor 
coefficients at Xi of the initial data u(x, 0) = '!j;(x) for the original PDE. 

The following general example illustrates the construction: let us 
assume that the original evolution PDE has the form Ut = F(u, ux)· 
Then we get 

(5.2) d 0 
dtui F(u, ux) = F(u?, u}), 

d 1 
dt ui 

d a a a 
dt ax u = ax at u 

(5.3} :xF(u, Ux) = Fu(u?, u})u} + Fu.,(u?, u})u~, 
etc. Continuing this way, we express the time derivatives of each of the 
unknown Taylor coefficients u{ (t), i = 1, ... , s, j = 0, ... , N through 
the algebraic expressions of these coefficients. 

The problem is that in the expression for the time derivative of the 
last Taylor coefficients uf' (t), i = 1, ... , s, the next derivative of u of 
order N + 1 with respect to x appears. Such derivatives are not the part 
of our unknowns, so to "close up" the ODE system under construction, 
we have to express them through the derivatives up to the order N at the 
neighboring points. We do this via the Hermite fitting. Let us consider 
two examples. 

5.1. First order wave equation Ut = Ux 

We start with a toy model, of the first order wave equation 

(5.4) 

We assume that the solution u E CP([O, 21r] x [0, T]) is p times 
smooth, p = N + l, and we consider periodic boundary conditions. 

The derivatives of u satisfy the equation 

(5.5) d au 
dtax 

a au 
ax at 

Similarly, in general we obtain 

(5.6) 
ai+lu 
axi+l' j = 1, 2, ... 'N 
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As it was explained above, the derivatives uf (t), i = 1, ... , s, j = 
0, ... , N, of the Taylor polynomials Pi(x) of the solution u(x, t) with 
respect to x at the grid-points x1, ... , X 8 form the unknowns of the 
constructed system of the ordinary differential equations. According to 
the above calculation, this system takes a very simple form: 

(5.7) d j- j+1 dt ui - ui , i = 1, ... , s, j = 0, ... , N. 

Any solution u of (5.13) satisfies these equations exactly, but the 
resulting system is not closed: the time derivative of uf is u[V+1 , which 
is not a part of our unknowns. Therefore we replace uN+l with an 
approximation obtained as a result of an interpolation of the neighboring 
derivatives up to order N. The new system obtained in this way is closed 
and thus solvable in the usual sense. 

The interpolation scheme can be chosen in various ways. In [73, 
74, 71] numerical experiments have been conducted for a three point 
Hermite interpolation, with only two nearest neighbor grid-points used 
(here h denotes the step-size of the grid): 

u(N+l)(x t) ~ - 105 u(N-2)(x- h t) + - 33 u(N-1)(x- h t) 
' 8h3 ' 8h2 ' 

+ - 3 u(N)(x- h t) + - 18 u(N-1)(x t) + 105 u(N-2)(x + h t) 
8h ' h2 ' 8h3 ' 

(5.8) + - 33 u(N-1)(x + h t) + ~u(N)(x + h t). 
8h2 ' . 8h ' 

In matrix language this is expressed through a multiplication of the 
coordinates of the three neighboring jets by the matrix D defined as 
follows: 

(5.9) 
0 
0 
105 -w 

0 
0 
33 -w 

0 1 
0 0 
0 18 

-h'I 

0 
1 
0 

0 
0 

105 
8fi3 

0 
0 
33 

-8h2 i) 
The right-hand side matrix of the resulting system of ODE's (see 

[73, 74, 71]) is block-diagonal, with the main blocks corresponding to 
the grid-points Xi· Each block has ones over the main diagonal, and the 
last 1 is replaced by the matrix D. 

