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Singularities of dual varieties in characteristic 2 

Ichiro Shimada 

Abstract. 

We investigate unibranched singularities of dual varieties of even­
dimensional smooth projective varieties in characteristic 2. 

§1. Introduction 

We work over an algebraically closed field k. 

Let XC IP'm be a smooth projective variety of dimension n > 0. We 
assume that X is not contained in any hyperplane of IP'm. Then we can 
consider the dual projective space 

of IP'm as the parameter space of the linear system IMI of hyperplane 
sections of X, where M is a linear subspace of H 0 (X, Ox(1)). We use the 
same letter to denote a point H E P and the corresponding hyperplane 
H C IP'm. Let V C X x P be the universal family of the hyperplane 
sections. Then V is a smooth scheme of dimension n + m - 1. The 
support of V is equal to the set 

{ (p, H) EX X p I p E H }. 

Let C C V be the critical subscheme of the second projection V ----> 

P. (See Notation and Terminology below for the definition of critical 
subschemes.) Then C is smooth, irreducible and of dimension m - 1. If 
N is the conormal sheaf of X C IP'm, then Cis isomorphic to IP'* (N) ([12, 
Remarque 3.1.5]). The support of Cis equal to the set 

{ (p, H) E V I the divisor H n X of X is singular at p }. 
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We denote the projections by 

rr1 : C ----+ X and 1!'2 : C ----+ P. 

The image of rr2 is called the dual variety of X C pm. Let £ C C be the 
critical subscheme of rr2 . By [12, Proposition 3.3], £ is set-theoretically 
equal to 

{ (p, H) E c I the Hessian at p E Sing(H n X) is degenerate}. 

We will study the singularities of the dual variety by investigating the 
morphism rr2 at points of £. 

Since the paper of Wallace [22], properties of dual varieties peculiar 
to positive characteristics have been studied mainly from the point of 
view of the (failure of the) reflexivity. See Kleiman's paper [14] for the 
definition and a detailed account of the reflexivity. Many studies have 
been done for the analysis of the situation in which the reflexivity does 
not hold. See [5, 6, 7, 8, 9, 10, 11, 16], for example. 

A well-known example of the situations in which the reflexivity fails 
is as follows. Suppose that 

(1.1) chark = 2 and dim X= 1 mod 2. 

Then the critical subscheme £ of 71'2 : C ----+ P coincides with C ([12, 
Section 1.2], [14, Corollary (18)]), and hence either the dual variety is 
not a hypersurface in P, or X is not reflexive by the generalized Monge­
Segre-Wallace criterion ([13, Theorem (4.4)], [14, Theorem (4)]). 

Except for the case (1.1), however, the reflexivity is recovered when 
the linear system IMI of the hyperplane sections are sufficiently ample. 
We have the following theorem ([12, TMoreme 2.5], [7, Theorem (5.4)]): 

Theorem 1.1. Suppose that char k =/=- 2 or dim X is even. If X 
is embedded in pm by a complete linear system of the form IA181dl with 
A being a very ample line bundle and d 2::: 2, then the dual variety of 
X C pm is a hypersurface of P, and X C pm is reflexive. 

See also [19, Proposition 4.9] or Proposition 6.12 of this paper for 
other sufficient conditions for the dual variety to be a hypersurface, and 
for the reflexivity to hold. 

In our previous paper [19], we have discovered that, even when the 
reflexivity holds, the singularities of dual varieties in characteristic 3 
still possess a peculiar feature. We assume that the linear system IMI is 
sufficiently ample. In particular, the dual variety is a hypersurface in P 
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and X is reflexive. We consider the projective plane curve obtained by 
cutting the dual variety by a general plane in P. If k is of characteristic 
> 3 or 0, then the plane curve has only ordinary cusps as its unibranched 
singularities. In characteristic 3, the plane curve has singular points of 
E5-type instead of ordinary cusps. 

In this paper, we investigate the singularities of the dual variety in 
the case where char k = 2 and dim X is even. 

The dual variety is the discriminant variety associated with the 
linear system of hyperplane sections. See [2] for the definition of dis­
criminant varieties. In fact, our results are proved not only for dual 
varieties but for discriminant varieties associated with (not necessarily 
very ample) linear systems. Here in Introduction, however, we present 
our results for dual varieties. 

Let k be of characteristic 2, and let dim X be even. For simplicity, 
we assume that IMI is sufficiently ample so that the evaluation homo­
morphism 

is surjective at every point p of X, where mp is the maximal ideal of 
Ox,p, and Cp is the Ox,p-module C®Ox,p· Under this assumption, the 
critical subscheme & is an irreducible divisor of C and hence the dual 
variety is a hypersurface of P. 

