On mod p Riemann-Roch formulae for mapping class groups

Toshiyuki Akita

Abstract

. We provide affirmative evidences for conjectural mod p RiemannRoch formulae for mapping class groups by considering Steenrod operations on $\bmod p$ Morita-Mumford classes.

§1. Introduction

Let Σ_{g} be a closed oriented surface of genus $g \geq 2$ and let Γ_{g} be its mapping class group. Namely, it is the group consisting of path components of $\mathrm{Diff}_{+} \Sigma_{g}$, which is the group of orientation preserving diffeomorphisms of Σ_{g}. Any cohomology class of Γ_{g} can be considered as a characteristic class of oriented surface bundles. Indeed, by a theorem of Earle and Eells [4], the classifying space BDiff ${ }_{+} \Sigma_{g}$ of oriented Σ_{g}-bundles is an Eilenberg-MacLane space $K\left(\Gamma_{g}, 1\right)$ so that we have a natural isomorphism

$$
H^{*}\left(B \text { Diff }_{+} \Sigma_{g} ; \mathbb{Z}\right) \cong H^{*}\left(\Gamma_{g} ; \mathbb{Z}\right)
$$

Morita [11] and Mumford [12] independently introduced a series of cohomology classes $e_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ of Γ_{g} which are called Morita-Mumford classes (or Mumford-Morita-Miller classes in the literature). Over the rationals, the natural homomorphism

$$
\mathbb{Q}\left[e_{1}, e_{2}, e_{3}, \ldots\right] \rightarrow H^{*}\left(\Gamma_{g} ; \mathbb{Q}\right)
$$

is an isomorphism in dimensions less than $2 g / 3$ by the proof of Mumford conjecture [9]. On the contrary, less is known about integral or $\bmod p$ Morita-Mumford classes of Γ_{g}. In [1], the author proposed a conjecture

[^0]concerning of integral Morita-Mumford classes. To be precise, let $B_{2 k}$ be the $2 k$-th Bernoulli number, and define $N_{2 k}, D_{2 k}$ to be coprime integers satisfying $B_{2 k} / 2 k=N_{2 k} / D_{2 k}$. Let $s_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ be the k-th Newton class of Γ_{g} which will be defined in $\S 3$.

Conjecture 1 (integral Riemann-Roch formulae for Γ_{g}).

$$
N_{2 k} e_{2 k-1}=D_{2 k} s_{2 k-1} \in H^{*}\left(\Gamma_{g} ; \mathbb{Z}\right)
$$

holds for all $k \geq 1$ and $g \geq 2$.
With rational coefficients, it is deduced from the Grothendieck-Riemann-Roch theorem. See [11, 12]. The conjecture is affirmative for $k=1$ (i.e. $e_{1}=12 s_{1} \in H^{2}\left(\Gamma_{g} ; \mathbb{Z}\right)$ for all $\left.g \geq 2\right)$, since $H^{2}\left(\Gamma_{g}, \mathbb{Z}\right) \cong \mathbb{Z}$ for $g \geq 3$ as was proved by Harer [6] (see [1] for the case $g=2$). The author and Kawazumi [2] showed that the conjecture is affirmative for any cyclic subgroup of Γ_{g}. Kawazumi [8] showed that a slightly weaker version of the conjecture holds for hyperelliptic mapping class groups. In addition, a result of Galatius, Madsen and Tillmann [5, Theorem 1.2] can be regarded as an affirmative evidence of the conjecture for the stable mapping class group (see [1, Section 7] for the detail). Now let p be a prime and \mathbb{F}_{p} the field consisting of p elements. Passing to the $\bmod p$ cohomology, Conjecture 1 leads to the following conjecture:

Conjecture $2\left(\bmod p\right.$ Riemann-Roch formulae for $\left.\Gamma_{g}\right)$.

$$
N_{2 k} e_{2 k-1}=D_{2 k} s_{2 k-1} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

holds for all $k \geq 1$ and $g \geq 2$.
The purpose of this paper is to provide affirmative evidences of Conjecture 2. Our main result is the following:

