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Abstract. 

We survey some recent developments in the theory of b-function, 
spectrum, and multiplier ideals together with certain interesting rela
tions among them including the case of arbitrary subvarieties. 

§ Introduction 

It has been known that there are certain interesting relations between b
function, spectrum and multiplier ideals. We give a survey on this topic. 
We first consider the case of hypersurfaces and then arbitrary subvari
eties. We recall the definition of b-function, spectrum and multiplier 
ideals, and explain certain properties together with interesting relations 
among them. We also explain the cases of hyperplane arrangements and 
monomial ideals. 

In Section 1 we recall the definition of b-function in the hypersurface 
case and explain some related topics including the V-filtration of Kashi
wara and Malgrange. In Section 2 we recall the definition of spectrum 
in the hypersurface case and explain some known results mainly due to 
Steenbrink. In Section 3 we recall the definition of multiplier ideals in 
the general case and give an extension theorem generalizing Mustata's 
formula in the case of hyperplane arrangements. In Section 4 we explain 
certain relations among b-function, spectrum and multiplier ideals in the 
hypersurface case. In Section 5 we treat the case of hyperplane arrange
ments. In Section 6 we define the b-function in the general case and 
explain a relation with the multiplier ideals. In Section 7 we define the 
spectrum in the general case and explain a relation with the multiplier 
ideals. In Section 8 we treat the monomial ideal case. 
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In this paper we use the following 

Notation. b1(s) = b-function of j, Rj =roots of bJ( -s), <Yf =min Rj, 

mf,a = multiplicity of a E Rj. Similarly for Rj, mj,a, O:j with bJ(s) 

replaced by bJ(s) := bJ(s)j(s + 1). Rj,x, mf,x,a, <YJ,x are associated to 
the local b-function bj,x(s). R'.r,x = Uyf-xRj,y, a'.r,x = minyf-x{<YJ,y}· 

§1. b-function of a hypersurface 

In this section we recall the definition of b-function in the hypersur
face case and explain some related topics including the V-filtration of 
Kashiwara and Malgrange. 

1.1. Definition. Let X be a complex manifold or a smooth complex 
algebraic variety, and f be a holomorphic or algebraic function on X. 
Let Vx be the sheaf of linear differential operators on X. Set 8i = 8 j OXi 
for local coordinates x1 , ... , Xn. Then 

Vx[sJr c Ox[y][sJr with 8ds = s(8d)r-1 . 

The b-function (i.e. the Bernstein-Sato polynomial) b1(s) is the monic 
polynomial of the smallest degree such that 

where P(x, Ox, s) E Vx[s]. Locally, this coincides with the minimal 
polynomial of the action of s on 

The latter definition is valid in a more general case. 
We define bJ,x(s) replacing Vx with Vx,x· 

1.2. Remark. The b-function or Bernstein-Sato polynomial for a hy
persurface was introduced by Sato [41] and Bernstein [3], see also [4]. 

1.3. Observation. Let if : X ----+ X := X x C denote the graph 
embedding. Set 

(1.3.1) 

This is a free Ox [8t]-module of rank 1 with basis 15(! - t) which is 
identified with the class of f ~t' Here i !+ denotes the direct image as a 
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V-module, and tis the coordinate of C. The action of oi, ton 8(!- t) 
is given by 

(1.3.2) oi8(!- t) = -(od)ot8U- t), t8(!- t) = f8(!- t). 

Then jB is canonically identified with 8(!- t) by settings= -ott, and 
there is a canonical isomorphism as Vx[s]-modules 

(1.3.3) Vx[sJr = Vx[s]8(!- t). 

1.4. V-filtration. We say that Vis a filtration of Kashiwara [25] and 
Malgrange [28] along f if V is exhaustive, separated, and satisfies the 
following conditions for any o: E Q: 

(i) vaM is a coherent Vx[s]-submodule of M. 

(ii) tVa M c va+l M and the equality holds foro:» 0. 

(iii) Ot va M c va-l M. 

(iv) Ott-o: is nilpotent on Gry.M. 

(If V exists, it is unique.) 

1.5. Relation with the b-function. Assume X is affine or Stein and 
relatively compact. Then the multiplicity of a root o: of bJ(s) is given 
by the degree of the minimal polynomial of s - o: on 

(1.5.1) GrY.(Vx[sJr /Vx[sJr+1), 

using the isomorphism (1.3.3) where s = -ott. Note that va M for 
o: E Q and Vx[sJr+i fori EN are 'lattices' of M, i.e. 

(1.5.2) va M c Vx[sJr+i c Vf3 M foro:» i » /3, 

and va M is an analogue of the Deligne extension [11] with eigenvalues 
in [o:, o: + 1). This is quite similar to the case of differential equations of 
one variable with regular singularities. The existence of V is equivalent 
to the existence of b f ( s) locally. 

1.6. Theorem (Kashiwara [24], [25], Malgrange [28]). The filtration V 

exists on M := iJ+M for any holonomic Vx-module M (where V is 
indexed by C). 