According to Theorem 5.1 below, the discretization error for N = 2 
is of order h6 . Numerical experiments in [74, 71] support this expected 
accuracy. Notice that in each specific case the eigenvalues of the right­
hand side matrix were purely imaginary. However, the general question 
of stability remains open. 
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5.2. Heat equation Ut = Uxx 

We consider this equation on the segment x E [0, 27r] with periodic 
boundary conditions. As above, we have 

(5.10) 
d ou 
dt ox 

Similarly, in general we obtain 

0 ou 
ox ot 

(5.11) 
d oj u oH2u 
dt oxj - oxH2 ' j = 1' 2' . · . 'N 

So at each grid-point we have to express through the neighbors two 
derivatives of u - of orders N + 1 and N + 2. The corresponding matrix 
of the Hermite interpolation takes the form 

(5.12) 

n~( 0 0 0 0 0 1 0 0 1) 105 33 3 0 18 0 105 33 -411"3 -w -~h -h2 ~3 -&Jtj 
144 0 36 

h4 2h3 2h2 -v -h2 h4 -w 

Also here the right-hand side matrix of the resulting system of ODE's 
is block-diagonal, with the main blocks corresponding to the grid-points 
Xi. Each block has ones shifted twice over the main diagonal, and the 
last two of them are replaced by the matrix D. 

According to Theorem 5.1 below, the discretization error for N = 2 
is of order h5 • Numerical experiments in [74, 72] support this expected 
accuracy. Notice that in each specific case the eigenvalues of the right­
hand side matrix had negative real part. However, the general question 
of stability also here remains open. 

In [73, 7 4, 72] some additional cases have been analyzed, including 
some integro-differential equations, the wave equation, and the (non­
linear) Burgers equation. The last case we present below. 

5.3. Burgers equation Ut = uux 

The suggested approach works also for non-linear equations. In 
this section we consider, following [7 4, 72], an example of the Burgers 
equation in a smooth region, away of the shock-waves. A much more 
challenging case of a shock-wave neighborhood will be described in Sec­
tion 6 below (where we also touch shortly the most difficult part: a birth 
of the shock-wave). 

As above, we have 
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(5.13) 
dau aau a 2 
dt ax = ax at =ax (uux) = (ux) + UUxx' 

and similarly 

(5.14) 
d a2u a2 au a2 a 2 
dt ax2 = ax2 at = ax2 (uux) = ax [(ux) + UUxx] = 3UxUxx + UUxxx . 

Therefore, our system (for the jet order N = 2) takes the form 

To get our system in closed form it remains to replace the term u~ by 
a combination of the derivatives up to the order 2 at the neighboring 
points. In particular, if we use, as above, the three point Hermite inter­
polation, we have 

(5.16) 

As above, the discretization error (until the solution remains smooth!) is 
of order h6 • Numerical experiments in [74, 72] confirm this estimate and 
a general stability of the scheme. However, in [7 4, 72] we did not discuss 
how to adapt our method to the formation and tracking of singularities. 
An initial step in this direction is presented in Section 6 below. 

5.4. Discretization error 
Let us return to a Taylor-net discretization of a general PDE. In 

general, the evolution equations for the Taylor coefficients in Taylor­
net representation of the unknown function u are obtained, as above, 
algebraically by the "Jet extension" of the original equation, combined 
with the Hermite fitting. The last is used to express the derivatives of the 
orders higher that N, which naturally arise in the Jet extension, through 
the Taylor coefficients up to order N at the neighboring grid-points. 

One of the main features of the proposed discretization scheme is 
that its order of accuracy (expressed as the power of the grid size h) 
may be significantly higher than the order N of the Taylor polynomials 
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explicitly used. Such a high order of accuracy is achieved via the use of 
the high order Hermite fitting with the neighboring grid-points. (This 
is true also for other discretization schemes based on Taylor-nets - see 
[14, 66]. The reason is that having at each grid-point a jet of a relatively 
high degree, we possess even over a small neighbor stencil enough degrees 
of freedom to cancel low order terms in the discretization error). 

In [7 4, 71] we study the discretization error of the scheme discussed 
in the present paper, and prove the following result: 

Theorem 5.1. Let in the equation Ut = F(x, u, Ux, ... , ~:;:) the 
function F be q times continuously differentiable with respect to all its 
variables, q = N + n + K + 1. Then the N-th order Taylor discretization 
scheme as above, with the Hermite fitting of order K ~ l(N + 1)- 1 at 
the stencil of l neighbors, has a discretization error of order hr, where 
h is the step-size of the scheme and r = K - N - n + 1. In particular, 
for the equations Ut = Ux and Ut = uux and for N = 2, l = 3, K = 8, 
we get r = 6 while for the equation Ut = Uxx the order r is equal to 5. 