Theorem 1.1. Let p be an odd prime and $g \geq 2$. If

$$
N_{2 k} e_{2 k-1}=D_{2 k} s_{2 k-1} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

holds for some $k \geq 1$, and if $\binom{2 k-1}{i}$ is prime to p, then

$$
N_{2 k+i(p-1)} e_{2 k-1+i(p-1)}=D_{2 k+i(p-1)} s_{2 k-1+i(p-1)} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

In other words, the affirmative solution of Conjecture 2 for some k implies that for $k+i(p-1) / 2$, provided $\binom{2 k-1}{i}$ is prime to p. In particular, since Conjecture 1 and hence Conjecture 2 are affirmative for $k=1$ as was mentioned earlier, one has the following result:

Corollary 1.2. Let p be an odd prime. Then

$$
N_{p^{n}+1} e_{p^{n}}=D_{p^{n}+1} s_{p^{n}} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)
$$

for all $n \geq 0$ and $g \geq 2$.
Theorem 1.1 is proved by considering reduced power operations on $\bmod p$ Morita-Mumford and Newton classes of Γ_{g}, together with Kummer's congruences on Bernoulli numbers. Similar considerations are possible for $p=2$ by using squaring operations in place of reduced power operations.

The rest of the paper is organized as follows. In $\S 2$, we will recall the definition of Morita-Mumford classes, and compute the action of Steenrod operations on them. In $\S 3$, we will recall the definition of Newton classes. The proof of Theorem 1.1 will be given in $\S 4$.

Notation. There are some conflicting notations of Bernoulli numbers. We define $B_{2 k}(k \geq 1)$ by a power series expansion

$$
\frac{z}{e^{z}-1}+\frac{z}{2}=1+\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!} z^{2 k}
$$

Thus $B_{2}=1 / 6, B_{4}=-1 / 30, B_{6}=1 / 42, B_{8}=-1 / 30, B_{10}=5 / 66$, and so on. Our notation is consistent with $[2,7]$ but differs from $[1,8]$.

§2. Morita-Mumford classes

2.1. Definition

Let $\pi: E \rightarrow B$ be an oriented Σ_{g}-bundle, $T_{E / B}$ the tangent bundle along the fiber of π, and $e \in H^{2}(E ; \mathbb{Z})$ the Euler class of $T_{E / B}$. Then the k-th Morita-Mumford class $e_{k} \in H^{2 k}(B ; \mathbb{Z})$ of π is defined by

$$
e_{k}:=\pi!\left(e^{k+1}\right)
$$

where $\pi_{!}: H^{*}(E ; \mathbb{Z}) \rightarrow H^{*-2}(B ; \mathbb{Z})$ is the Gysin homomorphism (or the integration along the fiber). The structure group of oriented Σ_{g}-bundles is Diff Σ_{g}. Hence passing to the universal Σ_{g}-bundle

$$
E \mathrm{Diff}_{+} \Sigma_{g} \times_{\mathrm{Diff}_{+} \Sigma_{g}} \Sigma_{g} \rightarrow B \mathrm{Diff}_{+} \Sigma_{g}
$$

we obtain the cohomology classes $e_{k} \in H^{*}\left(B \mathrm{Diff}_{+} \Sigma_{g} ; \mathbb{Z}\right)$. As was mentioned in Introduction, the classifying space B Diff $_{+} \Sigma_{g}$ is an EilenbergMacLane space $K\left(\Gamma_{g}, 1\right)$ so that we obtain the k-th Morita-Mumford class $e_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ of Γ_{g}.

2.2. Steenrod operations

For an odd prime p, let

$$
\mathrm{P}^{i}: H^{k}\left(-; \mathbb{F}_{p}\right) \rightarrow H^{k+2 i(p-1)}\left(-; \mathbb{F}_{p}\right)
$$

be the i-th reduced power operation. We will compute the action of P^{i} s on $\bmod p$ Morita-Mumford classes. To this end let us return to an oriented smooth Σ_{g}-bundle $\pi: E \rightarrow B$ and choose a smooth embedding $E \rightarrow \mathbb{R}^{n}$ of E in some Euclidean space \mathbb{R}^{n}. The normal bundle $N^{f} E$ of the resulting embedding $f: E \rightarrow B \times \mathbb{R}^{n}$ is called the normal bundle along the fiber:

$$
T_{E / B} \oplus N^{f} E \cong E \times \mathbb{R}^{n} \quad(\text { product bundle }) .
$$

