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Harmonic tori and their spectral data 

Ian Mcintosh 

One of the earliest applications of modern integrable systems theory 
(or "soliton theory") to differential geometry was the solution of the 
problem of finding all constant mean curvature (CMC) tori in JR.3 (and 
therefore, by taking the Gauss map, finding all non-conformal harmonic 
maps from a torus to S2 ). At its simplest level this proceeds from the 
recognition that the Gauss-Codazzi equations of a CMC torus are the 
elliptic sinh-Gordon equations 

(1) Uzz + sinh(4u) = 0, z = x + iy. 

It was shown in the late 1980's ([24, 1]) that each doubly periodic so­
lution of this equation can be written down in terms of the Riemann 
8-function for a compact Riemann surface X, called the spectral curve 
(this also follows from Hitchin's work [10] on harmonic tori in S3 , which 
used a distinctly different approach). That this is true relies on two ob­
servations. First, (1) has a zero-curvature (or Lax pair) representation: 
it is the condition that 

e , V(EC*, 
-2uc-1 ) 

-Uz 

where 't' denotes the Hermitian transpose. As a result this equation 
belongs to a hierarchy of infinitely many commuting equations, so that 
solutions to (1) may belong to an infinite dimensional family of defor­
mations through solutions. These deformations are called the "higher 
flows" of the sinh-Gordon hierarchy. Secondly, each independent higher 
flow contributes to the number of independent Jacobi fields which the 
CMC surface admits: these belong to the kernel of the elliptic operator 
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6 + 4 cosh( 4u). Thus for a torus there can only be finitely many inde­
pendent higher flows. It follows that there must be a higher flow with 
respect to which the solution u(z, z) is stationary. In this context this 
means there is a solution to 

(2) 

in which the matrix ~((z, z) is a Laurent polynomial in (: it is called a 
polynomial Killing field. The spectral data of the CMC torus consists of 
the eigenvalues and eigenlines of~(· In particular, equation (2) means 
~( is isospectral i.e. its characteristic polynomial is independent of z. 
This provides us a with an invariant planar algebraic curve which is 
essentially the Riemann surface X. Altogether the spectral data consists 
of the Riemann surface X, which always possesses a real involution, 
a rational function ). on X of degree 2, and a line bundle £ over X 
satisfying a certain reality condition. The CMC surface is determined, 
up to Euclidean motions, by its spectral data. However, the existence 
of a polynomial Killing field is only a necessary condition for a CMC 
plane to be doubly periodic. If we call CMC planes "of finite type" 
when they possess a polynomial Killing field then one must still work 
at distinguishing the tori amongst the planes of finite type: this is a 
problem of closing periods on the surface (see e.g. [1, 8, 11]). This is 
also true for the Gauss.map: the space of non-conformal harmonic maps 
'P : ~2 ~ 8 2 of finite type is substantially larger than the set of non­
conformal harmonic tori. 

Essentially the same line of argument shows that all non-isotropic 
harmonic tori in CIP'n, sn [4, 9] and all non-conformal harmonic tori in 
rank 1 compact symmetric spaces [5] are of (semisimple) finite type. 
Although the construction of the spectral data is more complicated the 
principle is the same [17, 18]. However, these complications have the 
effect of obscuring the geometry of the original map. In [20] I proposed 
a more direct geometric construction of the map from the spectral data, 
and showed how this produces pluri-harmonic maps ~2k ~ Grk(cn+l) 
as well. 

My aim here is to use the example of non-conformal harmonic maps 
'P : ~2 ~ 8 2 as a way of motivating the geometric construction of [20]. 
To this end sections 1.1-1.5 describe the construction and properties of 
the spectral data for a map of semisimple finite type into 8 2 . The ap­
proach is more concrete than that of [17] and owes much to [9, 22, 25]. 
Having obtained the spectral data we examine it closely, in sections 1.6 
and 1.7, to see exactly what is needed to reproduce the map. In par­
ticular, 'we obtain a clear understanding of the periodicity conditions 
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by introducing a "singularisation" X' of X. Section 1.8 ties the previ­
ous discussion in with two other methods of reconstruction: the Symes' 
formula of [6] and the dressing orbit of the vacuum solution [7]. I give 
explicit formulae for computing 'P from its (hyperelliptic) spectral curve. 
This is illustrated with the example of the bubbletons: these are CMC 
surfaces in JH:.3 whose Gauss maps have rational nodal spectral curve. 
They are the solitons of CMC theory, some of which were known to ge­
ometers of the 19th century (see [21]). The calculations in section 1.8 
are particularly satisfying because they allow us to compute (using Nick 
Schmitt's CMCLab) explicit pictures of some CMC surfaces (see figures 
1 and 2). 

Section 2 describes the generalization presented in [20], which con­
structs pluri-harmonic maps of JH:.2k into Grk (cn+l ). The key point is 
that a pluri-harmonic map 'P : JH:.2k --+ Grk (cn+l) of semisimple finite 
type arises as a composition: 'P = '¢ o 1 where 

The middle factor is the generalized Jacobian of a singularisation X' of 
the spectral curve X. The map 1 is a homomorphism and the map '¢ 
is algebraic, derived from a section of a trivial Grk(Cn+l )-bundle over 
J(X'). No proofs are given here, they can be found in [20]. Nevertheless, 
I give the details for the construction of totally equivariant maps, which 
are characterized as being those whose spectral curve is the Riemann 
sphere. 

Acknowledgments. I am very grateful to Professors M. Guest, R. 
Miyaoka and Y. Ohnita for their generous invitation to participate in 
the 9th MSJ-IRI in Tokyo, which was the motivation for this article. 
I am also grateful to Martin Kilian and Nick Schmitt for their ideas 
concerning the explicit construction of bubbletons, which motivated the 
discussion in section 1.8. 

Notation. If Vis a vector space then Vt will denote its dual, while V* 
will denote V- {0}. 

§1. Maps into S2 • 

1.1. Maps of semisimple finite type. 

Let us start with a harmonic map 'P : JH:.2 --+ S2 of semisimple finite 
type. To recall what this means we fix a framing F : JH:.2 --+ SU2 with 
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F(O) = I i.e. <p = F · T if we view 8 2 c:::- SU2/T where T is the maximal 
torus of diagonal matrices. The Lie algebra su2 splits into the vector 
space sum t + m where t contains all diagonal matrices and m contains 
all off-diagonal matrices. Now define the su2-valued 1-form a = F- 1dF: 
with respect to the splitting of su2 this decomposes into at+ am. From 
these components we construct a C* -family of g[T valued 1-forms 

;--1 (1,0) + + ;- (0,1) 
a( = '-, am at '-,am 

where ( E C*. The condition that <p is harmonic is precisely the condi­
tion that ac satisfies the Maurer-Cartan equations for all (. In addition, 
it has two symmetries: 

(3) n,- - n,t 
'"-'(-1 - -"'(' 

where 't' denotes the Hermitian transpose and for A E g[2 , v(A) 
AdT ·A where 

We say that <p is of semisimple finite type when: 

(1a) there exists a smooth function a : ffi.2 -+ C* and a complex coordi­
nate z on ffi.2 such that 

(1b) there exists a smooth map~(: ffi.2 -+ cw(C*,gt2 ) satisfying 
(i) d~c + [ac, ~d = 0, 
(ii) ~( also possesses the two symmetries in (3), 
(iii) for all z E ffi.2 there is a positive integer p such that ~( is a 

Laurent polynomial in ( of order 2p + 1. 