In many situations we would like to sacrifice some of the accuracy 
of the scheme in order to make it more robust. To achieve this goal, we 
choose, using the results and the tables of Section 4 above, the neighbor 
stencil and the fitting order in such a way that the norm of our Hermite 
fitting operator is relatively small. Notice that only this operator brings 
into the constructed system of ODE's the negative powers of the grid­
step h,as well as the "large singular values" of the interpolation. 

In particular, in most of our computations in [74, 71] we use jets of 
order 2, so N = 2, and a full order (K=8) three points Hermite inter­
polation. Consider now, for example, the equation Ut = Ux. According 
to Theorem 5.1 the discretization error is of order h6 . If we replace the 
Hermite interpolation by a fitting of degree, say, K = 6, we still get 
the discretization error of order h4 , which is better than h3 provided by 
second-order jets in direct computations. On the other hand, the table 
(4.6) in Section 4 shows that we have reduced the norm of the Fitting 
matrix (and hence of the right hand side matrix in the resulting ODE) 
in roughly two orders of magnitude. 

As far as the stability of our discretization scheme is concerned, in all 
the specific examples of its numerical implementation for linear PDE's 
considered in [7 4, 71] the following fact was confirmed numerically: the 
eigenvalues of the right hand side matrix have negative real parts. We 
could not prove this property in general, so the stability of our scheme 
remains an important open question. 

We hope that a proper development of the results of Sections 4 on 
stiffness of the Hermite fitting, and of Section 5 on jet-discretization of 
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evolution PDE's will allow one to construct robust and noise-insensitive 
high accuracy numerical schemes. 

§6. Burgers equation: near ashock-wave 

In this section we prove some initial results concerning a Model-net 
discretization of the Burgers equation near a shock-wave. Our purpose 
is just to demonstrate how a Model-net approach leads to a natural 
high-order numerical scheme of a high theoretical accuracy. We do not 
try here to compare this scheme with known methods, so we give only 
a few references from a huge literature on the subject. 

For the structure of the shock-waves and a general overview of com­
putational approaches and problems see (46, 47, 48]. For a survey of ef­
ficient modern computational methods see [57], and for a more detailed 
presentation see [53, 45] and references therein. A detailed treatment of 
shock-waves from the point of view of Singularity Theory can be found in 
[20] (see also [13]). The approach presented below can be also considered 
as a form of the "tracking method". 

Let us start with a well-developed shock-wave: the most challenging 
case of a formation of singularity we shall shortly discuss later. 

In this case the solution u(x, t) is a piecewise-smooth function. It 
has jumps at the points Zj(t), j = 1, ... , q, which are just the positions of 
each of the shock-waves at the moment t, and the solution preserves the 
smoothness of the initial data between the jumps ([46]). The evolution 
of u(x, t) in time is governed by the usual equation Ut = uux at smooth 
points, while each jump point z(t) satisfies 

(6.1) 

Here u_(z, t) and u+(z, t) denote the limit values of u from the left and 
from the right at z, respectively. 

Accordingly, we use a Model-net representation MNR(u(x, t)) of the 
solution u(x, t) (along the lines presented in Section 2). In this special 
case the MNR(u(x,t)) comprises the coordinates Zj(t), j = 1, ... ,q of 
the jump-points in [0, 1], a fixed grid Xi, i = 1, ... , s in (0, 1], and the 
collection of Taylor polynomials 

(6.2) 
N . 
~ u~(t) . 

u(x, t) :;::j Pi(x, t) = LJ -'-.1-(x- xi)1 
j=O J. 
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representing the solution u(x, t) at each of the regular grid-points Xi 

which are not the nearest neighbors of the jump-pints. At each singular 
grid-poirit Xt (which is the nearest neighbors of the jump-pint Zm(t)) we 
keep a somewhat more complicated singular local model. Each of these 
singular 'models comprises the coordinate zm(t) of its jump-point and 
two Taylor polynomials 

N . 
"uf_(t) . 

u(x, t)_ ~ Pt-(x, t) = L -.1-(x- x1)1 , 
j=O J. 

