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Singularities and self-similarity in gravitational 
collapse 

Tomohiro Harada 

Abstract. 

Einstein's field equations in general relativity admit a variety of so­
lutions with spacetime singularities. Numerical relativity has recently 
revealed the properties of somewhat generic spacetime singularities. It 
has been found that in a variety of systems self-similar solutions can de­
scribe asymptotic or intermediate behaviour of more general solutions 
in an approach to singularities. The typical example is the convergence 
to an attractor self-similar solution in gravitational collapse. This is 
closely related to the cosmic censorship violation in the spherically 
symmetric collapse of a perfect fluid. The self-similar solution also 
plays an important role in critical phenomena in gravitational collapse. 
The critical phenomena are understood as the intermediate behaviour 
around a critical self-similar solution. We see that the convergence and 
critical phenomena are understood in a unified manner in terms of at­
tractors of codimension zero and one, respectively, in renormalisation 
group flow. 

§1. The framework of general relativity 

The essential assumption of general relativity is that the spacetime 
is given by a curved manifold with a metric ds2 = gabdxa dxb of the 
Lorentzian signature. gab denotes the inverse of gab· The curvature of 
the spacetime is given by the Riemann tensor Rabcd· The metric lifts 
and lowers the tensor indices. A vector is timelike, spacelike and null if 
vava < 0, vava > 0 and vava = 0, respectively. A hypersurface is called 
timelike, spacelike and null, if its normal vector is spacelike, timelike 
and null, respectively. We use the abstract index notation [36] in this 
article. 

The field equation for the metric is given by Einstein's equations 

(1) 
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where Rab = Rcacb is the Ricci tensor, R = Raa is the scalar curvature 
and Tab is the stress-energy tensor of matter fields. We adopt the units 
in which G = c = 1. Einstein's equation was proposed so that it has the 
limit to Newtonian gravity in a weak-field and slow-motion regime. The 
conservation law 

(2) 

follows from the Bianchi identity, where \7 b denotes the covariant de­
rivative associated with 9ab· See [36, 18] for more complete description 
about the formulation of general relativity. 

Because of the Lorentzian signature of the metric, the spacetime can 
admit a time function t and then "3+ 1" decomposition, i.e. foliation 
with spacelike hypersurfaces labelled by t. This is called time foliation 
or time slicing of the spacetime and this enables us to regard Einstein's 
equations as the combination of the evolution and constraint equations 
for the induced metric and the extrinsic curvature on the spacelike hy­
persurface. If the spacetime admits a timelike Killing vector, we can 
choose t so that the induced metric does not depend on t. Such a space­
time is called stationary. 

General relativity is a self-consistent theory of gravity but not writ­
ten in a completely closed form. We need to specify the physics of matter 
fields by giving the action or the stress-energy tensors of matter fields, 
which provide the source term on the right-hand side of Einstein's equa­
tions. Given the action of matter fields Sm, the stress-energy tensor is 
defined as a functional derivative in the following: 

2 oSm 
(3) Tab= r=-;:;-s: -, 

V -g ugab 

where g denotes the determinant of 9ab· 
The simplest source term is vacuum, i.e. Tab = 0. If Tab = -A gab 

for a constant A, this is called a cosmological constant. A perfect fluid 
is often used, which is given by 

(4) 

where ua is the four-velocity of the fluid element, satisfying uaua = -1. 
This provides a very good approximation for gases, liquids and solids in 
many circumstances. The equation which gives p is called the equation 
of state. If p = 0, the perfect fluid is called a dust. If p = p/3, it is 
called a radiation fluid. Another common example is a scalar field, for 
which the stress-energy tensor is given by 

(5) 
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where V(¢) is called a potential. If V(¢) = 0, the scalar field is called 
massless. 

The matter fields evolve according to their equations of motion. If 
there is only a single matter component, the conservation law (2) gives 
the equation of motion. The metric is a solution of Einstein's equations 
with the matter fields as the source. Because of the conservation law, the 
distribution of matter fields in space and time cannot be put arbitrarily 
by any "external force" which does not contribute to the stress-energy 
tensor. In other words, we cannot determine the metric simply after 
we assume the distribution of matter fields as we often do to determine 
electric and magnetic fields in electromagnetism. We need to solve the 
metric and matter fields in a consistent manner. Moreover, Einstein's 
equations are highly nonlinear with respect to gab· These properties 
make it very difficult to get exact solutions in dynamical and generic 
situations with or without matter fields. 