These properties together imply 

(4) c - ;--2p-1 ( [) ) ;-2p+1 ( [) ) 
'>( - " am az + ... + " am az . 

1.2. The symmetric spectral curve ~. 

Define, for each z E ffi.2 , 

~A(z) = {((, [v]) E C* x lP'1 : -:::JJ-1, E C such that ~c(z)v = J-LV }. 

To maximise the domain of definition here, whenever ~( is either singular 
or zero at (0 we replace it by ((- (o)m~( where m is chosen so that 
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this is regular and non-zero at ( 0 . It is clear that this describes an 
algebraic curve birationally equivalent to the planar curve with equation 
p,2 + det(~c) = 0. Moreover EA(z) will be smooth (and unramified 
over the (-plane) at all points for which ~c; (or its renormalisation) is 
not nilpotent. In particular this is true over the unit (-circle (for the 
symmetry conditions imply ~ is skew-Hermitian there). Further, from 
(4) and la we see that EA(z) completes to a curve E(z) in IP'1 x IP'1 by 
adding two smooth points over each of ( = 0 and ( = oo. 

This curve admits a fixed point free involution arising from one of 
the symmetries of ~c;. Define 

V : JP'l X ]p'l --+ JP'l X JP'l 

((,[v]) ~--+ (-(,[Tv]) 

Then v induces a fixed point free involution on E(z) and the quotient 
curve E(z)/v is smooth wherever E(z) is. 

1.3. The quotient spectral curve X. 

Here we construct a model of the quotient curve E(z)jv. First, for 
any TJc; E cw(C*,g!2 ) satisfying v(ryc;) = TJ-C: define 

It is easy to check that i'J( -() = fj( () so that it is a function of .\ = (2 . 

Therefore, with an abuse of notation, let us use the notation 

(5) 

Now define 

XA(z) = {(.\, [w]) E C* x IP'1 : 6w = p,w} 

with the same convention at singular points or zeroes of 6 as earlier. 
An easy computation shows that 

c _ , -p-l ( 0 a2 ) \P+l ( 0 0 ) 
">- - " o o + · · · + " -a? o · 

Therefore XA(z) is completed in IP'1 x IP'1 by adding the points Po 
(0, [1, OJ) and P00 = (oo, [0, 1]). We will call this complete curve X(z). 

Lemma 1. X(z) is isomorphic to the quotient curve E(z)jv. 
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Proof. Let f: C* x lP'1 --+ C* x lP'1 be given by f((, [v]) = ((2 , [K:v]). 
Since 6 = AdK: · ~( this maps L:A(z) onto XA(z) and exhibits it as an 
unramified double cover. Further, it is easy to check that f o v = f so 
that L:A/li ~ XA. Finally, one readily checks that the restriction off 
to I: A extends to I: with image X. Q.E.D. 

We deduce from this that X(z) is smooth at both Po and P=. 

Lemma 2. X(O) ~ X(z) for all z E ffi.2 . 

Proof. By lb we have d(AdF>. · 6(z)) = 0, where F>. is given by 
F>: 1dF>. = OO>. and F>.(O) =I. Hence 

(6) AdF>. · 6(z) = 6(0). 

It follows that the map 

(7) 

is an isomorphism. To see that this extends to the complete curves we 
follow [9]. 

Define 

Then 
H+1 dH+ = -AdF;: 1 · ).P6(0)dz + 00>. 

= -.AP6(z) + OO>. 

which is polynomial in .>.. Therefore H+ is holomorphic in .>.. A similar 
computation shows that H_ is holomorphic in .>.- 1 . Whenever 6 (O)v = 
f.W we see that 

F;: 1v = H+ 1 exp(z.AP6(0))v = ez>.PCL H+ 1v 

so that the line [F;: 1v] equals [H+1v]. Similarly we can show that 
[F;1 v] = [H:::~ 1 v]. Now, we also have 

6(z) = AdF;: 1 · 6(0) = AdH±/ · 6(0) 

and it follows that the isomorphism (7) extends to give X(O) ~ X(z). 
Q.E.D. 

Remark. Notice that this proof shows that H+I>-=D is upper triangular 
since the isomorphism fixes the point (0, [1, 0]). Likewise, H-1>-=D must 
be lower triangular. 
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1.4. The eigenline bundle £ and its dual £. 

Let Ez denote the eigenline bundle of 6(z): it is the pullback to 
X(z) of the tautological bundle over IP'l, using the projection (.A, [v]) >---+ 

[v]. We will denote its restriction to XA by Ez,A and, to avoid too 
many superscripts, we will denote the dual bundle by .C. The inclusion 
Ez '---+ IP'1 x IP'1 x C2 pulls back the canonical coordinates e1, e2 on C2 

to give two independent globally holomorphic sections of Lz, which we 
also denote e1, e2 (or ef, e2 when necessary). Notice that e1((0, 1)t) = 0 
and e2 ((1,0)t) = 0 from which it follows that e1 E r(.C(-Poo)) and 
e2 E f(.C( -Po)). 

Our next aim is to show that these sections span the space of global 
holomorphic sections of .C and this characterizes .C. Indeed, one rea­
son for working over X is that on I; we do not have such a straight­
forward relationship between points and the sections arising from the 
coordinates e1 , e2 . First let A = C[XA], the coordinate ring of XA, let 
B = q.x,.x-1] c A and for any ring Ruse R(·) to denote an R-module 
presented by its generators. 

Theorem 1. (i) r(.CA) = B(e1, e2), (ii) r(.C) = C(e1, e2), 
(iii) deg .C = g + 1 (where g is the genus of X). 

Proof. Let Y be the completion of the planar curve with equation 
p? + det(6) = 0, with YA that part of the curve lying over ,\ =/= 0, oo. 
Then YA has coordinate ring Ay = q.x, ,\- 1 , !L] C A and there is a 
degree 1 morphism a : X ----+ Y. Set M = f(XA, .C) = f(YA, a*.C). 
First we will show that B(e1, e2) C M is an Ay-submodule. For any 
v E r(YA, a*£) = f(XA, £) we have v = (e1(v), e2(v))t and 6,v = fLV 
implies f.1£i(v) = aie1(v) + bie2(v) for some ai, bi E B. It follows that 
fLei E B(e1, e2). So B(e1, e2) is an Ay-module. 