1. 7. Remarks. (i) There are lots of ways to show this theorem. In
deed, it is essentially equivalent to the existence of the b-function in a 
generalized sense. In case M is regular, one way is to use a resolution 
of singularities and reduce to the case where the characteristic variety 
CV(M) has normal crossings. 
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(ii) A holonomic V-module M is called quasi-unipotent if the lo
cal monodromies of the local systems HiDR(M)Is, are quasi-unipotent 
where { Si} is a suitable Whitney stratification. This condition is equiva
lent to the condition that the filtration V along f is indexed by Q for any 
locally defined function f. Indeed, the last condition is equivalent to the 
first condition since the last condition using V is stable by subquotients 
so that we can argue by induction on dimSuppM. 

1.8. Relation with vanishing cycle functors. Let p : Xt --> D be 
a 'good' retraction where D = f- 1 (0), and Xt = f- 1 (t) with t -=1- 0 
sufficiently near 0. This is obtained by using an embedded resolution 
of singularities of (X, D), since the existence of such a retraction is well 
known in the normal crossing case and it is enough to compose it with 
the blown-down. Then there are canonical isomorphisms 

(1.8.1) 

where '1/JtCx, 'PtCx are nearby and vanishing cycle sheaves, see [13]. 
Let Fx denote the Milnor fiber around x E D. Then we have 

(1.8.2) 
(Hi'l/JtCx)x = Hi(Fx,C), 

(Hir.ptCx)x = jji(Fx,C). 

For a Vx-module M admitting the V-filtration on M = iJ+M in
dexed by Q, we define Vx-modules 

(1.8.3) 

1.9. Theorem (Kashiwara [25], Malgrange [28]). For a quasi-unipotent 
regular holonomic Vx-module M, we have the canonical isomorphisms 

(1.9.1) 
DRx'l/Jt(M) = 7/JtDRx(M)[-1], 

DRxr.pt(M) = 'PtDRx(M)[-1], 

such that exp( -2ni8tt) on the left-hand side corresponds to the mon
odromy T on the right-hand side. 

1.10. Definition. Set 

Rt ={roots of bt(-s)}, CY.J = minRf, mf,a the multiplicity of 
cr. E Rt· 
(Similarly for Rj,x, etc. for bt,x(s).) 

1.11. Theorem (Kashiwara [23]). We have Rt C Q>o· 

(This is proved by using a resolution of singularities.) 
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1.12. Theorem (Kashiwara [25], Malgrange [28]). We have 

(i) e-21riR1 ={the eigenvalues ofT on HJ(F,x, C) for any x E D,j E Z}. 
(ii) mf,a :S min{i I Ni'l/Jt,>.Cx = 0} with .A= e-21ria. 

Here '¢J,>. = Ker(Ts - .A) c 'l/Jt in the abelian category of perverse 
sheaves [2], and N = logTu with T = T8 Tu the Jordan decomposition. 

1.13. Remark. This is a corollary of the above Theorem (1.9) of 
Kashiwara and Malgrange, and is a generalization of a formula of Mal
grange [27] in the isolated singularity case, see (4.6). 

1.14. Microlocal b-function. Define Rt,iiit,a.Jit with bt(s) replaced 
by the microlocal (or reduced) b-function 

(1.14.1) bt(s) := bt(s)j(s + 1). 

By [38], bt(s) is the monic polynomial of the smallest degree such that 

(1.14.2) 

- 1 where P E Vx[s, 8; ]. 
Put n =dim X. Then 

1.15. Theorem. We have 

(This follows from the filtered duality for 'Pf, see loc. cit.) 

1.16. Remark. Iff is weighted-homogeneous with an isolated singu
larity at the origin, then we have by an unpublished result of Kashiwara 
(mentioned in the end of Introduction of [27]) 

(1.16.1) 

where Et is the set of exponents, see (2.1.2) below. This assertion also 
follows from a result of Malgrange in loc. cit., see Th. (4.6) below. 

Iff= I:ix;, then Ci:t = n/2 and (1.16.1) follows from the above 
Theorem (1.15). 

§2. Spectrum of a hypersurface 

In this section we recall the definition of spectrum in the hypersurface 
case and explain some known results mainly due to Steenbrink. 
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2.1. Spectrum. Let f be a function on a complex manifold or a smooth 
complex algebraic variety X of dimension n. Let Fx denote the Milnor 
fiber around xED= f-1(0). Following Steenbrink [45], [47] we define 
the spectrum 

(2.1.1) 

Sp(f,x) = Sp(D,x) = Ea.>onf,a.ta. where 

nf,a. = Ej ( -1)j-n+l dim Grlj..fii (Fx, C) A with 

p = [n- a], >. = exp( -27ria). 

Here F is the Hodge filtration ([12], [45]) on fii (Fx, e) A := Ker(Ts- >.) 
with T = T8 Tu the Jordan decomposition. We define the exponents by 

(2.1.2) 

2.2. Isolated singularity case. In this case we have by [45] symmetry 
and positivity 

(2.2.1) 

Moreover, by Scherk-Steenbrink [43] and Varchenko [49], we have for 
J,g on X,Y 

(2.2.2) Sp(f + g, (x,y)) = Sp(f,x)Sp(g,y), 

where the product on the right-hand side is taken in Q[t1fe] for some 
e E Z>o· This can be extended to the non-isolated singularity case 
(unpublished). 