(6.3) 

N . 
""uf+(t) . 

u(x, t)+ ~ Pz+(x, t) = L -.1-(x- x1)1 . 
j=O J. 

representing the values of u(x, t) to the left and to the right of the jump­
point Zm· 

Now the unknowns of the constructed system of the ordinary differ­
ential eqluations are: 

1. 'l!'he derivatives u{ (t), j = 0, ... , N, of the Taylor polynomials 
Pi(x, t) in (6.2) at the regular grid-points Xi. 

2. The derivatives u{±(t), j = 0, ... , N, of the Taylor polynomials 
Pl±(x, t) in (6.3) at the singulargrid-points Xt. 

3. The coordinates Zj(t), j = 1, ... , q of the jump-points in [0, 1]. 

The system is constructed as follows: 

1. For regular points Xi it is the same as in Section 5 above. In 
particular, for N=2 and the three points central Hermite interpolation 
we get 

with the term uy replaced by 

(6.5) 

Notice that for the regular point Xi both the points Xi-l and xi+1 belong 
to the same continuity interval of u. 
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2. For singular points x1 the equations (6.4) remains the same for the 
derivatives u{±(t). However, in a singular case the term up_ is replaced 
by the interpolated value HF~(xt)· Here HF~ is a result of the Hermite 
interpolation of the third derivative, taken over a certain stencil of the 
grid-points to the left ofxt. At the point Xt itself the jet P,_(x, t) is used 
in this interpolation. 

Accordingly, the term ut+ is replaced by ·the interpolated value 
HF~(xt), where HF~ is a result of the Hermite interpolation of the 
third derivative, taken over a certain stencil of the grid-points to the 
right of Xt, with the jet Pt+(x, t) used at Xt itself. 

3. Finally, to get the right-hand side of the differential equation for 
the coordinate of the jump-point, we have to express the limit values 
u_ ( Zm, t) and u+ ( Zm, t) of u( x, t) from the left and from the right at 
Zm through the values of the variables u{ and Zm· To achieve this goal, 
we construct the k-degree Hermite interpolation (fitting) polynomials 
H F~ and H F~ of the function u to the left and to the right of Zm. 

For H F~ the interpolation (fitting) is taken over a certain stencil of the 
grid-points to the left of Xt. At the point Xt itself the jet Pt- (x, t) is used 
in this interpolation. For H F~ the interpolation (fitting) is taken over 
a symmetric stencil of the grid-points to the right of Xt. At the point Xt 
itself the jet Pt+(x, t) is used. 

Thus the equation for Zm takes the form 

(6.6) 

Notice that the right hand side of this equation is a polynomial both in 
j d. ui an m Zm· 

6.1. Discretization accuracy 

In this section we prove the following result: 

Theorem 6.1. Consider the Burgers equation Ut = uux near a 
formed shock-wave of its solution. Then the N-th order Taylor-net dis­
cretization scheme as above, with the Hermite fitting of order K ::; 
l(N + 1) - 1 at the stencil of l neighbors for the N + 1-st derivative 
and with the Hermite fitting of order k = K- N- 1 ::; p(N + 1)- 1 
at the stencil of p neighbors (to the left or to the right) for the limit 
values u_ and u+, has a discretization error of order hr, where h is 
the step-size of the scheme and r = K- N. In particular, for N = 2, 
l = 3, K = 8, k = 6, p = 3 we get r = 6. 
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Proof. The equations (6.4) and (6.6) would remain precise, if we 
substituted to the right-hand side the precise values of of the N + 1-
st derivative of u (of u_ and u+, respectively). However, we replace 
these values with their expression through the neighboring points via 
Hermite Fitting. According to Proposition 4.1 the maximal error in this 
computation for theN+ 1-st derivative of u is of order hr. Now the value 
of k = r- 1 in Theorem 6.1 was chosen to provide the same accuracy 
for the values of u_ and u+. 