Now it can only be a proper Ay-module if its localisation at every 
maximal ideal p is also proper in the corresponding localisation Mp. 
But at any smooth point P E YA, with maximal ideal p, Mp is the 
stalk .Cp of .C at P, and all its proper submodules are contained in 
.C p (-P) (the local sections which vanish at P). But in that case every 
section in M must vanish at P. This means that for every v E [p both 
e1 (v) and e2 (v) vanish at P, which is absurd (there is always a non-zero 
eigenvector). Since YA must have at least one smooth point we deduce 
that M = B(e1, e1). 

(ii) Given (i) it suffices to show that if .xnei E f(.C) for n E Z then n = 0. 
Since e1 does not vanish at Po and e2 does not vanish at P 00 it suffices to 
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show that neither Ae1 nor A - 1e2 are globally holomorphic. Consider first 
Ae1 : it is globally holomorphic if and only if Ae1 ( v) is holomorphic at 
P00 for all locally holomorphic sections v of£ about P00 • By definition, 

where (-2P- 1 ~c::w = JL(-2P- 1w. We may assume, without loss of gener­
ality, that 

Therefore 

Hence Ae1 ( v) has a first order pole at P 00 • A similar calculation shows 
for v a locally holomorphic section about Po we can take 

and therefore A - 1 e2 ( v) has a first order pole at Po. 

(iii) Since A has divisor 2Po- 2P00 , (i) and (ii) imply r(.C( -2Po)) = 0. 
So applying the Riemann-Roch formula gives deg .C :S g + 1. Now we 
show deg.C 2: g + 1. For n any suitably large positive integer .C(2nP00 ) 

must be non-special so that dimr(.C(2nPoo)) = deg .C + 2n + 1- g. But 

so deg .C + 2n + 1 - g 2: 2n + 2. Q.E.D. 

1.5. The real structure of r(.C). 

An important property of r(.C) is that it possesses a Hermitian inner 
product: this comes from a reality condition on .C and is essential since 
we intend to identify IP'r(.C) with S2 ~ CIP'1 as a Hermitian symmetric 
space. This reality condition arises as follows. 

The real symmetry ~>:-1 = -d induces a real involution p on X for 
which p*A = A- 1 and p*J1 = -JL. Notice that, since 6. is skew-Hermitian 
over IAI = 1, J1 is pure imaginary there sop fixes all points over IAI = 1; 
this will prove to be important later. Consequently the eigenline bundle 
£ also satisfies a reality condition. 
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Proposition 1. p*£ ~ £(-R) where R is the ramification divisor 
of>. : X -t IP'1 . 

Proof. Since p*6. = -(L sections of p*£ correspond to solutions 
of (iw = f.LW. Take any proper open subset U C X for which U = 
>. -l o >.( U), and let v : U ___, £ be a trivialising section. If a denotes 
the hyperelliptic involution on X then a*f.L = -f.L and clearly v, a*v are 
linearly independent at P E X if and only if P is not a ramification 
point. Take V to be the matrix with columns v, a*v, then we have 
det(V) vanishing only at ramification points. Define W = det(V).v-lt, 
then W is holomorphic in U and 

It is easy to check that the columns of Ware given by w, -a*w where 
e1(w) = e2(a*v) and e2(w) = -e1(a*v). Therefore w corresponds to a 
trivialising section for p*£ over U. Now consider the injective homomor­
phism of Ou-modules 

Ou(w) ___, Hom(Ou(v), Ou) 
f.w f--t (h.v f--t fh.wtv) 

for j, h E Ou. Since wtv = det(V) we see that the induced sequence of 
sheaves is 

0 -t p*£ -t c -t OR -t 0 

where 0 R is the skyscraper sheaf for the divisor R. 
C(-R). 

Therefore p* £ ~ 
Q.E.D. 

Consequently we have C®p*C ~ Ox(R). The inner product on C2 

corresponds (at least over the unit circle) to the section 

(8) 

(which maps (v, w) to p*vtw). Up to scaling this corresponds to an inner 
product on f(£) determined in the following manner. 

We first take any s E f(£) to identify C with the divisor line bundle 
Ox(D) where D is the divisor of zeroes of s. Second we fix a rational 
function f with divisor D + p*D- R for which p* f = f and f is positive 
over 1>-1 = 1 (this is always possible since p fixes all points over the unit 
circle). Now we define 

(9) 
h : f(£) X f(£) -t C; 
h(s1,s2) = ~ L~=l f(Oj)(s1/s)(Oj)p*(s2/s)(Oj) 
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where 0 1 , 0 2 are the two points over A = 1. The proper interpretation 
of the right hand side is in terms of the trace map Tr : Ox(R) -r C 
which I will not explain in detail here (see, for example, [26]). But it is 
worth noting for future reference that this inner product clearly makes 
the subspaces f(£( -OI)), f(£( -02 )) c f(£) orthogonal. 

1.6. What the frame does. 

Let us introduce ro for spaces of analytic sections and let A de­
note the ring of analytic functions on XA while B denotes the analytic 
functions on the punctured A-plane IP'l \ {0, oo }. The map 

f(Ez,A) -r f(Eo,A); v f---4 F>,v 

is clearly an isomorphism of A-modules. Therefore it corresponds to a 
family of trivialising sections 

Let J(X) denote the Jacobian of X- the abelian variety of isomorphism 
classes ofline bundles of degree zero. If JR(X) denotes the real subgroup 
of degree zero line bundles L for which p*L ~ L - 1 then we deduce from 
the previous section that Eo 0 Lz belongs to JR(X) for all z. 

Proposition 2. (i) Define L: JR.2 -r JR(X) by Lz = E0 0£z. Then 
L is JR.-linear (i.e. a homomorphism of real abelian groups). (ii) The 
section ()z exp(zAPp) is holomorphic and non-vanishing over P0 , while 
()z exp(zA-Pp) is holomorphic and non-vanishing over P=. 

Proof. Observe that (ii) implies (i) since we deduce from it that 
Lz corresponds to the transition functions exp(zAPp) and exp(z>.-Pp) 
patching from XA to U0 and U= respectively, where the latter are open 
neighbourhoods of Po and P= respectively. 

To prove (ii) we recall from the proof of lemma 2 that if v0 is a 
holomorphic section of Eo about Po then F;: 1v0 = H+1 exp(z>.Pp)v0 so 
that exp(-z>.Pp)F;: 1v0 is a holomorphic section of Ez about P0 . But 
F;: 1vo corresponds to Vo 0 8;; 1 so tensoring with exp(-z>.Pp){);; 1 pre­
serves holomorphicity about P0 . A similar argument using H_ about 
P= proves the second part of (ii). Q.E.D. 