2.3. Weighted homogeneous isolated singularity case. Assume 
f is weighted homogeneous with positive weights w1, ... , Wn, i.e. f = 
Ev CvXv with Cv = 0 for Ei Wi Vi -f. 1. Assume further Sing D = { 0}. 
Then we have by Steenbrink [44] 

(2.3.1) 

Indeed, he showed that the left-hand side is given by the Poincare poly
nomial of the graded vector space 

(2.3.2) nn /dlf 1\ nn-l 
X X ' 

and it is well known that the latter is calculated by using the morphism 
(!1, ... , !n): en--ten (where !i = 8f ;axi)· 
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2.4. Nondegenerate Newton boundary case. If n = 2 and f has 
nondegenerate Newton boundary 8Ft such that Rs0 \ P1 is bounded, 
then by Steenbrink [45] -

(2.4.1) 
Et n (0, 1] = Uo-E,t 1 with 

were La is a linear function such that L,;- 1 (1) :J CJ. Here the symmetry 
of Et with center 1 is used, see (2.2.1). 

For n > 2, the filtration v on rrx. I df 1\ n~- 1 is induced by the 
Newton filtration, and there is a combinatorial description by Steenbrink 
[45], see also [33], [51]. (Note that [33] was the origin of the theory of 
bifiltered strict complexes.) 

2.5. Semicontinuity (Steenbrink [46]). For a deformation {f.>..}>..E~ 
with isolated singularities the number of exponents in (a, a+ 1] (counted 
with multiplicity) is upper-semicontinuous for any a E R. This gives 
a necessary condition for adjacent relation of isolated hypersurface sin
gularities, and implies a counterexample to some conjecture about the 
adjacent relation. (For a lower weight deformation of a weighted homo
geneous polynomial, this is due to Varchenko [50].) 

2.6. Steenbrink's conjecture [47]. If dimSingf = 1, and g is generic 
with dg -1- 0, then we have for r » 0 

(2.6.1) 
Sp(f + gr, x)- Sp(f, x) 

= L:k,j t"k,j+(J3k,j/mkr)(l _ t)/(1- t1/mkr), 

where mk = multxZk with Zk the irreducible components of (Sing !)red, 
the ak,j are the exponents (counted with multiplicities) at y E Zk \ {x}, 
and f3k,j are rational numbers in (0, 1] such that exp(-27rif3k,j) are the 
eigenvalues of the monodromy along zk \ {x} (compatible with ak,j), 
see [36] for a proof. 

The formula (2.6.1) can be used for the calculation of Sp(f + gr, x), 
see [47]. 

§3. Multiplier ideals and an extension theorem 

In this section we recall the definition of multiplier ideals in the general 
case and give an extension theorem generalizing Mustata's formula in 
the case of hyperplane arrangements. 
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3.1. Definition. Let Z be a subvariety of a complex manifold or a 
smooth complex algebraic variety X. The multiplier ideal .J(X, aZ) for 
a E Q>o is defined by 

(3.1.1) 

where JI, ... , fr are local generators of the ideal of Z, or 

(3.1.2) 

where p: (X, D) --+ (X, Z) is an embedded resolution such that p- 1Iz 
generates the ideal Ijj of i5 = Li mJ5i. 

Define for any a (with 0 < c ~ 1) 

(3.1.3) Q(X, aZ) = .J(X, (a- c)Z)/ .J(X, aZ}. 

We say that a is a jumping number of Z if and only if Q(X, aZ) =f 0. 
Set 

(3.1.4) JN(Z) ={Jumping numbers of Z} C Q>o· 

3.2. Extension of multiplier ideals. Assume X = y X cr and 
D = f- 1 (0) with .).* f = f for >. E C*, where the action of>. is defined 
by 

>. . (y' Z1' ... ' Zr) = (y' >. Wl Z1' ... ' >. Wl Zr) E y X cr' 

with Wi > 0. For y E Y = Y X {0} C X, let 

c>aox,y = {g E Ox,y I v(g) >a} with 

v(l:av zv) = min{Ei Wi(lli + 1) I av =f 0}. 

Let X' =X\ (Y x {0} ), D' = D n X' with the inclusion j : X' --+X. 
Then 

3.3. Theorem [39]. We have 

.J(X, aD)y = (j*.J(X', aD'))y n c>aox,y· 

This implies the following generalization of Mustata's formula [29] 
in the case of hyperplane arrangements (see (5.17) below). 

3.4. Corollary. Assume D is the affine cone of a divisor Z on pn- 1 . 

Let d = degZ = degf. Then 

(3.4.1) .J(X, aD) = I~ with k = [da] - n + 1 if a < aj,0 , 
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where Io is the ideal ofO and aj,0 = min#o{aJ,x}· 

3.5. Corollary. With the above assumption 

d. Fn-1Hn-1( D C) (k-1) I' 0 k 1 
liD . ro, e(-k/d) = n-1 JOr < d < a/,0' 

and the same holds with F replaced by P. 

3.6. Corollary. With the above assumption, we have 

• ( 1 n) af = IDln af,O' d . 

§4. Relations in the hypersurface case 

363 

In this section we explain certain relations among b-function, spectrum 
and multiplier ideals in the hypersurface case. 

4.1. Theorem (Budur [7]) Assume Singf = {x}. Then 

(4.1.1) 
nf,o. = dimg(X,aD)x (a E (0, 1)), 

JN(D) n (0, 1) = E1 n (0, 1). 