We can define the universal Hessian 

on C, where T(X) is the tangent bundle of X. As was proved in [19, 
Proposition 3.14], the subscheme & coincides with the degeneracy sub­
scheme of the homomorphism 

induced from 1{, where (7riT(X))v is the dual vector bundle of 1riT(X). 
(See Notation and Terminology below for the definition of degeneracy 
subschemes.) The peculiarity of the geometry of the dual variety in 
characteristic 2 stems from the fact that the universal Hessian is not 
only symmetric but also anti-symmetric; that is, 1i(x ® x) = 0 and 
1i(x ® y) + 1i(y ® x) = 0 hold for any local sections x andy of 7riT(X). 
From this fact, it follows that the irreducible divisor & is written as 2 R, 
where R is a reduced divisor of C. We denote by w2 : R ---> P the 
projection. 
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Definition 1.2. We put R := k[[h, ... , tm-4]]. It turns out that 
the equations 

(1.2) UIY2 +VI = Uzy2 + Vz = WVI + UI VzY = 

= WVz + UzVIY = VIVz + wy = W 2 + UIUzy 2 = 0 

define an ( m -1 )-dimensional singular scheme in the ( m + 2 )-dimensional 
smooth scheme Spec R[[ui, VI, u2, v2, w, y]]. We will denote this (m -I)­
dimensional singular scheme by r m-I· 

The scheme r m-I is singular along the (m - 2)-dimensional locus 
defined by 

VI = v2 = w = y = 0. 

See §4 for the geometric meaning of r m-I· 

Let P = (p, H) E X x P be a general point of the reduced irreducible 
divisor R of C. Then we have the following: 

(I) There exist isomorphisms of local rings 

over k. In particular, the projection w 2 : R ~Pis inseparable of degree 
4 over its image. 

(II) The formal completion 

(n2)~: Spec(Oc,P)/\ ~ Spec(OP,H)/\ 

of the projection n2 : C ~ P at P factors through a singular scheme 
isomorphic tor m-I· 

(III) Let A and L be general linear subspaces of P of dimension 2 
and 3, respectively, such that H E A C L. We put CA := n;-I(A) and 
SL := n2I(L). Then SL is smooth of dimension 2 at P, and CA is a 
curve on SL that has an ordinary cusp at P. 

(IV) Let v : CA ~ CA be the normalization of CA at P, and let 
z be a formal parameter of C A at the inverse image P' E C A of P. 
Then the formal completion at P' of the composite of v : C A ~ C A and 
1r2l CA : CA ~A is written as 

((n2l CA) o v)*x 

((n2l CA) o v)*y 

a z4 + (terms of degree 2:: 6) and 

b z4 + (terms of degree 2:: 6) 

for some a, bE k, where (x, y) is a formal parameter system of A at H. 
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This paper is organized as follows. First we define several notions 
in §2. The conditions on P = (p, H) E R for the facts (I)-(IV) above 
to hold will be stated more precisely in terms of the singularity of the 
divisor H n X of X at p. For this purpose, we define some classes of 
hypersurface singularities in §3. In §4, the (m -I)-dimensional singular 
scheme r m-l is introduced. After recalling the definitions and results 
given in [19, Section 3] in §5, we prove the main results above in more 
refined forms in §6. In §7, we give a remark about the degree of R with 
respect to Op(l), and derive a nontrivial divisibility relation among 
Chern numbers of X from the fact (I) above. 

The author would like to thank Professor Hajime Kaji for many 
valuable comments and suggestions. 

Notation and Terminology. 

(1) We work over an algebraically closed field k. By a variety, 
we mean a reduced irreducible quasi-projective scheme over 
k. A point of a variety means a closed point. Let X be a 
variety, and P EX a point. We denote by (X, P)A the scheme 
Spec(Ox,P )\ where (Ox,P )A is the formal completion of the 
local ring Ox,P of X at P. 

(2) Let X be a smooth variety. We denote by Tp(X) the Zariski 
tangent space to X at a point P EX, and by T(X) the tangent 
bundle of X. 

(3) Let E and F be vector bundles on a variety X with rank e and 
f, respectively, and let a : E ----> F be a bundle homomorphism. 
We put r := min(e, !). The degeneracy subscheme of a is the 
closed subscheme of X defined locally on X by all the r-minors 
of the f x e-matrix expressing a. 

( 4) Let f : X ----> Y be a morphism from a smooth variety X 
to a smooth variety Y. The critical subscheme of f is the 
degeneracy subscheme of the homomorphism df : T(X) ----> 

f* T(Y). 
(5) For a formal power series F with coefficients in k, we denote 

by p[d] the homogeneous part of degree din F. 
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§2. Preliminaries 

2.1. The quotient morphism by a tangent subbundle 

Let X be a smooth variety defined over an algebraically closed field 
of characteristic p > 0. 