Let Lz,A denote the restriction to XA of Lz. We want to make 
explicit the representation 
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which gives us F(B) = F>.. It arises from the composite isomorphism 

(10) 

The second arrow is just the identification r(.Cz)t --> C2 determined 
by ef, e2. The first arrow is the B-module isomorphism dual to B QS! 

r(.C) ~ f(.CA), from theorem 1. This uses the fact, implicit in the proof 
of proposition 1, that >.*.C is dual to >.*£(R). It follows that to any 
¢ E f(LA) there is some F(¢) E B QS! gl2 so that the following diagram 
commutes: 

f(£z,A(R)) 
(11) Ez ! 

B QSl C2 
F(</>) 

--> 

f(£o,A(R)) 
! Eo 

.B QS! C2 . 

Next we will show that () is almost completely determined by its be­
haviour at the points P0 , P=. First observe that from (4) we have 

f..L2 = _ det ~( = (-4p-2 + ... + (4p+2 = >. -2p-1 + ... + >.2p+1. 

Since p*f..L = -f..L whereas p*( = (-1 we find, with the right sign choice 
for (, f..L = (-2P- 1 + ... - (2P+1 . Therefore )..P f..L- (-1 is holomorphic 
about Po while >. -p f..L + ( is holomorphic about P =. Consequently, as a 
corollary of proposition 2 we have: 

Corollary 1. Bz is determined up to sign, amongst trivialising sec­
tions of LA, by the properties that: (a) Bz exp(z(-1 ) is holomorphic 
and non-vanishing over Po while Bz exp( -z() .is holomorphic and non­
vanishing over P= and, (b) det(F(Bz)) = 1. 

Proof. If ¢ is any other trivialising section with these properties 
then ¢0-;1 is a globally holomorphic function and therefore a constant, 
k say. But clearly det(F(kBz)) = k2 so that k = ±1. Q.E.D. 

Remark. The unitary nature of F(Bz) on the unit circle is a reflection 
of the fact that p*() = o-1 . 

Finally, let us use this corollary to display a simple characterisa­
tion for the map L. Since it is linear it is completely determined by 
dL0 (8/8z) which lies in Tf' 0 J(X) (here 1 denotes the identity in J(X)). 
By the corollary above L(z) corresponds to the cohomology class [c(z)] 
in H 1(X, 0*) for the 1-cocycle 

(12) 
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for the open cover XA, Uo, Uocn where now Uo, Uoo are (disjoint) param­
eter discs (i.e. domains for (,(-1). Therefore 

Now recall the isomorphism H 1 (X, 0) ~ r(nx )t: it identifies 8[cJ/8z 
with the map f: w 1-t resp0 (- 1w for wE r(nx). But now observe that 

8 r' resp0 C 1w = (w/d()(Po) =a( }Pow. 

Hence f = dAp0 (8/8() where Ap0 :X---. J(X) is the Abel map with 
base point Po. Thus we learn: 

Lemma 3. The linear map L: JR2 ---. JR(X) is uniquely determined 
by the property that dLo(8/8z) = dAp0 (8/8(). 

1. 7. Periodicity conditions. 

We have seen that the non-conformal doubly periodic harmonic map 
'P : JR2 ---. 8 2 yields us spectral data (X, .X, .C) and it is easy to see how to 
reverse this procedure to reconstruct the map from this data. We first 
construct the linear map L: JR2 ---. JR(X) given by lemma 3 and define 
.Cz = .C l8l Lz. By theorem 1 r(.Cz) comes equipped with a frame ef,.e~ 
determined by the points P 00 , Po: this frame is chosen to be unitary 
according to the trace inner product described above. With the frame 
we recover the map F in (11). Now we equip Lz with the unique (up 
to sign) trivialising section (}z over XA given by corollary 1. Thus we 
obtain the extended frame F>. = F(Oz) and the map 'P is recovered as 
F1 o [1, OJ where [1, OJ E CJID1. 

However, we do not need the frame itself to obtain 'P: it is clear that 
each line 'P(z) E CJID1 corresponds to the line r(.Cz( -P00 )) E lP'r(.Cz) 
where lP'r(.Cz) is identified with CJID1 using Oz. There is an invariant way 
of describing this identification which avoids explicit reference to (}z and 
this helps us understand the periodicity conditions. To obtain this let 
us first consider the expression for 'P in homogeneous coordinates: it can 
be written as 

'P = [(eUfOz)l>.=l, (e~JfOz)l>.=l], 

where fj E r(t'z,A(R)) is the B-module generator dual to to ej. Now 
it is clear that if we choose some other (unitary) basis v1 , v2 of r(.C) we 
obtain, up to isometry of 8 2 , the same map. In particular, following 
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the remarks made earlier, we could choose this new basis such that v1 
vanishes at 0 2 and v2 vanishes at 0 1. In that case 

where a : L.:[Oz --+ £[01 is the fibre identification induced by the choice 
of v1, vz (i.e. a(vz[oJ = v1loJ. 

Recall that up to scaling h is determined purely by the vanishing 
of e1 at P00 • It follows that rp has periodicity rp(z + 7) = rp(z) precisely 
when both equations L(z + 7) = L(z) and 

(Bz+TB;1)[o2 = (Bz+TB;1)[o, 

are satisfied. The latter condition is more simply interpreted as saying 
that the fibre identification Lz[Oz --+ Lz[Ol given by Bz[o2 >---+ Bz[o1 is 
7-periodic. This identication determines at each z a line bundle L~ over 
X', the singular curve obtained from X by identifying 0 1 with 0 2 to 
obtain a node. Thus we have a 7-periodic map L' from JR.2 to J(X'), 
the (generalized) Jacobi variety for X'. Recall that the pullback of line 
bundles along X --+X' induces a surjective homomorphism 1r : J(X') --+ 
J(X) whose fibre at Lis L[02 Q9 L-1[01 ~ C*. In fact p*L' ~ L'-1 so 
L' takes values in a real subgroup JR(X') ofJ(X'). It can be shown 
that, when X is smooth of genus g, this group is a real compact torus 
of dimension g + 1. 

Lemma 4. The map L': lR.2 --+ JR(X') defined above is linear and 
is uniquely determined by the property that dL~ ( 8 I 8z) = dA'p0 ( 8 I 8(), 
where A'p0 :X'- {0}--+ J(X') is the Abel map for X' based at P0 . 

Proof. Since Bz arises from the 1-cocycle c(z) in (12) L~ has 1-
co cycle 

c'(z) = {(ezC', X~, Uo), (e-zC, X~, U00 )}. 

Now recall (from e.g. [26]) that 

J(X') ~ r(n')diH1(X- {O~,Oz},Z), 

where n~ is the sheaf of regular differentials on X': each such differential 
can be identified with a meromorphic differential on X whose only poles 
are simple ones at 0 1 and 0 2 i.e. n~ ~ nx(01 + 0 2 ). The Abel map 
for X' is defined by 

A'p0 : X'- {0}--+ J(X'); p >---+ fP, 
}Po 
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where 0 is the nodal point lying under 0 1 , 0 2 . To compute dL~ we 
simply repeat the computation prior to lemma 3 using c'(z). Q.E.D. 