(This is generalized to the non-hypersurface case in Th. (7.4).) 

4.2. Theorem (Budur, S. [10]). Let V denote also the induced filtration 
on Ox C Ox[8t]8(!- t). If a is not a jumping number, 

(4.2.1) .J(X, aD) = Va.Ox. 

For a general we have for 0 < c ~ 1 

(4.2.2) .J(X, aD)= va.+"Ox, Va.Ox = .J(X, (a- c)D). 

Note that V is left-continuous and .J(X, aD) is right-continuous, 
i.e. 

(4.2.3) va.ox = va.-"Ox, .J(X, aD)= .J(X, (a+ c)D). 

The proof of (4.2) uses the theory of bifiltered direct images [34], 
[35] to reduce the assertion to the normal crossing case. 

As a corollary we get another proof of the results of Ein, Lazarsfeld, 
Smith and Varolin [18], and of Lichtin, Yano and Kollar [26]. 

4.3. Corollary. (i) JN(D) n (0, 1] cRt (see [18]). 
(ii) af = minJN(D) (see [26]). 
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Let aj,x = miny;t'x{ CXJ,y}· We have a partial converse of Cor. (4.3)(i) 
as follows. 

4.4. Theorem. If f;,f = f for a vector field~' then 

(4.4.1) Rt n (0, aj,x) = JN(D) n (0, a/,x)· 

This does not hold without the assumption on ~ nor without re
stricting to (0, aj,x). 

4.5. Brieskorn lattice (isolated singularities case). The Brieskorn lat
tice [5] and its saturation are defined by 

H" = nn /dlf 1\ dnn- 2 
f X,x X,x' 

ii'j = Li?.O(tadH'J c Hf'[t- 1]. 
(4.5.1) 

These are finite C{ t }-modules with a regular singular connection. Here 
n~ is analytic and n =dim X. Note that the action of 8;1 on H'J is 
well-defined by 8;1 [w] = [df 1\ ~] where ~ E n~-; such that d~ = w in 
nxx· , , 

4.6. Theorem (Malgrange [27]). In the isolated singularity case, the 
reduced b-function bt(s) coincides with the minimal polynomial of-ott 
on H'J jtii'j. 

(The above formula of Kashiwara on b-function (1.16.1) can be 
proved by using this together with Brieskorn's calculation.) 

4. 7. Asymptotic Hodge structures (Varchenko [49] and Scherk
Steenbrink [43]). In the isolated singularity case, let gf be the Gauss
Manin system Hf'[8t] (which is the localization of H'J by the action of 
the microdifferential operator 8;1). Let V be the filtration ofKashiwara 
and Malgrange on g f. Set n = dim X. Then 

FPHn- 1 (Fx,C)>-. = GrCVH/ 

for p = [n-- a],>. = e-21ria, 
(4.7.1) 

under the canonical isomorphism 

(4.7.2) 

together with at : Grcygf ~ Grcy-igf fori E Z. Note that Varchenko's 
filtration is defined by using ci instead of at 0 

The formula (4.7.1) can be generalized to the non-isolated singular
ity case using mixed Hodge modules. 
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4.8. Reformulation of Malgrange's formula. Set 

FPHn-l(Fx,C)>. = Gr'VH'J 

for p = [n- a],>..= e-21ria, 
(4.8.1) 

under the canonical isomorphism (4.7.2). Then 

(4.8.2) iiit,a = deg(min poly(N I Grj:.Hn-l(Fx, C)>.)), 

where min poly means the minimal polynomial. 

4.9. Remarks. (i) Iff has an isolated singularity, then, as a corollary 
of the results of Malgrange (27], Varchenko (49], Scherk-Steenbrink (43] 
explained in (4.6-7), we have 

(4.9.1) 

(ii) Iff is weighted homogeneous with an isolated singularity, then 
by the result of Kashiwara explained in (1.16) we have 

(4.9.2) F=F, Rt=Et· 

(iii) Let g be a weighted homogenous polynomial with an isolated 
singularity, and h be a monomial xu with modified degree (3 := Li WiUi > 
1 where W1, ... , Wn are the weights associated tog, i.e. Li WiXi8gj8xi = 
g. Set f = g + h, and assume h fj. (8g). Then Et =f- Rt· Indeed, we 
have Bt[xu+vdx] E H'J for any monomial xv since 

We can apply this to a monomial xv such that xu+v generates the highest 
modified degree part of C[x]/(8g) which is !-dimensional. 

4.10. Example. Let f = x5 + y 4 + x3 y 2 . Then 

Et = H + ~ ll :::; i :::; 4, 1 :::; j :::; 3}, 

Rt = E1 u n6} \ n6}. 
This is the simplest example such that Et =f- Rt· 

4.11. Relation with rational singularities (37]. 
f- 1(0) is reduced. Then D has rational singularities 
a 1 > 1. Moreover, 

AssumeD := 
if and only if 
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where p : i5 ~ D is a resolution of singularities. 

In the isolated singularities case, this was proved in [32] using the 
coincidence of a f and the minimal exponent. 

4.12. Relation with the pole order filtration [37]. Let P be the 
pole order filtration on Ox(*D), i.e. Pi = Ox((i + 1)D) if i ~ 0, and 
Pi = 0 if i < 0. Let F be the Hodge filtration on Ox(*D). Then we 
have Fi C Pi in general, and 

Fi =pi on a neighborhood of X if i ~ af,x- 1. 

