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A Willett type criterion with the best possible 
constant for linear dynamic equations 

Pavel Rehak 

Abstract. 

We establish oscillation criteria for the linear dynamic equation 
(r(t)yb..)b.. + p(t)ya = 0. These criteria can be understood as an ex­
tension of the classical Willett criterion. What is special on these new 
results is that the constant involved in the criteria, which is equal to 
the "magic" 1/4 in the differential equations case, is in fact no more 
constant. In general case, it depends on the asymptotic behavior of 
the coefficients p, r, and primarily on the asymptotic behavior of grain­
iness. In addition, we prove that the value of this new "constant" is 
the best possible. 

§1. Introduction 

Consider the linear dynamic equation 

(1) (r(t)yt::.)t::. + p(t)ya = 0, 

where r(t) > 0 and p(t) are rd-continuous functions defined on a time 
scale interval [a, oo ), a E 1l', and a time scale '][' is assumed to be un­
bounded from above. 

If']['= ffi., then (1) reduces to the Sturm-Liouville differential equa­
tion 

(2) (r(t)y')' + p(t)y = 0. 
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It is known, see e.g. [14], that under the assumptions I;" 1/r(s) ds = oo 
and Itoo p(s) ds 2: 0 (¢ 0) for large t, equation (2) is oscillatory provided 

( r= )-l r= 1 (i= )2 1 
lie~f it p(s) ds it r(s) s p(r) dr ds > 4. 

The constant 1/4 on the right-hand side is thebest possible. For histor­
ical reasons, we call this criterion as of Willett type. 

The aim of this paper is to show how this criterion can be extended 
to linear dynamic equation (1). In particular, we will see that the con­
stant 1/4 is no more constant in general setting. In fact, in our criterion 
for (1), the new "constant" depends on the asymptotic behavior of the 
coefficients p, r and primarily on the asymptotic behavior of graininess. 
In addition, we will prove that this new constant is the best possible un­
der quite mild assumptions. Thus a situation may happen (with 1!' =I=~) 
where the constant is strictly greater than 1/4, but still sharp. 

Oscillatory properties of (1) or of closely related objects have been 
studied e.g. in [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13]. Recall that (1) covers 
many of well-studied equations, like linear differential equations, linear 
difference equations, linear h-difference equations, and linear q-difference 
equations. Comparing our results with the existing ones, they are new 
even in the discrete case (1!' = Z) as well as in many other cases. There 
is a result in [12], which is very close to our new one, namely a Wil­
lett type criterion for half-linear dynamic equation. However, only the 
case which corresponds to the constant 1/4 is discussed there. The new­
ness of the presented result lies particularly in considering general case, 
where graininess becomes to play very important role, and this makes 
the problem quite complex. Thanks to this general setting, much wider 
class of equations can be examined. 

The paper is organized as follows. In the next section we recall 
some important concepts and state preliminary results that are crucial to 
prove the main results. Generalized Willett type theorems are presented 
in the third section. Both cases are examined, Iaoo 1/r(s) As = oo and 
Iaoo 1/r(s) As< oo. 

§2. Basic concepts and preliminary results 

We assume that the reader is familiar with the notion of time scales. 
Thus note just that 1!', a, r, j.£, JA, and I: JA(s)As stand for time 
scale, forward jump operator, f o a, graininess, delta derivative of J, 
and delta integral off from a to b, respectively. See [10], which is the 
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initiating paper of the time scale theory written by Hilger, and the mono­
graphs [2, 3] by Bohner and Peterson containing a lot of information on 
time scale calculus. 

We will proceed with some essentials of oscillation theory of (1). 
First note that we are interested only in nontrivial solutions of (1). We 
say that a solution y of (1) has a generalized zero at t in case y(t) = 0. 
If f-L(t) > 0, then we say that y has a generalized zero in (t, a(t)) in case 
y(t)yu(t) < 0. A nontrivial solution y of (1) is called oscillatory if it 
has infinitely many generalized zeros; note that the uniqueness of IVP 
excludes the existence of a cluster point which is less than oo. Otherwise 
it is said to be nonoscillatory. In view of the fact that the Sturm type 
separation theorem extends to (1) (see e.g. [11]), we have the follow­
ing equivalence: One solution of (1) is oscillatory if and only if every 
solution of (1) is oscillatory. Hence we may speak about oscillation or 
nonoscillation of equation (1). Recall that the principal statements, like 
the Sturmian theory (Reid type roundabout theorem, Sturm type sepa­
ration and comparison theorems) for (1), can be established under the 
mere assumption r(t) =f 0 and the basic concepts, especially generalized 
zero, have to be adjusted, see e.g. [1] or [11]. 