Let $q_{\bullet}\left(N^{f} E\right) \in H^{*}\left(E, \mathbb{F}_{p}\right)$ be the total Wu class of $N^{f} E$ defined by $q_{\bullet}\left(N^{f} E\right)=\phi^{-1} \circ \mathrm{P} \circ \phi(1)$ where ϕ is the Thom isomorphism for $N^{f} E$ (see [10, p.228] for instance). Applying the generalized Riemann-Roch theorem [3, p. 65 Theorem 9] to the total reduced power operation $\mathrm{P}=$ $\sum_{i} \mathrm{P}^{i}$, one has

$$
\begin{equation*}
\mathrm{P}\left(\pi_{!}(u)\right)=\pi_{!}\left(\mathrm{P}(u) \cdot q_{\bullet}\left(N^{f} E\right)\right) \tag{1}
\end{equation*}
$$

for every $u \in H^{*}\left(E ; \mathbb{F}_{p}\right)$. For the $\bmod p$ Euler class $e \in H^{2}\left(E ; \mathbb{F}_{p}\right)$ of $T_{E / B}$, one has $\mathrm{P}(e)=\mathrm{P}^{0}(e)+\mathrm{P}^{1}(e)=e+e^{p}$ and hence

$$
\mathrm{P}\left(e^{k+1}\right)=\mathrm{P}(e)^{k+1}=\left(e+e^{p}\right)^{k+1}=e^{k+1}\left(1+e^{p-1}\right)^{k+1}
$$

by Cartan formula. On the other hand, one has

$$
\begin{aligned}
& q_{\bullet}\left(T_{E / B}\right) \cdot q_{\bullet}\left(N^{f} E\right)=q_{\bullet}\left(T_{E / B} \oplus N^{f} E\right)=q_{\bullet}\left(E \times \mathbb{R}^{n}\right)=1 \\
& q_{\bullet}\left(T_{E / B}\right)=1+e^{p-1} \quad(\text { see }[10, \text { p.228] }) .
\end{aligned}
$$

Applying $u=e^{k+1}$ to (1), one has

$$
\begin{aligned}
\mathrm{P}\left(e_{k}\right)=\mathrm{P}\left(\pi_{!}\left(e^{k+1}\right)\right) & =\pi_{!}\left(e^{k+1}\left(1+e^{p-1}\right)^{k+1} \cdot q_{\bullet}\left(N^{f} E\right)\right) \\
& =\pi_{!}\left(e^{k+1}\left(1+e^{p-1}\right)^{k} \cdot q_{\bullet}\left(T_{E / B}\right) \cdot q_{\bullet}\left(N^{f} E\right)\right) \\
& =\pi_{!}\left(e^{k+1}\left(1+e^{p-1}\right)^{k}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\mathrm{P}\left(e_{k}\right)=\pi!\left(\sum_{i=0}^{k}\binom{k}{i} e^{k+i(p-1)+1}\right)=\sum_{i=0}^{k}\binom{k}{i} e_{k+i(p-1)} \tag{2}
\end{equation*}
$$

Since reduced power operations are natural with respect to bundle maps, the last equality (2) is valid in $H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)$. Thus we have proved the following proposition:

Proposition 2.1. For $e_{k} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right)$, one has

$$
\mathrm{P}^{i}\left(e_{k}\right)=\binom{k}{i} e_{k+i(p-1)} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right) .
$$

Now let $\mathrm{Sq}^{i}: H^{k}\left(-, \mathbb{F}_{2}\right) \rightarrow H^{k+i}\left(-, \mathbb{F}_{2}\right)$ be the i-th squaring operation. Applying the generalized Riemann-Roch theorem to the total squaring operation $\mathrm{Sq}=\sum_{i} \mathrm{Sq}^{i}$, one has

$$
\begin{equation*}
\operatorname{Sq}\left(\pi_{!}(u)\right)=\pi_{!}\left(\operatorname{Sq}(u) \cdot \omega_{\bullet}\left(N^{f} E\right)\right) \tag{3}
\end{equation*}
$$

for every $u \in H^{*}\left(E ; \mathbb{F}_{2}\right)$, where $\omega_{\bullet}\left(N^{f} E\right) \in H^{*}\left(E ; \mathbb{F}_{2}\right)$ is the total Stiefel-Whitney class of $N^{f} E$. With the equation (3) in mind, the proof of the following proposition is similar to that of Proposition 2.1, and is left to the reader:

Proposition 2.2. For $e_{k} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{2}\right)$, one has

$$
\mathrm{Sq}^{2 i}\left(e_{k}\right)=\binom{k}{i} e_{k+i}, \mathrm{Sq}^{2 i+1}\left(e_{k}\right)=0 \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{2}\right)
$$

§3. Newton classes

Let $U(n)$ be the n-dimensional unitary group. The k-th Newton class $s_{k} \in H^{*}(B U(n) ; \mathbb{Z})$ is the characteristic class associated to the formal sum $\sum_{l=1}^{n} x_{l}^{k}$. Steenrod operations on $\bmod p$ Newton classes $s_{k} \in H^{*}\left(B U(n) ; \mathbb{F}_{p}\right)$ can be computed quite easily, as in the proposition below.

Proposition 3.1. For an odd prime p, one has

$$
\mathrm{P}^{i}\left(s_{k}\right)=\binom{k}{i} s_{k+i(p-1)} \in H^{*}\left(B U(n) ; \mathbb{F}_{p}\right) .
$$

For $p=2$, one has

$$
\mathrm{Sq}^{2 i}\left(s_{k}\right)=\binom{k}{i} s_{k+i}, \mathrm{Sq}^{2 i+1}\left(s_{k}\right)=0 \in H^{*}\left(B U(n) ; \mathbb{F}_{2}\right)
$$

Proof. By the definition of the Newton class s_{k}, it suffices to prove the case $n=1$. Since $s_{k}=c_{1}^{k} \in H^{*}(B U(1) ; \mathbb{Z})$ where c_{1} is the first Chern class, for an odd prime p, one has

$$
\mathrm{P}^{i}\left(s_{k}\right)=\mathrm{P}^{i}\left(c_{1}^{k}\right)=\binom{k}{i} c_{1}^{k+i(p-1)}=\binom{k}{i} s_{k+i(p-1)}
$$

as desired. The case $p=2$ is similar.
Q.E.D.

Now we recall the definition of Newton classes of Γ_{g}. The natural action of Γ_{g} on the first real homology $H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$ induces a homomorphism $\Gamma_{g} \rightarrow S p(2 g, \mathbb{R})$. The homomorphism yields a continuous map

$$
\eta: K\left(\Gamma_{g}, 1\right) \rightarrow B U(g),
$$

for the maximal compact subgroup of $S p(2 g, \mathbb{R})$ is isomorphic to $U(g)$. The k-th Newton class $s_{k} \in H^{2 k}\left(\Gamma_{g} ; \mathbb{Z}\right)$ of Γ_{g} is defined to be the pullback of $s_{k} \in H^{*}(B U(g) ; \mathbb{Z})$ by η (we use the same symbol).

$\S 4$. Proof of the main results

The proof of Theorem 1.1 is based on the following facts concerning of number theoretic properties of Bernoulli numbers:

Theorem 4.1. Let p be a prime number.
(1) $p \mid D_{2 k}$ if and only if $p-1 \mid 2 k$.
(2) If $p-1 \nmid 2 k$ and $k \equiv h(\bmod p-1)$ then

$$
\frac{B_{2 k}}{2 k} \equiv \frac{B_{2 h}}{2 h} \quad(\bmod p)
$$

The last congruence is considered in $\mathbb{Z}_{(p)}=\{m / n \in \mathbb{Q} \mid(n, p)=1\}$. Namely, for $r, s \in \mathbb{Z}_{(p)}$, we write $r \equiv s(\bmod p)$ if $r-s=m / n,(n, p)=1$, and $p \mid m$. The first statement (1) is called von Staudt's theorem, while the second statement (2) is called the Kummer's congruence. See [7] for the proof of Theorem 4.1.