4.13. Remark. In the case X = pn, replacing af,x with [(n- r)/d] 
where r = dimSingD and d = degD, the assertion was obtained by 
Deligne (unpublished). 

§5. Hyperplane arrangement case 

In this section we treat the case of hyperplane arrangements. 

5.1. Let D be a central hyperplane arrangement in X= en, i.e. Dis 
an affine cone of a projective hyperplane arrangement Z C pn-l. Let f 
be the reduced equation of D with d = deg f > n. Assume D is not the 
pull-back of D' c en' with n' < n. Then we have 

5.2. Theorem. (i) maxR1 < 2- ~- (ii) m1 = n. 

For the proof of (i) we use a partial generalization of a solution 
of Aomoto's conjecture due to Esnault, Schechtman, Viehweg, Terao, 
Varchenko ([19], [42]) together with the following generalization of Mal
grange's formula in (4.8). 

5.3. Theorem (Generalization of Malgrange's formula) [39]. There ex
ists a pole order filtration P on Hn- 1 (Fo, C)..\ satisfying the following 
property. 

If (a+ N) n R/,o = 0 with R/,o = Uxof.oRJ,x, then 

(5.3.1) 

where p = [n- a],>.= e-27ria. 

Using this, the proof of (5.2)(i) is reduced to 

(5.3.2) piHn-l(F: C) = Hn-l(F: C) o, ,\ o, ,\, 

fori= n- 1 if>.= 1 or e2,.ifd, and i = n- 2 otherwise. 
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5.4. Construction of the pole order filtration P. Let U = pn-1 \Z, 
and Fo = f- 1 (1) c en. Then F0 is canonically identified with a cyclic d
fold covering 1r: fJ ~ U ramified over Z. Let £(k) be the local systems 
of rank 1 on U such that n*C = ffio<i<dL(k) and T acts on L(k) by 
e-21rik/d. Then we have canonical isom~rphisms 

(5.4.1) . (k) . 
H 3 (U,L ) = H 3 (Fo,C)e(-k/d)' 

and P is induced by the pole order filtration on the meromorphic exten
sion £(k) (see [11]) of £(k) @c Ou over pn-1, see [16], [39], [40]. This is 
closely related to [1] and also the following. 

5.5. Solution of Aomoto's conjecture ([19], [42]). Let Zi be the 
irreducible components of Z (1 ::; i ::; d). Let 9i be the defining equation 
of zi on pn-1 \ zd fori< d, and set 

Let V' be the connection on Ou defined by 

'Vu = du + wl\u. 

Set ad = - Li<d ai. Then H;R(U, (Ou, V')) is calculated by the com
plex 

(5.5.1) 

if the following condition is satisfied: 

(5.5.2) LzoL ai 1. N \ {0} for any dense edge L c Z, 

see (5.7) below for dense edges. 

For the proof of (5.2)(ii) we use 

5.6. Proposition. IfGr~_2Hn-1 (Fx, C)>. =f. 0, then Nn- 1 '1/JJ,>.C =f. 0. 

(Indeed, by the definition of W, we have the isomorphism 

Nn-1 : Gr~_2'¢J,>.C ~ Grlf '1/JvC, 

and the assumption of (5.6) implies Gr~_2 '¢J,>. C =f. 0.) 

Note that Proposition (5.6) implies (5.2)(ii), since we have the non
vanishing of Wi1 /\ • • • 1\win-l in 
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5. 7. Dense edges. Let D = UiDi be the irreducible decomposition. 
Then L = niEIDi for I =f. 0 is called an edge of D. An edge L is 
called dense if { Dd L I Di :::::> L} is indecomposable. Here en :::::> D is 
decomposable if en = en' X en" such that D is the union of the pull
backs from en'' en" where n'' n" =1- 0. 

Let mL = #{Di / Di :::::> L}, and for A E C 

1J£(D) = {dense edges of D}, 

1J£(D, A)= {L E 7J£(D) I AffiL = 1}. 

We say that L, L' are strongly adjacent if L c L' or L :::::> L' or L n L' is 
non-dense. Let 

m(A) = max{/S/1 S C 1J£(D, A) such that any two edges 

belonging to S are strongly adjacent}. 

5.8. Theorem [40]. We have m 1,a :::; m(A) with A= e-21ria. 

5.9. Corollary. We have Rt C ULEDe(D) Zm£1 . 

5.10. Corollary. Assume that GCD(mL, mv) = 1 for any strongly 
adjacent L, L' E 7J£(D). Then mf,a = 1 for any a E Rt \ Z. 

For Theorem (5.2) we use the canonical embedded resolution of sin
gularities 1r : (X, D) ~ (Pn- 1 , D), see [42]. This is obtained by blowing 
up along the proper transforms of the dense edges. Note that we have 
mult D(A)red :::; m(A), where D(A) is the union of Di such that Am; = 1 
and mi = mult D; i5. 
5.11. Generic case. If Dis a generic central hyperplane arrangement, 
then 

(5.11.1) 

by U. Walther [53] (except for the multiplicity of -1) using a completely 
different method. 