To obtain the general properties of spacetimes, it is important to 
know the general properties of matter fields. Among such conditions 
for matter fields are energy conditions, which impose the energy density 
being positive in some sense. The strong energy condition is one of them, 
assuming 

(6) 

for any timelike vector ~a. This implies p + p 2: 0 and p + 3p 2: 0 for a 
perfect fluid. 

Almost all known exact solutions to Einstein's equations have been 
obtained under strong assumption on symmetry. One very powerful 
method to obtain more or less general solutions is to establish numerical 
solutions. This is called numerical relativity in a broad sense. It has 
been achieving great success in recent days, not only in numerical simu­
lations of relativistic astrophysical phenomena but also in the numerical 
experiments of phenomena with nonlinearly strong gravity. 

§2. Singularities in general relativity 

2.1. Examples of spacetime singularities 

There are exact solutions to Einstein's equations which have space­
time singularities. See [36, 18, 7] for the precise notions of causal struc­
ture and spacetime singularities. Here we look at several examples. The 
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first one is the Schwarzschild solution, in which the line element is writ­
ten in the following form: 

This is the unique solution for spherically symmetric vacuum spacetimes. 
This describes a black hole for M > 0. In this case, r = 2M is a coor­
dinate singularity, corresponding to an event horizon, while r = 0 is a 
genuine spacetime singularity, towards which the scalar curvature poly­
nomials tend to diverge. These features are well understood in the Pen­
rose diagram or conformal diagram shown in Fig. 1. In this figure, the 
straight line with forty five degrees denotes a null ray and the physical 
spacetime is compactified through the conformal transformation. Sup­
pose that an observer is in region I and she tries to send a signal to future 
null infinity r+ by emitting a light. We can see that the future-directed 
outgoing null rays earlier than r = 2M, i.e. in region I, can reach y+, 
while those later than r = 2M, i.e. in region II, cannot. r = 0 is de­
scribed by the future and past boundaries of the spacetime, which are 
black hole and white hole singularities, respectively. No future-directed 
null ray can emanate from the black hole singularity. 

i + BH Singularity 
·+ 
I 

I 
WH Singularity 

I 

Fig. 1. The Penrose diagram of the Schwarzschild solution 
forM> 0. 

The second example is the Friedmann solution which describes a 
homogeneous and isotropic universe. The line element is then given by 

(8) 
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where the scale factor a= a(t) obeys the Friedmann equation 

(9) (~) 2 =8np-K, 
a 3 a2 

the matter energy density p obeys the energy conservation law 

(10) p = -3(p + p)~, 
a 

and the dot denotes the derivative with respect to t. K denotes the 
curvature of the t =const spacelike hypersurface. Note that the source 
term for the Friedmann solution must be a perfect fluid. If the strong 
energy condition is satisfied, or p + p 2': 0 and p + 3p 2': 0 in this case, a 
then begins with 0 at t = 0, implying the divergence of scalar curvature 
polynomial where p ___, oo. This is a spacelike singularity and usually 
called big bang singularity or initial singularity. Figure 2 shows the 
evolution of the scale factor and the Penrose diagram. 

0 

·,·,.,_ 
'· I+ 

~ '·,, 
'·,·,, 

'·,, 
' ·o ................................... : .. 1 

t=O Big Bang Singularity 

Fig. 2. The left and right panels show the evolution of the 
scale factor for different spatial curvatures and the 
Penrose diagram of the flat (K = 0) Friedmann solu­
tion, respectively. 

The simplest model for gravitational collapse is the Oppenheimer­
Snyder solution, which describes the complete collapse of a uniform dust 
ball. This is given by matching the interior and exterior solutions. The 
interior solution is the time-reversed Friedmann universe with a dust. 
The exterior is spherically symmetric and vacuum, which is given by the 
Schwarzschild solution. They are matched on a timelike hypersurface, 
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which is generated by timelike radial geodesics. The Penrose diagram 
of the resultant spacetime is shown in Fig. 3, which is given by cutting 
and pasting those of the Friedmann solution and the Schwarzschild solu­
tion. We can see that the singularity is spacelike and hidden behind the 
event horizon from the external observer. There exists an achronal, i.e. 
spacelike or null, three-dimensional hypersurface such that the whole 
spacetime is the domain of dependence of this surface. This surface is 
called the Cauchy surface and the spacetime with the Cauchy surface is 
called globally hyperbolic. 