Corollary 2. The harmonic map r.p : ~2 ---> 8 2 with spectral data 
X,.\,£ has period T if and only if the related map L' : ~2 ---> J R(X') has 
period T. This depends only on the data X,.\. 

In particular, if X has genus g :::; 1 the harmonic map is necessarily 
doubly periodic since J R(X') is topologically 8 1 or 8 1 X 8 1 . These ex­
amples yield the Gauss maps of all Delaunay surfaces in ~3 (i.e. the 
constant mean curvature surfaces of revolution) with the case g = 0 cor­
responding to the Gauss map of the cylinder. A more interesting class 
of singly periodic examples are the Gauss maps of the "bubbletons". 
The bubbletons are periodic CMC surfaces whose ends are asymptotic 
to the standard cylinder (see figure 2). They get their name because 
they correspond to soliton solutions of the sinh-Gordon equation, which 
governs the behaviour of the metric. As with KdV solitons, these so­
lutions have rational nodal spectral curves. Using the theory above we 
can characterize these spectral curves as follows. 

Proposition 3. Let X be the rational nodal curve of arithmetic 
genus g = 2r with equation 

r 

(13) J.L2 =A IJ (.A- aJ) 2 (1- aJ.\) 2 , a1 E ~' 0 < a1 < 1. 
j=1 

Then X, .A is the spectral data for a singly periodic non-conformal har­
monic map r.p : ~2 ---> 8 2 if and only if there exist positive integers 
Po,P1, · .. ,Pr for which 

(14) j = 1, ... ,r. 

Proof. Let us set ( = v1: this is a rational coordinate on X. Thus 
we identify X with the singularization of the Riemann sphere IF' ( with the 
points ±(j identified, where C] = aJ and c;+J = aj 1 for J = 1, ... , r. 
Notice that (j E ~ since aJ > 0. X' is the further singularization 
obtained by additionally identifying ±(0 , where (o = 1. We may assume 
the real involution is p*( = (- 1 . A basis for r(O'x) is given by 

1 1 1 
Wj = 2ni ((- (j - ( + (j )d(, j = 0, ... '2r, 
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Now X' is obtained from its normalisation (a smooth curve of genus 2r+ 
1) by shrinking half the homology generators to zero, hence H 1 (X', Z) is 
generated by 'Yj, j = 0, ... , 2r where each of these is the boundary of a 
small positively oriented disc containing (j· It follows that§"!; wk = 8jk· 

The real group JR(X') is isomorphic to 

{wE f(O~): p*w = -w}tj{'Y E H1(X',Z): P*'Y"' -'Y} 

which we will write more simply as vt /f. It is not hard to check that a 
basis for V is given by 

1 i 
Vo =Wo,Vj = 2(wj +wr+j),vr+j = 2(wj -Wr+j), j = 1, ... ,r 

and generators for r c vt can be given by 

i 'i ' j = 1, ... 'r. 
"/0 "'i+"'r+j 

With respect to this basis for V the dual isomorphism vt ~ JR.2r+1 

identifies the generators for r with the first r + 1 standard basis vectors 
for IR.2r+l. 

The map L': IR.2 -t JR(X') described above is covered by 

£: JR.2 -t vt; f(z, z) = zreso(-1 - zresoo( 

where e.g. res0(-1 : V -> C takes the residue of c;- 1w at ( = 0. In terms 
of the dual basis for vt this has coordinates 

£: IR.2 -t IR.2r+l; f(z, z) = zU + zU 

where U E C2r+1 has coordinates 

-1 u = -. (2, ... 'o:J-:- 1 + O:j, •.. 'i(o:J-:- 1 - O:j ), ... ) 
27TZ 

where a] = aj. The map is periodic precisely when there exists z E C 
for which 

zU + zU = (po,Pl. ... ,pr, 0 ... , 0), Pj E Z. 

If we write z = x + iy then these 2r + 1 equations become 

2y = -rrpo, y( O:j + o:j 1 ) = -rrpj, x( O:j - o:j1 ) = 0, j = 1, ... , r. 

These equations have a solution for aj < 1 if and only if x = 0 and 

2 2pj 
0:. - -O:j + 1 = 0. 

3 Po 

Q.E.D. 
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Remark. The reader may wonder why we only consider aj E R The 
more general case of complex nodes also leads to periodic maps cp : ~2 -+ 

8 2 . The conditions are that, writing a1 = r}e201, there must be positive 
integers Po, ... ,Pr for which 

2p· 
rJ- - 3 cos(B1)r1 + 1 = 0. 

Po 

However, these are not the Gauss maps of periodic CMC surfaces unless 
01 = 0. Indeed, it is not obvious even then that we obtain periodic CMC 
surfaces since none of the discussion above accounts for the extra condi­
tion that the CMC surface must also have a period when its Gauss map 
does. That this happens when (14) is satisfied follows from an argu­
ment I learned from Martin Kilian and Nick Schmitt, which exploits the 
dressing construction. Unfortunately to describe this closing argument 
would take us too far afield, although I will say something about the 
dressing construction in the next section. 

1.8. Two reconstructions of the harmonic map: Symes' 
method and dressing the vacuum. 

I know of three approaches to reconstructing the harmonic map 
from its spectral data. The first of these, which I will describe in a more 
general context later, boils down to writing the map down in terms of 
the 0-functions for X' (cf. [1]). The other two methods use a loop group 
and require one to be able to perform a certain loop group factorization. 
Until recently this had only theoretical interest, but with the advent of 
Nick Schmitt's CMCLab software it is now possible to perform explicit 
calculations involving the (approximate) factorization, so I want to take 
this opportunity to explain how to reproduce the map cp: ~2 -+ 8 2 (and 
hence its associated family of CMC surfaces) from its spectral data. 
Before I begin we must recall some fundamentals about the application 
of loop groups to the construction of harmonic maps. 

First, set ac = 8L2 (C) and let G denote its compact real form 
8U2 . For E E ~+ with 0 < E < 1 we let C be the union of circles 
{ ( : 1(1 = E or IC:I = E- 1 } on the Riemann sphere C U { oo} and consider 
it as the common boundary of the two open sets 

E = {(: E < IC:I < E-1 }, I= {(: IC:I < E or 1(1 > E- 1}. 

We will work with the loop group (of "twisted loops") 
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This loop group contains in particular AEG, the subgroup of those g E 
AcG which extend holomorphically into E, and A1G, the subgroup of 
those g E AcG which extend holomorphically into I such that g0 is upper 
triangular with positive real diagonal entries. It is well known (see [16]) 
that every g E AcG factorizes uniquely into gEgi where gE E AEG and 
g1 E A1G: this is sometimes called the Iwasawa decomposition for AcG. 

The relevance of these groups to our harmonic maps can be en­
capsulated in the following theorem. First, notice that the simplest 
non-conformal map 'P : ~2 ----. S 2 , which has been dubbed the "vacuum 
solution", maps onto a great circle and is framed by the homomorphism 

F(o) : ~2 ----. SU2 ; F(o) = exp(zA- zA); A= ( ~ ~ ) . 