The next lemma, called the function sequence technique, plays a 
crucial role in proving the main results. Its proof is based on the equiv­
alence between nonoscillation of (1) and solvability of the Riccati type 
integral inequality 

w(t) ::=: 100 
p(s) /j.s + 100 

w2 (s)j(r(s) + f-L(s)w(s)) /j.s. 

Lemma 1 ([12]). Assume that faoo 1/r(s) /j.s = oo, ftoo p(s) /j.s ::=: 0 
and nontrivial for large t. Define the function sequence { '¢k ( t)} by 

1
oo 1oo '¢5(s) 

'¢o(t) = t p(s) /j.s, '¢1(t) = t r(s) + f-L(s)'¢o(s) /j.s, 

'¢ t 100 ('¢o(s) + '¢k(s))2 fj. 
k+l()= t r(s)+f-L(s)('¢o(s)+'¢k(s)) 8 ' k= 1, 2, .... 

Then equation (1) is nonoscillatory if and only if there exists to E [a, oo) 
such that limk->oo '¢k(t) = '¢(t) fort::=: to, i.e., the sequence {'¢k(t)} is 
well defined and pointwise convergent. 

The following lemma, which exploits the transformation of depen­
dent variable, will be useful in the case when faoo 1/r(s) /j.s converges. 

Lemma 2 ([9]). Assume that h is an rd-continuously delta dif­
ferentiable function with h(t) =f 0. Then y = hu transforms equa­
tion (1) into the equation (f(t)uA)A + p(t)uu = 0 with f = rhhu and 
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p = hcr[(rh'~")'l + phcr]. This transformation preserves oscillatory prop­
erties. 

§3. Main results 

Now we are ready to prove the main result, an extension of the 
Willett criterion. 

Theorem 1. Let 

(3) 100 1 
a r(s).6.s=oo. 

Assume that 

(4) 100 
p( s) .6.s ~ 0 and nontrivial for large t. 

Denote 

(5) 
* . J-L(t)ftoop(s).6.s 

N := hmsup () t-+oo r t 

and let N* < oo. If 
(6) 

(100 
) -11oo 1 (ioo ) 2 (N* + 1)2 

lie~£ t p(s) _6.s t r(s) s p(T) .6.T _6.~ > 4 ' 

then equation (1) is oscillatory. 
Moreover, if there exists the limit 

. J-L(t)ftp(s).6.s 
N := hm ( ) < oo, t-+oo r t 

(7) 

then the constant ( N + 1) 2/4 in ( 6) is the best possible. 

Proof. We will apply Lemma 1 and use its notation. Condition (6) 
can be rewritten as 

100 
'¢5(s)/r(s) .6.s ~ 6'¢o(t) 

for large t, say t ~ t0 ~a, where 6 > (N* + 1)2 /4. Then 

'¢1(t) = 1oo '¢5(s) . r(s) .6.s 
t r(s) r(s) + J-L(s)'¢o(s) 

> inf r(s) 1oo '¢5(s) .6.s 
- s2:to r(s) + J-L(s)'¢o(s) t r(s) 

~ r(to, 1)J'¢o(t) = Jl'¢o(t), 
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where (h = r(to, 1)6 and 

r(to, x) = inf 1 
t?:_to 1 + Xf..l(t)'!fJo(t)/r(t) 

Further, since x f---t x2 j(y + zx) is increasing for x > 0, y > 0, z > 0, 
similarly as above we have 

where 62 = (61 + 1)2f(t0 , 61 + 1)6. Similarly, by induction, 

(8) 

where 61 = r(to, 1)6 and 

First assume that there exists the limit N = limt--->oo f..L(t) ftoo p( s )b.s/r(t). 
Then taking the limit as t0 --+ oo, (9) yields 

(10) 
(6k + 1)2 

6k+ 1 = 1 + (6k + 1)N 6· 

Since x f---t (x + 1)2 /[1 + (x + 1)N] is increasing, 6k :::; 6k+1 [6k 2': 6k+1] 
implies 6k+1 :::; 6k+2 [6k+l 2': 6k+2]· Hence, {6k} is monotone. We claim 
that 6k --+ oo as k --+ oo. If not, let 6k --+ L < oo as k --+ oo. Clearly, 
we cannot have L = 0, otherwise, from (10), 0 = 1/(1 + N) > 0. Thus 
L > 0. From (10) we obtain 

(11) L= (L+1)2 6 
1+(L+1)N. 