(11) 

r=O spacelike singularity 

··········)····.::·....... /+ .. · ~' . 
•• ~1-0 ' 

•• ··~~0 ·, • 

•• ···,.0<:' .. · 0/ .. 
I 

r=O I Schwarzschild 

Fig. 3. The Penrose diagram of the Oppenheimer-Snyder 
solution. 

2.2. Physical significance of singularities 

The geodesic deviation equation implies 

along a geodesic congruence, where ~a is the normalised tangent vector, T 

is an affine parameter, and fJ, O"ab and Wab are respectively the expansion, 
shear and twist. This equation is called the Raychaudhuri equation. 
This implies that the timelike geodesic congruence tends to focus, in 
other words, f) tends to diverge to -oo if Rcd~c~d 2: 0 or matter fields 
satisfy the strong energy condition. 

Based on the above properties, it was proved that there is at least 
one incomplete timelike or null geodesic in generic expanding universe 
and generic gravitational collapse [18]. This is called singularity theo­
rems. The geodesic incompleteness implies the existence of spacetime 
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singularities. This is a great achievement in the studies of classical gen­
eral relativity. However, singularity theorems would not reveal the prop­
erties of generic singularities. Then, we see two important conjectures 
on this issue. 

We first consider initial singularities. The Kasner solution is given 
by 

(12) 

where Pll P2 and P3 are three indices, satisfying Pl + P2 + P3 = Pt + 
p~ + p~ = 1 and Pl < 0 < P2 < P3· This solution describes a homo­
geneous and anisotropic vacuum universe and has initial singularity at 
t = 0. The dynamics of the Bianchi type IX homogeneous universe was 
shown to be the successive series of Kasner regimes replacing the indices 
one another [1]. In each regime the solution is well approximated by the 
Kasner solution but the different regime has different indices (p1 ,p2 ,p3 ). 

The transition is oscillatory and chaotic. Subsequently, it was conjec­
tured that the process of approach to initial singularity in the general 
inhomogeneous case tends to be local, oscillatory and chaotic and the 
dynamics of nearby observers decouple from each other near the singu­
larity [2]. This conjecture is called the Belinski-Khalatnikov-Lifshitz 
conjecture and has been recently strongly supported by numerical rela­
tivity experiment of initial singularity with no symmetry [9]. 

As for spacetime singularities formed in gravitational collapse, the 
cosmic censorship conjecture was proposed by Penrose. For the weak 
version, he conjectured, "A system which evolves, according to clas­
sical general relativity with reasonable equations of state, from generic 
non-singular initial data on a suitable Cauchy-hypersurface, does not de­
velop any spacetime singularity which is visible from infinity" [31]. For 
the strong version, he conjectured, "· · · a physically reasonable classical 
spacetime M ought to have the property · · · M is globally hyperbolic 
· · ·" [32]. A singularity which is censored by this conjecture is called 
a naked singularity. In other words, the cosmic censorship claims that 
there is no naked singularity in physical spacetimes. 

Obviously, there are undefined terms in this conjecture, such as rea­
sonable equations of state and generic initial data. The cosmic censor­
ship is a basic assumption to prove theorems on the properties of black 
holes, such as no bifurcation, area increase and the existence of an event 
horizon outside or coinciding to an apparent horizon [18]. The prooffor 
the cosmic censorship is still very limited. On the other hand, it has 
been revealed that there are a lot of solutions of Einstein's equations, 
which satisfy energy conditions and have naked singularities. We do not 
know how to apply known physics at spacetime singularities. Hence, if 
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there is a naked singularity, it would spoil the the predictability for our 
future within classical theory. On the other hand, naked singularities 
may be regarded as a window into physics beyond general relativity [17]. 
See [20, 15, 13] for naked-singular solutions in gravitational collapse and 
possible physical processes in naked singularity formation. 