The right-hand sides of the equations (6.4) and (6.6) are Lipschitzian 
in their arguments. Hence the overall error in the right hand side of the 
system is of order hr. We've shown that if u is a true solution of the 
Burgers equation then the right hand side of our discretized sistem of 
ODE's differs from the true values of the time derivatives not more than 
to hr. This completes the proof of the theorem. Q.E.D. 

6.2. Birth of a singularity 

Shock-wave appears in a solution of the Burgers equation when the 
characteristics cross one another for the first time. Generically this 
happens at cuspidal points of the envelop of the characteristics (see 
[46, 20]). 

The standard method of characteristic lines for a quasi-linear Burg­
ers equation produces a regular system of ODE's along the character­
istics in the "phase-space". Then the original solution can be recon­
structed via the projection onto the geometric space and a certain dis­
continuous selection of the inverse projection branches, governed by the 
differential equation (6.4). Notice that generically at the birth-point of 
a shock-wave the projection has a Whitney cusp singularity ([20]). 

Our Model-net discretization method can be extended to this situa­
tion as follows: we add a special model describing the evolution at time 
of the solution u(x; t) as we approach the birth-point of a shockwave. 
The parameters of this model are essentially the Taylor coefficients of 
the solution in the phase-space. Since the corresponding equations in 
the phase-space are regular, a simple polynomial system of ODE's for 
these Taylor coefficients can be produced in the same way as above. 
The solution u(x, t) itself is given then by an explicit analytic expres­
sion (involving solutions of third degree polynomial equations). Finally, 
the evolution equation for the shock position is obtained from equation 
(6.6) by substituting the appropriate expressions for u_ and u+. We 
plan to provide a more detailed description as well as simulation results 
separately. 
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§7. More on Model-nets 

Let us mention very shortly some other mathematical problems re­
lated to applications of Model-nets in computations. 

7.1. Model-net data acquisition from measurements 

The Model-net representation contains "geometric parameters" of 
the local models (their singular skeleton - see Section 2 above). These 
parameters enter the data in a non-linear way. The simplest example 
is provided by piecewise smooth functions, like the solutions of Burgers 
equations considered above. Nonlinear parameters here are the coordi­
nates of the jump points. This fact leads to a challenging mathematical 
problem of a non-linear reconstruction of the data from measurements, 
which turns out to be closely related to Complex Analysis, Moment The­
ory and Semi-algebraic Geometry. See [57, 22, 59, 28, 56] and references 
therein for discussion of various approaches to this problem. Some new 
connections of this problem with Fuchsian differential equations, as well 
as with Pade approximations and holonomic combinatorial systems were 
recently found in [1, 2, 38, 39]. 

7.2. Some implementations of Model-nets 

One of the most important practical problems related to applica­
tion of Model-nets concerns representation and processing of digital im­
ages. Such a representation has been suggested in [17, 26]. See also 
[23] and references therein, where a general analysis of the performance 
of edges-based methods in images representation is given, as well as 
[37]. However, in general the "geometric" methods, as for today, suf­
fer from an inability to achieve a full visual quality for high resolution 
photo-realistic images of the real worlds. In fact, the mere possibility 
of a faithful capturing such images with geometric models presents one 
of important open problems in Image Processing, sometimes called "the 
vectorization problem". 

Let us express our strong belief that a full visual quality Model­
net representation for high resolution photo-realistic images of the real 
worlds is possible. As achieved, it promises to bring a major advance 
in image compression and capturing, in particular, via the approach of 
[2, 28, 38, 39, 22, 56, 59] and of the present paper. 

Another implemented application of Model-nets concerns the mo­
tion planning problem in Robotics. It is presented in [24, 25, 27]. The 
Model-nets are used here to compactly represent and process the free 
configuration space of the moving system. We expect that the approach 
of the present paper can be combined with the approach of [24, 25, 27] 
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providing, in particular, a framework for an efficient dynamical motion 
planning. 
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