Note that Theorems (5.2) and (5.8) imply that the left-hand side 
divides the right-hand side of (5.11.1), and the equality follows using 
also (3.5). 

5.12. Explicit calculation. Let a = kjd, A = e-21ria with k E 
{1, ... ,d}. If a ~ aj,o := minx#o{at,x}, we assume there is I C 
{1, ... ,d-1} with /I/= k-1, and also the condition of [42] (i.e. (5.5.2) 
above) is satisfied for 

(5.12.1) ai = 1- a if i E I U {d}, and -a otherwise. 
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Let V(I) be the subspace of Hn- 1 A~ generated by 

5.13. Theorem. With the above notation and assumptions, we have 
for a:= k/d and A= e-21ria with k E {1, ... , d} the following. 
(a) In case k = d- 1 or d, we have a: E Rf, a:+ 1tf. Rt. 
(b) In case a:< o:[,0 , we have a: E Rt if and only if k ~d. 

(c) In case (~=i) < dimHn- 1 (Fo, C),x, we have a:+ 1 E Rt· 

(d) In case a:< o:[,0 , a: tf. R[,o + Z and (~=i) = x(U), we have a:+ 1tf. 
Rt· 
(e) In case a:~ o:[,o and V(I) -I= 0, we have a: E Rt. 
(f) In case a:~ o:[,o and V(I) = Hn- 1 A~, we have a:+ 1tf. Rt· 

5.14. Theorem [40]. Assume n = 3, max{multzZ I z E Z} = 3, and 
d::; 7. Let v3 be the number of triple points of Z, and assume v 3 -I= 0. 
Then 

(5.14.1) 

with r = 2d - 2 or 2d - 3. We have r = 2d - 2 if v3 < d - 3. The 
converse holds ford < 7. In the case d = 7, we have r = 2d- 3 if 
v3 > 4. However, r can be both 2d- 2 and 2d- 3 if v3 = 4. 

5.15. Remarks. (i) We have v3 < d- 3 if and only if we have 

x(U) = (d-2h(d-3J _ v3 > (d-3h(d-4J = (d;3). 

(ii) By (5.4.1) we have 

x(U) = h2 (F0 , C),x- h1(F0 , C),x if Ad= 1 with A -I= 1. 

(iii) Let v~ be the number of i-ple points of Z' := Z n C 2 . Then we have 
by [6] 

bo(U) = 1, b1(U) = d- 1, b2(U) = v~ + 2v~, 

5.16. Example. Assume Z' is defined by (x2 - y2)(x2 - 1)(y2 - 1) = 0 
in C 2 with d = 7. Then (5.14.1) holds with r = 11, and 12/71'. R1. In 
this case we have 

b1(U) = 6, b2(U) = 9, x(U) = 4, 

h2 (F0 , C),x = 4 if A7 = 1 and A -I= 1. 

Then 5/7 E R1 by (e) and 12/7 tf. R1 by (f), where Ic corresponds to 
(x + 1)(y + 1) = 0. Note that 5/7 is not a jumping number. 
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5.17. Multiplier ideals of hyperplane arrangements. Let mL = 

mulhD, r = codimxL, and IL be the ideal of an edge L C X. Then 
by Mustata [29] 

(5.17.1) 

(This is generalized as in Cor. (3.4) above.) 
As for the spectrum, it does not seem easy to give a combinatorial 

formula even for the generic case, see e.g. [39], 5.6. 

§6. b-function of a subvariety 

In this section we define the b-function in the general case and explain 
a relation with the multiplier ideals. 

6.1. Let Z be a closed subvariety of a complex manifold or a smooth 
complex algebraic variety X. Let f = (h, ... , fr) be generators of the 
ideal of Z. (We do not assume Z reduced nor irreducible.) Define the 
action of tj on 

Ox [!I ·l·fr] [sl, ... 'sr]IlJti' 
by tJ(si) = si + 1 if i = j, and tj(si) = si otherwise. Set 

Then b f ( s) is the monic polynomial of the smallest degree such that 

(6.1.1) 

where Pk belong to the ring generated by Vx and si,j. 

Here we can replace Ili fti with Ili 6(ti -fi), using the direct image 
by the graph off : X ----t cr. Note that the existence of bt(s) follows 
from the theory of the V-filtration of Kashiwara and Malgrange. This 
b-function has appeared in work of Sabbah [31] and Gyoja [20] for the 
study of b-functions of several variables. 

6.2. Theorem (Budur, Mustata, S. [8]). Let c = codimxZ. Then 
bz(s) := bt(s-c) depends only on Z, i.e. it is independent of the choice 
of X, f = (h, ... , fr), and also of r. 

6.3. Equivalent definition. The b-function b1(s) coincides with the 
monic polynomial of the smallest degree such that 

(6.3.1) 



On b-function, spectrum and multiplier ideals 371 

where c = (cl, ... 'Cr) E zr with lei := Li Ci = 1. Here Vx[s] '::::: 
Vx[s1,··· ,sr]· 

This is due to Mustata, and is used in the monomial ideal case, see 
(8.7) below. Note that the well-definedness does not hold without the 

term Ilc;<O (_~~J 
We denote also by V the induced filtration under the inclusion 

6.4. Theorem (Budur, Mustata, S. [8]). For a tt JN(Z), we have 

(6.4.1) :T(X,aZ) = vaox. 