§3. Gravitational collapse and self-similar solutions 

3.1. Self-similar solutions 

General relativity has no characteristic scale of its own, which im­
plies the existence of self-similar solutions. Self-similar solutions are 
easier to obtain than more general solutions because partial differen­
tial equations reduce to ordinary differential equations for spherically 
symmetric self-similar spacetimes. For self-similar solutions, the energy 
density p, for example, is written as p(t,r) = C 2 f(rjt) with appro­
priate time and radial coordinates t and r. It is found that in some 
spatially homogeneous models self-similar solutions can describe the as­
ymptotic behaviour of more general solutions [35]. It was also con­
jectured that spherically symmetric fluctuations might naturally evolve 
via Einstein's equations from complex initial conditions to a self~similar 
form [4]. See [5] for a recent review of self-similar solutions in general 
relativity. 

More precisely, if a vector field ~ satisfies 

(13) 

where Le, denotes the Lie derivative along~' this is said to be a homo­
thetic Killing vector. If there exists a homothetic Killing vector in a 
spacetime, this spacetime is said to be self-similar or homothetic. For 
a spherically symmetric self-similar spacetime, introducing coordinates 
(t,r) such that 

(14) 

a nondimensional quantity Q satisfies 

(15) Q(t, r) = Q(at, ar), 

for any a> 0 and hence Q = Q(rjt). The line element is then given by 

(16) ds2 = -e'*ldt2 + ew(z)dr2 + r 2S2 (z)(dfP + sin2 ()d¢2 ), 

where z = ln lr / ( -t) I· On the other hand, if there exists a positive .6. 
such that Q(t, r) = Q(en.c.t, en.C.r) holds only for n = 0, ±1, ±2, ···,this 
is called discretely self-similar. 
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To have self-similar spacetimes, matter fields are strongly restricted. 
Both a perfect fluid with the equation of state p = kp and a massless 
scalar field ¢ are still compatible with self-similar spacetimes. For self­
similar spacetimes, Einstein's equations reduce to a set of ordinary dif­
ferential equations. Note that a perfect fluid with p = kp (0 < k < 1) 
has a sound wave at the speed Vk, while a massless scalar field has 
a scalar wave at the speed of light. This property results in a critical 
point of the ordinary differential equations. This is called a sonic point 
for the perfect fluid case. Critical points are classified through dynamical 
systems theory. 

3.2. Global attractor and cosmic censorship 
We focus on spherically symmetric self-similar solutions with a per­

fect fluid with p = kp (0 < k < 1). Because of the critical point in 
the ordinary differential equations, the smoothness condition strongly 
restricts the class of solutions. We assume analytic initial data for self­
similar perfect fluid solutions. Analyticity in the present context means 
the Taylor-series expandability of the energy density with respect to 
the Riemannian normal coordinates. In particular, we impose analyt­
icity both at the centre and at the sonic point. Then we have only a 
discrete set of solutions. They are the flat Friedmann solution, general 
relativistic Larson-Penston (GRLP) solution, general relativistic Hunter 
(a) (GRHA) solution and so on. These are obtained numerically except 
for the flat Friedmann solution. For these self-similar solutions, a set of 
analytic initial data is prepared at t = t0 < 0 and singularity appears at 
t = 0. It is found that, except for the flat Friedmann solution, the singu­
larity appears at t = 0 only at the centre r = 0 and we can analytically 
extend the solution beyond t = 0 to positive t for r > 0. If it is extended, 
the GRLP solution describes the formation of naked singularity from an­
alytic and therefore regular initial data for 0 < k < 0.0105 [28, 30). See 
Fig. 4 for the Penrose diagram of this spacetime. We can see that the 
singularity is not completely hidden behind the event horizon. 

Since the cosmic censorship conjecture censors the generic occur­
rence of naked singularity, it is important whether the naked-singular 
solution is stable or not. The self-similar solution is given representa­
tively as Hss· We assume that a linearly perturbed solution from this is 
given in the following form: 

(17) h(T, z) = Hss(z) + Ee>.r F(z), 

where T = -ln( -t) and ltd « 1. We can get equations for linear pertur­
bation from Einstein's equation. We impose regularity condition both at 
the centre and the sonic point. Then, we can determine the value of>. as 
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Fig. 4. The Penrose diagram of the GRLP solution for 
0 < k < 0.0105. The dashed line denotes the event 
horizon. 

an eigenvalue problem. Then it is found that the GRLP has no unstable 
mode, the GRHA has one unstable mode and other solutions except the 
flat Friedmann have more than one unstable modes [21, 22, 25, 14, 3, 34]. 