This has extended frame 

Theorem 2. [6, 7] Let 'P : ~2 ----> S2 be a non-conformal harmonic 
map of finite type with polynomial Killing field ~dz), in the form (4). 

(1) 'P has an extended frame given by 

This is "Symes' formula" [6]. 
(2) For some 0 < E < 1 there exists gc; E A1G so that 'P has an 

extended frame given by 

This is "dressing the vacuum solution" [7]. 

Since in both formulae the frame satisfies the same Maurer-Cartan equa­
tions with Fc;(O) =I, each method gives the same extended frame. Now 
I will describe how to compute the polynomial Killing field ~(, and the 
dressing matrix gc; corresponding to the spectral data X,>., C for a par­
ticularly amenable choice of C. 

Proposition 4. Let X,>. correspond to the curve with affine equa­
tion 

g 

y2 =>.IT(>.- aj)(1- aj>.); 0 < lajl < 1. 
j=l 
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and let £ = 0 x ( R+) where R+ is the divisor Po+ LJ=l Rj for A( Rj) = 
aJ. Then the non-conformal map t.p : ffi.2 ~ S 2 with spectral data X, A,£ 
arises from: 

(1) 

(15) 

(2) 

(16) 

Symes' formula using ~c(O) = 'T/(- 'TJ~- 1 where 

dressing the vacuum solution by 

( h-1/4 0 ) 
g( = 0 hl/4 ; 

9 ;-2 

h = IJ( " - aJ ). 
1- a(2 

j=l J 

Proof. 1. Given an orthonormal basis e1 , e2 for r(£) we obtain a 
B-module morphism 

K: u E qxA]: p*f = -!} ~ {~c(z): d~ =[~,a], ~c-1 = -~J} 

in which each~ is algebraic (indeed, a Laurent polynomial) in A. In fact 
this map is an isomorphism for real algebraic ~ [19]. It arises from the 
commutative diagram 

f(t'z,A(R)) 
Ez ! 

B®C2 

xf 
~ 

f,(f) 
~ 

f(Ez,A(R)) 
! Ez 

B®C2 

This gives (>.(z) = K(f) for each z, where we recall from (5) that (\ = 
AdK: · ~(· Since 8f8- 1 = f it follows, by combining this diagram and 
the diagram (11), that ~(0) = F~(z)F- 1 whence d~ = [~,a]. For the 
purposes of Symes' formula we want to compute K(f) at z = 0 for 
f = y- p*y. Since 

it suffices to compute K(y) at z = 0. A simple computation shows 
that with respect to the trace inner product (9) r(Ox(R+)) has an 
orthonormal basis given by 

(17) 

Here we are identifying holomorphic sections of £ with rational func­
tions on X whose divisor of poles is no worse than R+. Notice that e1 
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generates r(.C( -PCXl)) while e2 generates f(.C( -Po)). Now K(y) is the 
matrix 

where 

so that at z = 0 

Finally, let T/( be the twisted loop AdK:- 1 · K(y) to obtain the formula 
(15). 

2. Let us consider the geometric meaning of the equation (16). If we 

write these loops in their untwisted form, then 9>-.Flo) = F>-.b>-. where F>-. 
extends holomorphically to an annulus on the .\-sphere (which we will 
call E despite the abuse of notation) and b>-. extends holomorphically 
to a pair of discs about >. = 0, oo (which we will call I) and is upper 
triangular at >. = 0. A little thought shows that the columns of F-lt 
represent efB- 1 , e2B- 1 , thought of as sections of the rank two vector 
bundle >. • .C over E, with respect to the global frame e~, eg. Let ¢E 
denote the trivialisation of >.*.C determined by this global frame, then 
the equation 9>_1tb-;_,;~o = I expresses the fact that there is some local 
trivialisation ¢I for >.* .C over I for which the transition relation on En I 
is 

9-ltcPI = cPE· 

Therefore 9"5. is the matrix whose columns are ¢I(e~), ¢I(eg). Now we 
recall from [15] that ¢I is obtained by direct image from a trivialisation 
of .C over >. - 1 (I) in the following way. Let s I be a non-vanishing holo­
morphic section of .Cover .x- 1 (!). By definition f(I, >.*.C) = r(>.- 1 , .C) 
and BI induces the trivialisation 

where s/si = s 1 ((2 ) + (s2 ((2 ). Any trivialisation ¢I obtained this way 
and which gives det(9>-.) = 1 will provide a suitable matrix 9>-. (the free­
dom here is right multiplication of 9>-. by any element of AIG which 
commutes with Flo) for all z). To calculate 9>-. we let e1 , e2 be the basis 
(17) and initially take BI = e1 : this is appropriate since as a function 
it has a simple pole at Po and does not vanish at P CXl, therefore it rep­
resents a non-vanishing section of .C over I provided I is small enough. 
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Now we write 

el/e1 = 1 + (.0, 
g (2 

I _ (IT( -aJ )1/2 e2 e1 - 0 + . _ (2 · 
1- a· 

j=l J 

However, this choice of s1 does not give det(g.>-) = 1, so it remains 
to rescale s1 by the appropriate non-vanishing function to obtain (16). 

Q.E.D. 

Fig. 1. Wente torus (top), twisty torus (bottom). 

Remark 1. For simplicity define i)c, = -ry~_,. It suffices to use fJc, in­

stead of ~c,(O) in Symes' formula, since [77, fJ] = 0 and exp(z(29ryc)E = I 
(since 7]( is polynomial in(), therefore exp(z(29~c(O))E = exp(z(29fJc.)E. 
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Moreover, by combining the extended frame with the Sym-Bobenko for­
mula [2, 14] we can produce CMC tori once we know a choice of branch 
points for the spectral curve which satisfies the double periodicity con­
dition (not just the periodicity condition above, which only makes the 
Gauss map periodic, but the full CMC periodicity condition described in 
[1]). The following examples for a genus two curve are due to Matthias 
Heil (private communication): 

a 1 = 0.1413 + 0.1018i, a 2 = 0.1413- 0.1018i, (Wente torus); 
a 1 = 0.124 + 0.1485i, a 2 = 0.4387- 0.071i (twisty torus). 

The corresponding CMC tori are drawn in figure 1. 

Remark 2. In fact we can use the dressing construction to produce all 
harmonic maps with spectral data X,>.. For even though the dressing 
matrix ( 16) corresponds to the line bundle 0 x ( R+) every other line 
bundle satisfying the reality condition is of the form 0 x ( R+) Q9 L where 
L E JR(X). It was shown in [17] that the full family of these is swept out 
by the "higher flows" described in [7]. That means an extended frame 
for the harmonic map with data X,>., Ox(R+) Q9 Lis given by dressing 
the vacuum by 

00 

g( exp(L)tj(j Aj- fjCj A-j)) 
j=l 

for some sequence tj E C. Moreover, for a map of finite type only 
finitely many of the higher flows are independent, so there is no need 
for an infinite sum here. It can be shown that it suffices to have only 
t 1 , t3 , ... , t29 _ 1 taking any values and all other parameters zero: the first 
flow t 1 is just a z-translation of the surface domain. 