In general we have for any a (with 0 < c « 1) 

(6.4.2) 

6.5. Corollary (Budur, Mustata, S. [8]). We have the inclusion 

(6.5.1) 

6.6. Theorem (Budur, Mustata, S. [8]). Assume Z is reduced and is a 
local complete intersection. Then Z has at most rational singularities if 
and only if a f = r with multiplicity 1. 

§7. Spectrum of a subvariety 

In this section we define the spectrum in the general case and explain a 
relation with the multiplier ideals. 

7 .1. Let Z be a closed subvariety of a complex manifold or a smooth 
complex algebraic variety X, and 'Iz COx be the ideal sheaf of Z. The 
Verdier specialization [52] is defined by 

(7.1.1) 

where 

is the inclusion to the total space of the deformation to the normal cone 

(7.1.2) 
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Let A be an irreducible component of the fiber (NzX)z over z E 
Z, and ~ E A be a sufficiently general point of A with the inclusion 
ie : {0 --+ NzX. Set CA = dimX- dimA. Define the non-reduced 
spectrum and the (reduced) spectrum 

where 

(7.1.3) 

Sp(Z, A)= La>O nA,of", 

Sp(Z,A) = Sp(Z,A)- (-1)CAtCA+l, 

nA,a = Lj (-1)i dimGr~Hi+cA(ieSpzCx).x with 

p = [cA + 1 -a], A= exp( -27ria), 

If (NzX)x is irreducible (e.g. if Z is a complete intersection), set 

Sp(Z,x) = Sp(Z,A), etc. for A= (NzX)x. 

This generalizes the definition for hypersurfaces. 

7.2. Remarks. (i) In general, we have 

nA,a = 0 (a~ 0), nA,(3 2: 0 ((3 E (0, 1]). 

In the isolated complete intersection singularity case, we have 

nx,a 2:0 with Sp(Z,x) =La nx,at"', 

but symmetry and semicontinuity do not hold, see [17], [30], [48]. 

(ii) In the isolated complete intersection singularity case, our defi
nition coincides with the one by Ebeling and Steenbrink [17] except for 
nx,a with a E Z. Indeed, they take generic 1-parameter smoothings 

f: X'--+ C of Z, g: X"--+ C of X', 

and consider <t'J'l/J9 Qx,[n] (where n = dimZ) together with the exact 
sequence 

0--+ fin(FJ, C)--+ <t'J'l/!9Qx,[n]--+ Hn+1(F9 , C)--+ 0, 

where'I/J9 Qx" lx'\{O} = Q, ('l/!9 Qx" )o = Rf(F9 , C). The action of the 
monodromy on Hn+l(F9 , C) is associated to the functor <pf, and is the 
identity. 

7.3. Let Iz be the ideal sheaf of Z C X. For z E Z and (3 E (0,1] n Q, 
let 

(7.3.1) 
- . '+1 

M((3) = ffii~o 9(X, ((3 + i)Z), A= ffii~0 I1/I1 , 
M((3, z) = M(f3)/mz,zM((3), A(z) = A/mz,zA. 
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Then M(f3), M(f3, z) are graded modules over A, A(z), because 

(7.3.2) (I~/I~+l) Q(X, ({3 + i)Z) c Q(X, ({3 + i + j)Z). 

For z E Z and an irreducible component A of (NzX)z =Spec A(z), 

(7.3.3) /1-A,/3 := dimc(A) M(f3, z) ®.A(z) C(A), 

where C(A) is the function field of A. 

7.4. Theorem (Dimca, Maisonobe, S. (14]). Let f3 E (0, 1] n Q. 
(i) We have 0 :S nt..,/3 :S /1-A,/3 (in particular, nt..,/3 = 0 if z tJ. Supp M(f3)). 
(ii) We have nt..,/3 = /1-A,/3 if Supp..4M(f3) C (NzX)z on a neighborhood 
of the generic point of A. 

(For hypersurfaces, this is due to Budur (7].) 

7.5. Corollary (DMS (14]). Ifnt..,a =1- 0 with a E (0, 1), then there is a 
nonnegative integer jo such that a+ j E JN(Z) for any j ~joE N. 

7.6. Theorem (DMS (14]). IfT is a transversal slice to a stratum of a 
good Whitney stratification and r = codim T, we have 

Sp(Z,A) = (-ttSp(ZnT,A). 

(For the constantness of the jumping numbers under a topologically 
trivial deformation of divisors, see (15].) 

7.7. Remark. Let Ez,A = {a\nt..,a =/:- 0}. Then 

Ut.. exp( -27riEz,A) C exp( -27riRJ,x), 

where A runs over the irreducible components of (NzX)x· However, the 
equality does not always hold (e.g. iff= x 2 y) unless we take the union 
over the irreducible components A of (NzX)y for any y E Z sufficiently 
near x. 

8. Monomial ideal case 

In this section we treat the monomial ideal case. 

8.1. Multiplier ideals. Let a C C(x] := C(x1, ... , xn] a monomial 
ideal. We have the associated semigroup defined by 

r a = { u E Nn I xu E a}. 

Let Pa be the convex hull of r a in R~0 . Set 1 = (1, ... , 1), and 

U(a) := {v ENn \v + 1 E (a+ c-)Pa (0 < e « 1)}. 
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Let Z be the subvariety of X = en defined by a. 
By Howald we have the following. 