Proof of Theorem 1.1. Applying the i-th reduced power operation to the both sides of equality $N_{2 k} e_{2 k-1}=D_{2 k} s_{2 k-1}$, one has

$$
\begin{equation*}
N_{2 k} e_{2 k-1+i(p-1)}=D_{2 k} s_{2 k-1+i(p-1)} \in H^{*}\left(\Gamma_{g} ; \mathbb{F}_{p}\right) \tag{4}
\end{equation*}
$$

by Proposition 2.1 and 3.1.
Suppose first $p-1$ divides $2 k$. It follows from von Staudt's theorem that $D_{2 k} \equiv D_{2 k+i(p-1)} \equiv 0(\bmod p)$. Consequently, the equality $N_{2 k} e_{2 k-1}=D_{2 k} s_{2 k-1}$ implies the condition $e_{2 k-1}=0$, and the equality (4) implies $e_{2 k-1+i(p-1)}=0$. Since

$$
N_{2 k+i(p-1)} e_{2 k-1+i(p-1)}=D_{2 k+i(p-1)} s_{2 k-1+i(p-1)}
$$

is equivalent to $e_{2 k-1+i(p-1)}=0$, theorem follows.
Now suppose $p-1$ does not divide $2 k$. By von Staudt's theorem, $D_{2 k}$ and $D_{2 k+i(p-1)}$ are prime to p. Choose integers $I_{2 k}$ and $I_{2 k+i(p-1)}$
satisfying $I_{2 k} D_{2 k} \equiv 1$ and $I_{2 k+i(p-1)} D_{2 k+i(p-1)} \equiv 1(\bmod p)$. Then the equality (4) is equivalent to

$$
\begin{equation*}
N_{2 k} I_{2 k} \cdot e_{2 k-1+i(p-1)}=s_{2 k-1+i(p-1)} \tag{5}
\end{equation*}
$$

Now the Kummer's congruence implies

$$
N_{2 k} I_{2 k} \equiv N_{2 k+i(p-1)} I_{2 k+i(p-1)} \quad(\bmod p)
$$

Consequently, one has

$$
N_{2 k+i(p-1)} I_{2 k+i(p-1)} \cdot e_{2 k-1+i(p-1)}=s_{2 k-1+i(p-1)}
$$

and hence

$$
N_{2 k+i(p-1)} e_{2 k-1+i(p-1)}=D_{2 k+i(p-1)} s_{2 k-1+i(p-1)}
$$

as desired.
Q.E.D.

References

[1] T. Akita, Nilpotency and triviality of mod p Morita-Mumford classes of mapping class groups of surfaces, Nagoya Math. J., 165 (2002), 1-22.
[2] T. Akita and N. Kawazumi, Integral Riemann-Roch formulae for cyclic subgroups of mapping class groups, Math. Proc. Cambridge Phil. Soc., 144 (2008), 411-421.
[3] E. Dyer, Cohomology Theories, Benjamin, 1969.
[4] C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom., 3 (1969), 19-43.
[5] S. Galatius, Ib Madsen and U. Tillmann, Divisibility of the stable Miller-Morita-Mumford classes, J. Amer. Math. Soc., 19 (2006), 759-779.
[6] J. L. Harer, The second homology group of the mapping class group of an oriented surface, Invent. Math., 72 (1983), 221-239.
[7] K. Ireland and M. I. Rosen, A classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer-Verlag, 1990.
[8] N. Kawazumi, Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups, Topology Appl., 125 (2002), 363-383.
[9] Ib Madsen and M. S. Weiss, The stable moduli space of Riemann surfaces: Mumford's conjecture, Ann. of Math. (2), 165 (2007), 843-941.
[10] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton Univ. Press, 1974.
[11] S. Morita, Characteristic classes of surface bundles, Invent. Math., 90 (1987), 551-577.
[12] D. Mumford, Towards an enumerative geometry of the moduli space of curves, In: Arithmetic and Geometry Vol. II, Birkhäuser, 1983, pp. 271328.

Department of Mathematics
Hokkaido University
Sapporo 060-0810
Japan

[^0]: Received April 30, 2007.
 Revised January 10, 2008.
 The research is supported in part by the Grant-in-Aid for Scientific Research (C) (No. 17560054) from the Japan Society for Promotion of Sciences.