Remark 3. By combining proposition 3 with proposition 4 we can com­
pute the one and two bubbletons in figure 2. These have respectively 
r = 1, g = 2 and r = 2, g = 4. Using the previous remark we obtain a 
real g-parameter family of deformations of these surfaces. Each bubble 
can be moved relative to any other (or the cylinder) by a translation 
along the cylinder or a rotation about its circumference. Thus each 
bubble contributes two real parameters: there are r bubbles altogether. 
This demonstrates that J R (X') ~ (IR x 5 1 Y. It is interesting to note 
that we can also think of the bubbletons as being constructed by dress­
ing the vacuum by a rational loop on the (-sphere. We can re-scale the 
matrix gc; in (16) so that for a nodal curve (13) it becomes 

(18) 
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Fig. 2. One bubbleton and two bubbleton. 

This dressing matrix produces the same surface and resembles a product 
of Backlund transforms in the sense of [28]. Although proposition 3 only 
proves that the Gauss map of the CMC surface is periodic (given the 
conditions (14) on each a1) it turns out that the CMC surface itself is 
periodic. This can be shown by examining the effect on the monodromy 
matrix of F2°) of dressing by any factor in the product (18). This ap­
proach was explained to me by Martin Kilian and Nick Schmitt. Their 
approach also explains the geometric significance of the positive integers 
Po, ... ,Pn appearing in (14). The integer Po determines the number of 
times the cylindrical end of the bubbleton wraps around itself, while p1 
is the number of "lobes" the j-th bubble possesses. 
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§2. Harmonic and pluri-harmonic maps into Grk(Cn+l ). 

Let k :::; (n + 1)/2. Here I will briefly recount the theory given in 
[20] for constructing pluri-harmonic maps lfJ : JR2k ____, Grk(cn+1 ) which 
generalizes the construction given above (recall that a map is pluri­
harmonic if it is harmonic on any holomorphic curve: here JR2k is given 
the usual complex structure). At the end I will illustrate this with the 
example X ~ IP'1 . 

We assume that the spectral data here consists of a smooth compact 
Riemann surface X (of genus g) with real involution p together with a 
degree n + 1 function A on X and a line bundle £ over X. We require: 
p*A = A- 1 ; the ramification divisor R of A has no support over IAI = 1; 
and p fixes every point over IAI = 1. In that case R = R+ + p*R+, 
where R+ is the divisor of ramification over IAI > 1. We can choose £ 
to satisfy the reality condition p*£ ~ ct(R) by taking any element of 
the compact real connected g-dimensional torus 

N = {Ox(R+) Q9 L: L E JR} 

where JR is the identity component of {L E J(X): L ~ p*L- 1 }. It can 
be shown that for any such bundle A*£ is a trivial rank n + 1 bundle 
so dim(f(£)) = n + 1. Further, the trace pairing equips f(£) with a 
Hermitian inner product. 

As before, the geometry of the construction is best understood by 
working with the singularisation X' of X obtained by identifying the 
n + 1 points 0 1 , ... , On+1 lying over A = 1 together to obtain a nodal 
singularity 0 on X'. A line bundle £' over X' is best thought of as a 
line bundle £ over X equipped with a linear identification of the fibres 
over 0 1 , ... , On+1 : we can think of this as assigning a non-zero element 
to each stalk £101. In Pic(X') (the algebraic group of all holomorphic 
line bundles over X') we distinguish the real variety 

---1 
where Jk_ = {L' E J(X') : L' ~ p*L' }. Let 1r: Pic(X') ____, Pic(X) be 
the natural epimorphism for which 1r(£') = £. An element of r(£') is a 
global section of£ which "takes the same value" at each 0 1 using the 
fibre identification with which£' is equipped. For£' EN', since A*£ is 
trivial, there is no non-zero global section of £ which vanishes at every 
0 1, therefore dim(f(£')) = 1. Thus any non-zero global section of£' 
gives us a convenient representation for the fibre identification carried 
by£'. 
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Over N' there exists a natural rank n + 1 bundle E' whose fibre 
at £' is f(£). For any k the Grassmann bundle Grk(E') possesses a 
canonical trivialisation given pointwise as follows. Let 

By taking any non-zero sc E f(£') we can identify 

and this is projectively dependent only on£'. Thus we have a natural 
map 

[e1 1\ ... 1\ ek] ~ [v1 1\ ... 1\ vk] E Grk(cn+l). 

The relevance of this is that by taking a suitable section of Grk(E') and 
applying this trivialisation we obtain a map J~ S:' N' --+ Grk(cn+l) 
whose restriction to suitable subgroups of J~ is (pluri)-harmonic. This 
result is true for any choice of isomorphism J~ S:' N', so in fact we 
obtain not just one map but a family of them - these correspond to 
the deformations made available by the higher flows discussed earlier. 

Now I must explain which section of Grk(E') yields (pluri)-harmonic 
maps. Although we could discuss the construction of maps of any 
isotropy order we will stick with the simplest case of lowest isotropy 
order i.e. non-conformal maps. For this we take A to have (at least) k 
double zeroes P 1 , ... , Pk. Consequently the divisor of A has the form 

where Eo, Eoo are positive divisors of degree n + 1- 2k. Let Doo denote 
the positive divisor Q1 + ... Qk + E 00 of degree n + 1- k, then D 00 gives 
us a section of Grk(E') by assigning to each£' the k-plane f(£( -D00 )). 

Thus by our canonical trivialisation we have map 

Now let 1 : JR2k --+ J~ be the real homomorphism uniquely determined 
up to scalings by: 

where z1, ... , Zk denote complex coordinates on JR2k, (pj is a local coor­
dinate about Pj and A'p denotes the Abel map for X' with base point 

J 

Pj. 
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Theorem 3. [20] The map rp = 1/J o 1 : IR2k --+ Grk(cn+ 1 ) given 
above is pluri-harmonic. Indeed, the harmonic map obtained by restric­
tion of rp to the complex line with tangent 2::: ajo / OZj is harmonic: it is 
also nowhere conformal iff 2::: a; =f. 0. 

Remark. According to [17, 18] this theorem accounts for all non-conformal 
harmonic maps rp : IR2 --+ ClP'n of semisimple finite type (and therefore 
all non-conformal tori). Indeed I believe it will account for all maps of 
semisimple finite type into Grk (cn+1 ) using a similar argument. The 
main unanswered question is to what extent the non-conformal (or more 
generally, non-isotropic) harmonic tori in Gr k (en+ 1) are accounted for 
by the tori of semisimple finite type. Some progress has been made in 
this direction (see [29]) but the problem is not yet settled. 