Since the sonic point is a one-way membrane for sound waves, there 
can appear a different kind of instability [12]. If we inject density gradi­
ent discontinuity at the sonic point, we can find this discontinuity evolves 
locally at the sonic point. This perturbation mode is called a kink mode. 
The stability against this discontinuity is completely determined by the 
class to which the sonic poirit belongs as a critical point. Then, it is 
found that, against this specific mode, the flat Friedmann solution is 
unstable for 0 < k::::; 1/3 and stable for 1/3 < k::::; 1, the GRLP is stable 
for 0 < k < 0.036 and unstable for 0.036::::; k < 1/3, and the GRHA is 
stable for 0 < k < 0.89 and unstable for 0.89 ::::; k ::::; 1. 

As seen above, we have a self-similar solution which has no unstable 
mode. This is the GRLP solution for 0 < k < 0.036. In fact, a numerical 
relativity experiment strongly suggests that this is a global attractor [14]. 
In the numerical simulation, the collapse ends in singularity formation at 
the centre for a certain subset of initial data sets, where the initial data 
sets were prepared without fine-tuning. Then, the profile of the density 
profile tends to evolve in a self-similar manner and agree very well with 
the GRLP solution. It was confirmed that this convergence to the self­
similar attractor solution does not depend on the detailed choice of the 
initial density profile. The above is the results of numerical simulations 
for 0 < k ::::; 0.03. Although the first numerical simulation was done by 
the simple Misner-Sharp scheme, this result has been recently confirmed 
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by a much more elaborated numerical scheme code with high resolution 
shock capturing, adaptive mesh refinement and innovative treatment of 
vacuum exterior [34]. 

This strongly suggests that the cosmic censorship is violated within 
spherical collapse. This is because the GRLP solution describes naked 
singularity formation for 0 < k < 0.0105. Hence, this example is one 
of the strongest counterexamples against the cosmic censorship. On the 
other hand, the GRLP solution would be unstable against nonspherical 
perturbation for 0 < k < 1/9, as the direct consequence of the linear 
perturbation analysis [10]. There remains much to study in nonspherical 
collapse. 

3.3. Convergence and critical phenomena 

Suppose we have a generic one-parameter family of initial data sets 
parametrised by p. Then, there generally exists a threshold value p* 
for black hole formation. A near-critical collapse first approaches a self­
similar solution and deviates away eventually. This self-similar solution 
that sits at the threshold is called a critical solution. The scaling law 
for the formed black hole for supercritical collapse is given as 

(18) MBH ex: IP- p*l"~, 

for p ~ p*,where ry is called a critical exponent. This is observed only as 
a result of fine-tuning the parameter p to be p ~ p*. The critical solu­
tion and critical exponent do not depend on the prepared one-parameter 
family of initial data sets, which is called universality. The above phe­
nomena were first observed in numerical simulation by Choptuik [6] for 
the spherical collapse of a massless scalar field and are called critical 
phenomena. It is found that critical phenomena are seen in a variety of 
systems, such as a perfect fluid with p = kp [3, 34, 27, 8]. See [11] for 
an extensive review on this subject. 

The critical behaviour turns out to be well understood by renormal­
isation group approach [21]. We consider the space of functions of z. 
We can regard this as the space of initial data sets. There the critical 
solution Hss is characterised as a fixed point in this space with a single 
unstable mode. This means that the fixed point has a stable manifold 
of codimension one. Let .A(> 0) and Frel be the eigenvalue and eigen­
function of this unstable mode. The one-parameter family of initial data 
sets corresponds to a curve in the space of initial data sets and therefore 
generically has intersection with the stable manifold. The intersection is 
actually the initial data for the exact critical collapse, i.e. p = p*, which 
we denote as He. The initial data set for near-critical collapse is then 
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given by 

(19) 

T. Harada 

h(O, z) = Hinit(z) = Hc(z) + EF(z), * E=p-p, 

where Tis chosen to be 0 for the initial time. For large T, the deviation 
from the critical solution is dominated by the unique unstable mode of 
the fixed point. The near-critical solution is then approximated as 

(20) h(T, z) R:; Hss(x) +teAT Fret(z). 