Next we show that (11) has no real solution. Indeed, (11) can be rewrit­
ten as 

(12) (N - 6)L2 + (1 + N - 26)L - 6 = 0. 

Note that N-=/=- 6, otherwise, in view of 6 > (N + 1)2 /4, we get (N -1)2 < 
0, contradiction. The discriminant of (12) is equal to (N + 1)2 - 46, and 
so it is negative since we have assumed 6 > ( N + 1 )2 /4. This proves 
that 6k --+ oo as k--+ oo, which implies '1/Jk(t) --+ oo as k --+ oo fort 2': t0 , 
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by (8). Consequently, (1) is oscillatory, in view of Lemma 1. Next we 
examine the case when 

. . JL(t) It) p(s)~s . JL(t) It~ p(s)~s * 
hm mf ( ) < hm sup ( ) = N . t---+oo r t t---+oo r t 

Then we have 

and hence, using the same arguments as above, we come to the conclu­
sion that ok ---+ oo ask---+ oo. This implies again oscillation of (1). 

In the second part we prove that the constant (N + 1? /4 in (6) is 
the best possible provided (7) holds. To show this, consider the Euler 
type dynamic equation 

(13) 

where ), is a positive real parameter, i.e., equation (1) where r(t) 
1 and p(t) = >..j(ta-(t)). Assume that there exists the limit M := 
limt---+oo JL(t)jt < oo. Then, for N defined by (7), we have N = A.M. 
Further, 

In order to be (6) fulfilled, it suffices to take >.. such that 

(14) 
, 1. . f a-(t) (N + 1)2 
A Ill Ill - > -'-----'-

t---+oo t 4 

Since a-(t)jt = 1 + JL(t)jt ---+ 1 + M as t ---+ oo and N = A.M, (14) is 
equivalent to 

(15) >..(M + 1) > (>..M 4+ 1)2. 
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If M = 0, then clearly A > 1/4 implies oscillation of (13) by the first part 
of Theorem 1. Solving quadratic inequality (15) when M > 0 and using 
the first part of Theorem 1 combined with the Sturm type comparison 
theorem, we find that (13) is oscillatory provided 

M+2-2vM+1 (vM+1-1) 2 1 
A > = = ------;;-

M2 M2 ( V M + 1 + 1) 2 . 

Altogether, for any M E [0, oo) we have that A > ( V M + 1 + 1 r 2 im­

plies oscillation of (13). From [13] we know that Ao = (vM + 1 + 1r2 

is the oscillation constant for (13), i.e., (13) is oscillatory for all A > Ao 
and nonoscillatory for all A < Ao. Now, since N = AM, we see that N 
cannot be lowered, and this proves that (N + 1)2 /4 in (14) and so in (6) 
is the best possible. Q.E.D. 

Using the transformation of dependent variable and Theorem 1 we 
can easily treat the complementary case to (3), namely faoo 1/r(s) D..s 
converges. 

Theorem 2. Let 100 1 
a r(s) D..s < oo. 

Assume that 

100 (1 00 
_(

1 ) f:J..T) 
2 

p( 8 ) D..s ;::: 0 and nontrivial for large t. 
t u(s) r T 

Denote R(t) := ftoo 1/r(s) D..s. Let 

- * . t-L(t) ft00 (Ru(s))2p(s) D..s 
N := hmsup ( ) ( )Ru( ) < oo. t---+oo r t R t t 

If 

(1 oo ) -11oo (loo(Ru(T))2p(T) f:J..T)2 
(16) liE,~f t (Ra-(s))2p(s) D..s t s r(s)R(s)Ra-(s) D..s 

N* + 1 
> 4 

then equation (1) is oscillatory. 
Moreover, if there exists the limit 
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then the constant (N + 1)2 /4 in (16) is the best possible. 

Proof. Denote R(t) := ft00 1/r(s) ~s. First note that by Lemma 2, 
the transformation y = hu with h(t) = R(t) transforms (1) into the 
equation (f(t)u~)~+p(t)u"" = 0, where f(t) = R(t)R""(t)r(t) andp(t) = 
(R""(t)) 2p(t). Since (1/R(t))~ = 1/f(t), we get that faoo 1/f(s) ~s = oo. 
Applying now Theorem 1 to the transformed equation and using the 
fact that oscillatory properties are preserved after the transformation, 
we get the statement. Q.E.D. 
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