2.1. Explicit formulae in terms of Riemann 0-functions. 

In the construction above there is, up to scalings, a natural basis 
e1, ... ) ek for the k-plane r(.c( -Doo)· For each j = 1, ... ) k let Dj be 
the positive divisor D 00 + I:kh Qj, which has degree n, and notice that 
for any j the divisor of poles of>.. is Dj + Qj. Since >..*£ is trivial the 
subspace f(.C(-Dj) c f(.C(-Doo)) is one dimensional and .C(-Dj) is 
non-speciali of degree g. This means we can obtain a non-zero section of 
it using Riemann's 0-function. To obtain a formula for 1/J we then have to 
understand the behaviour of the fibre identifications. It turns out that 
these can be incorporated by pulling back the 0-line bundle over J(X) 
to J(X') using 1r. An explicit formula for 1/J is then obtained as follows. 
Throughout this discussion we take .C = 0 x ( R+): any other choice of .C 
simply amounts to a translation in the argument of the 0-function with 
no loss of generality. 

We know that we can make identifications 

where Ox ( o) is the sheaf of mermorphic differentials on X with divisor 
of poles no worse than o = 0 1 + ... + On+1 and A' is a lattice on 2g + n 
generators. We choose coordinates so that 1r : J(X') --+ J(X) is covered 
by the map 

Now let us define 00 (W) = O(W) and for j = 1, ... , n define 

Oj(W) = exp(27riw9+j)O(W + A(OH 1 - 01)), 
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where e is the classical Riemann e-function on ([:9 corresponding to the 
induced isomorphism J(X) -::o ([:9 (rr(A'). Each of eo, ... , en represents 
a global holomorphic section of the pullback by 7f of the e-line bundle 
over J(X) [20]. 

For l = 1, .. . , k let Dz be the unique positive divisor (of degree 
g) in the linear system of .C(- Dz) and let Kz E ([:9 be the appropriate 
translation for which e(A(P) + Kz) has divisor of zeroes Dz. Finally, let 
fz be a rational function on X with divisor (fz) = R+- Dz- Dz so that 
fz(P)e(A(P) + Kz) has divisor R+- Dz. 

Proposition 5. [20] Let vz : ([:9+n --+ c_n+1 be defined by 

Then, taking the base point Ox,(R+) on N' for the identification Jk ~ 
N', the map 'ljJ : Jk --+ Grk ( c_n+l) above is explicitly given by the A'­
periodic map 

An explicit formula for the function f can be obtained using Fay's 
prime form (see e.g. [23]). It remains to combine this with the real 
homomorphism 1 : ~2k --+ ([:9+n /A' which we have essentially computed 
earlier ( cf. [20]). For illustration I will do these calculations explicitly 
for X ~ lP'1 in the next section. 

2.2. Example: X is the Riemann sphere. 

Let ( be a rational parameter on X ~ lP'1 and define the real invo­
lution to be p*( = (-1 , then to satisfy all our conditions ..\ must be of 
the form 

(20) 
k ((-P)2 n+1-2k ((-E) ..\-all J II J 

-. ((-P-:-1)2. ((-K~1)' 
J=1 J t=1 J 

where the points P1, ... ,Pk,E1, ... ,En+1-2k all lie inside ICI < 1 (cf. 
[27]). The constant a is chosen so that l..\1 = 1 over ICI = 1. 

First we construct the homomorphism 1 : ~2k --+ Jk. To fix the 
isomorphism (19) we choose the basis w 1 , ... ,wn of H 0 (0(o)) given by 

1 1 1 
Wm = -( - --)d(, m = 1, ... ,n. 

27fi ( - Om+l ( - 01 
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Let arn E H1 (X \ o, Z) be the class of a positively oriented cycle about 
Orn+1 only, so that J: Wrn = Otrn· With these bases we have 

:t'al 

Take (pi = ( - Pj for the local parameter about Pj and recall from 
earlier that as an element of H 0 (0(o))t ~ T0 J(X') 

In our coordinates this is the vector 2;_i Ui where Ui E en has m-th 
coordinate 

1 1 
Ujrn = Pi - Orn Pi - 01 . 

The map "Y : ~2k ~ (C*)n is given by 

k 

"f(Z1, ... , Zk) = exp(L(UjZj- UjZj)). 
j=1 

Now to apply proposition 5 we notice that since J(X)is the trivial group 
we can take () = 1. So for W = ( w1 , ... , Wn) we have simply 

Finally, we need the divisors 

Dt = 2Q1 + ... + Ql + ... 2Qk + Eoo, l = 1, ... , k, 

where Q i = pj-1 and Eoo = JJr; 1 + ... + .E;:~ 1 _ 2k. Let ft be any rational 
function with divisor R+- Dt and define Vt : (Ck ~ cn+1 by 

k - -
where "frn = exp(L:j=1 (zjUjrn - ZjUjrn). 

Proposition 6. [20] The pluri-harmonic map rp : ~2k ~ Grk(Cn+l) 
with spectral data X ~ IP'1 and A given by {20} is given by 

This map is totally equivariant i.e. it can be framed by a homomorphism 
~2k ~ Un+1· 
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By a result of Kenmotsu [13] (see also [3]) the minimal (i.e. conformal 
harmonic) totally equivariant maps IR2 ---+ ClP'n include those minimal 
totally real maps which are isometric for the fiat metric on IR2 . A study 
of their periodicity can be found in [12]. To pass from non-conformal 
to conformal maps in our construction (in the case k = 1 i.e. ClP'n) one 
insists that A has a zero of degree 3 at P 1 . In particular, this requires 
n 2': 2. 

Remark. There is a geometric interpretation behind the form of v1. 

Suppose 'P : JR2k ---+ Grk(cn+l) is totally equivariant with frame 

k 

F = exp(z ·A- z ·At), z ·A= "2:: ZJAJ, 
j=l 

where A1, ... , Ak E gln+l (C) are mutually commuting normal matrices. 
We will assume 'P is based so that 'P(O) = [e1 1\ ... 1\ ek] where the ej 
are the standard basis vectors for en+ 1 . The matrices A1 and their 
Hermitian transposes may be simultaneously diagonalized by a unitary 
matrix: M A1M- 1 = D1 where M is unitary and each D1 is diagonal. 
Therefore 

M o 'P MFM-1M o [e1/\ ... 1\ ek] 
exp(z · D - z ·D) o [u1 1\ ... 1\ uk] 

where u 1 , ... , Uk are the first k columns of J..1. Thus M o'P = [v1 /\ .. . 1\vk] 
where Vz = exp(z · D- z ·D) o uz. Notice that this is essentially the form 
of the map we derived above, using 

D1 = diag(1, U11, ... , Ujn), j = 1, ... , k. 

The vz appearing in (21) span the same k-plane as these but are not 
necessarily orthonormal. 
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