8.2. Theorem (Multiplier ideals) (Howald [21]). We have 

.:J(X,aZ) = LvEU(a) Cxv. 

8.3. Corollary. Set ¢(v) = L 17 (v) if v E Cone(O, a) := UA>O >.a, where 
L 17 is as in 8.4 below. Then -

JN(Z) = {¢(v) lv E Z~0 }. 

8.4. Spectrum. For a maximal face a of Pa, set 

L17 : the linear function such that L;;-1 (1) ::::>a, 

C17 : the smallest positive integer such that c17 L17 E Z[x], 

eu = IG~/Gul, 

where G~ = znn£;; 1 (0) and Gu is generated by v-v' with v, v' E f ana. 

8.5. Theorem (Spectrum) (Dimca, Maisonobe, S. [14]). We have a one
to-one correspondence between the maximal compact faces a of Pa and 
the irreducible components A of the fiber (NzX)o, and 

Sp(Z, A) = I::~:l eutifcu. 

8.6. b-function. Fora face a of Pa, set 

V17 : the linear subspace generated by a, 

M 17 : the subsemigroup generated by u - v 
with u E fa, v E fan a, 

M~ = Vo + Mu with Vo E fa n a (independent of vo), 

Ru = {Lu(u) I u E ((Mu \ M~) + 1) n Vu }, 
where 1 = (1, ... , 1), 

Ra ={roots of ba( -s)} where ba(s) = bz(s). 

8. 7. Theorem (b-function) (Budur, Mustata, S. [9]). We have Ra = 
Uu Ru with a not contained in any coordinate hyperplanes. 

8.8. Remark. It is possible that Ru depends on the other a'. Indeed, 
we have the following (see [9], Ex. 4.4). 

(i) If a= (xy5 , x 3 y2 , x 5 y), then Ra = Ru U Ru' with 



On b-function, spectrum and multiplier ideals 375 

So R = { 3i+21 (1 < i < 3 1 < J. < 5)} with L (i J.) = 3i+2i. 
a 13 - - ' - - a ' 13 

(As for Ra' there is a misprint in loc. cit. as remarked by a student 
ofW. Veys.) 

(ii) If a= (xy5 ,x3y2 ,x4y), then Ra = Ra U Ra' with 

Ra = { 1i3 (5 ~ i ~ 17) }, Ra' = {f (2 ~ j ~ 6) }. 

So Ra =f. { 3i~21 (1 ~ i ~ 3, 1 ~ j ~ 5)} with ~; shifted to 163 . 

8.9. Comparison. Let D = f- 1 (0) for f =I: cvxv E C[x] with non
degenerate Newton boundary 8Pt = 8Pa. Assume Zred = {0} so that 
SingD = {0}. Then 

(4.5.3) 
JN(D) n (0, 1) 

(2)11 
E1 n (O, 1) c 

(4) 

JN(Z) n (0, 1) 
n(3) 

UAEz,A n (0, 1) 

where Ez,A = {a I nA,a. =f. 0}. Indeed, we have (1) by Howald [23], 
and (2) by Budur [7]. The composition of (1) and (2) is an equality 
by comparing the formulas of Howald [21] and Steenbrink [45] (see also 
[33], [51]). Finally we have (3) and (4) by [14]. (In general (3) (4) are 
not equality.) 

8.10. Example. If a= (xf1 , ••• , x~" ), set 

Then 

Ca = LCM(m1, ... , mn), ea = m1 · · · mn/ca, 

E = {(a1. ... ,an) E Nn I ai E [l,mi]}. 

n 

JN(Z) = { L :::.1 ai E Z>o }, 
i=1 • 

Cq 

Sp(Z, 0) = Lea tifcu' 
i=1 

ba(s) = [ IT (s+ t ~)] · 
. mi red 

(a1, ... ,an)EE •=1 

Here [IJj(s+,Bj)ni]red = f1j(s+,8j) if the ,Bj are mutually different and 
nj E Z>O· . 

This may be compared with the following. 
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8.11. Example. Iff= L::i xr'; and D = f- 1 (0), set 

E = {(a1, ... ,an) E Nn I ai E [1,mi -1]}. 

Then 
n 

JN(D) n (0, 1] = { L :::.1 ai E Z>o} n (0, 1], 
i=l • 

with JN(D) = (JN(D) n (0, 1]) + N, 
n 

Sp(D, 0) =II (t- tlfm;)j(tlfm; - 1), 
i=l 

bt(s) = [ II (s+ t ~)] · 
_ . 1 mi red 

(a1 , ... ,a,;.)EE •= 
Indeed, for the assertion on JN(D), we can apply [22] or [7] (i.e. Th. (4.1) 
above), see also Th. (4.4). The other assertions follow from (1.16) and 
(2.3). Note that the assertions hold for an isolated weighted homoge
neous singularities with weights w1, ... , Wn if we replace 1/mi by Wi. 

8.12. Remark. In the monomial ideal case, j 0 in Cor. (7.5) is bounded 
by n- 1, and JN(Z) is stable by adding any positive integers, see [14]. 
Note that j 0 = n- 1 if the mi in (8.10) are mutually prime. In general 
it is unclear whether j 0 is always bounded by n- 1. 
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