Assuming that the deviation becomes of order unity at the black hole 
formation, we get the scaling law for the black hole mass as 

(21) 

where 'Y = 1/ >.. In fact, for the system of a perfect fluid with p = kp, 
the GRHA solution has a single unstable mode and acts as a critical 
solution. The observed critical exponent in the numerical experiment 
of gravitational collapse agrees very well with the above expected value 
obtained from the eigenvalue analysis. From this point of view, the 
GRLP solution, which has no unstable mode, corresponds to an attractor 
of codimension zero, i.e. a global attractor. 

The critical behaviour itself has an important implication to the 
cosmic censorship. In the limit of p -+ p* from the supercritical regime, 
we will have a black hole of arbitrarily small mass, which can be re­
garded as a naked singularity because the curvature strength near the 
black hole horizon scales as 1/M2 . More directly, it is found that the 
Choptuik critical solution, which is discretely self-similar, actually has 
a naked singularity at the centre [26]. However, it should be noted that 
this naked singularity is realised as a consequence of exact fine-tuning 
and hence nongeneric. This is very different from the naked-singular 
GRLP solution, in which naked singularity generically appears because 
the solution acts as a global attractor. 

Lastly, we briefly review the Newtonian collapse of isothermal gas 
in the present context. This system is much simpler than but still very 
similar to the general relativistic system of a perfect fluid. There are a 
discrete set of spherically symmetric self-similar solutions with analytic 
initial data, including a homogeneous collapse, Larson-Penston solution, 
Hunter (a) solution and so on [23, 33, 19, 37]. The kink mode was also 
studied in this system [29]. The numerical experiment of gravitational 
collapse and the normal mode analysis show that there exist both con­
vergence and critical phenomena [24, 16]. The Larson-Penston solution 
acts as a global attractor solution, while the Hunter (a) solution acts 
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as a critical solution. This example shows that general relativity is not 
very essential to the appearance of critical behaviour. 

Figure 5 schematically shows the renormalisation group flow for this 
system. The global attractor solution (the Larson-Penston solution) has 
no unstable mode, while the critical solution (the Hunter (a) solution) 
has a single unstable mode. A generic initial data set approaches the 
global attractor solution. On the other hand, only if we tune the pa­
rameter near the critical value, the supercritical initial data set first 
approaches the critical solution, deviates away from it and then ap­
proaches the global attractor solution. This interplay of the critical and 
global attractor solutions was first numerically observed in the Newto­
nian collapse of an isothermal gas [16] and subsequently in the general 
relativistic system of a perfect fluid p = kp with sufficiently small posi­
tive k [34]. 

Critical solution Global attractor solution 

Fig. 5. The interplay of convergence and critical phenomena. 

§4. Summary 

The spacetime singularity has been a central issue in general rela­
tivity over several decades. Recently numerical relativity has been de­
veloped and can reveal the properties of generic spacetime singularities. 
We have focused on the role of self-similar solutions in singularity for­
mation in gravitational collapse. The general theory of relativity as 
well as Newtonian gravity admits self-similar solutions. This is due to 
the scale-invariance of the theory. The self-similar solutions are impor­
tant not only because they are dynamical and inhomogeneous solutions 
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easier to obtain but also because they may play important roles in the 
asymptotic behaviour of more general solutions in certain circumstances. 
The numerical relativity experiments of gravitational collapse and the 
semi-analytical studies on self-similar solutions reveal that there is a self­
similar solution which acts as a global attractor in the spherical collapse 
of a perfect fluid and then the cosmic censorship will be violated if it is 
formulated within spherical symmetry. We have also seen that the stabil­
ity analysis of self-similar solutions gives a unified picture of the conver­
gence to an attractor and the critical behaviour in gravitational collapse 
in terms of attractors of codimension zero and one, respectively. The 
interplay of these two behaviours has been recently observed in numer­
ical simulation of gravitational collapse both in Newtonian gravity and 
general relativity. Since both the critical and convergence behaviours 
are not only in general relativity but also in Newtonian gravity, these 
two are considered to be common characteristics of gravitational physics 
and possibly of a wider class of scale-free nonlinear systems. 
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