Definition 2.1. A subbundle N of T(X) is called integrable if N 
is closed under the pth power operation and the bracket product of 
derivations. 

Proposition 2.2 ([18] Theoreme 2). Let N be an integrable sub­
bundle of T(X). Then there exists a unique morphism q : X ----* xN 
with the following properties; 

(i) q induces a homeomorphism on the underlying topological spaces, 
(ii) q is a radical covering of height 1, and 
(iii) the kernel of dq : T(X) ----* q* T(XN) coincides with N. 

Moreover, the variety xN is smooth, and the morphism q is finite of 
degree pr, where r is the rank of N. 

Definition 2.3. For an integrable subbundle N of T(X), the mor­
phism q : X ----* X N is called the quotient morphism by N. 

From the construction ofthe quotient morphism given in the proof 
of [18, Theoreme 2], we obtain the following: 

Proposition 2.4. Let f : X ----* Y be a morphism from a smooth 
variety X to a smooth variety Y such that the kernel JC of df: T(X)----* 
f* T(Y) is a subbundle ofT(X). Then JC is integrable, and the morphism 
f factors through the quotient morphism q: X----* XJC by IC. 

2.2. Anti-symmetric forms 

Definition 2.5. Let V be a finite dimensional vector space over a 
field K. A bilinear form r.p : V x V ----* K is called anti-symmetric if the 
following conditions are satisfied: 

(i) r.p(v, v) = 0 for any v E V, and 
(ii) r.p(v, w) + r.p(w, v) = 0 for any v, wE V. 

Note that, in characteristic 2, the condition (ii) does not imply the 
condition (i). 

Definition 2.6. An nx n-matrix A = (aij) with components in 
a commutative ring is called anti-symmetric if the following conditions 
are satisfied: 

(i) aii = 0 for i = 1, ... , n, and 
(ii) aij + aji = 0 for i, j = 1, ... , n. 
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An anti-symmetric matrix in characteristic 2 is just a symmetric matrix 
with zero diagonal components. 

The following results are well-known. We put 

and let J2r,n be the n X n matrix 

with r copies of J2 along the diagonal. 

Lemma 2. 7. Let A be an anti-symmetric matrix of type n x n with 
components in a field K. Then the rank of A is even, and there exists 
T E GL(n, K) such that tT AT is equal to J2r,n, where 2r := rank(A). 

For a positive integer m, we define a homogeneous polynomial !2m 
of degree m in variables Xij (1 :::; i < j :::; 2m) by 

hm := "" sign ( : ~ L...t Z1 )1 

where the summation ranges over all the lists [ [it,Jt], ... , [im,Jm]] sat­
isfying the conditions iv < Jv (v = 1, ... , m), it < i2 < · · · < im, and 
{it,jl,···,im,jm} = {1,2, ... ,2m}. 

Lemma 2.8. Let 

A~[ 
0 X12 X13 

l -X12 0 X23 
(2.1) -X13 -X23 0 

be an anti-symmetric matrix of type 2m x 2m with components being 
variables Xij ( i < j). Then det A is equal to f?m. 

For a positive integer i, we put 

{
i -1 

r(i):= i+1 
if i is even, 

if i is odd. 
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Corollary 2.9. Let A be an anti-symmetric matrix as in Lemma 2.8. 
We put 

gA := V det(J2r,2m +A) , 

which is a polynomial of Xij by Lemma 2.8. 
(1) If 2r ~2m- 4, then gA has no terms of degree ~ 1. 
(2) Suppose that 2r = 2m- 2. Then gA is equal, up to sign, to 

m-1 2m-2 
z + L E:j X2j-l,2j z + L E:~ Xi,2m-l x,.(i),2m + (terms of degree 2: 3), 

j=l i=l 

where z := X2m-1,2m, and E:j and E:~ are ±1. 

Using (2.1), we consider the affine space 

o~.m(2m-1) _ S k[ . . ] (1 < · · < 2 ) ft>. - pee ... , x,3 , • . • _ ~ < J _ m 

as the space of anti-symmetric matrices of type 2m x 2m. 

Lemma 2.10. The hypersurface in A_m(2m-l) defined by hm = 0 
is irreducible. 

Proof. By Lemma 2.7, the hypersurface defined by hm = 0 is the 
closure of the locus 

{ tT hm-2,2mT I T E GL(2m, k) }, 

and hence is irreducible. Q.E.D. 

2.3. The formula of Harris-Tu-Pragacz 
Let X be a smooth variety, E a vector bundle on X, and L a line 

bundle on X. 

Definition 2.11. A bundle homomorphism 

a : E ®ox E --+ L 

is called anti-symmetric if the following conditions are satisfied: 

(i) a(x ® x) = 0 for any local section x of E, and 
(ii) a(x ® y) + a(y ® x) = 0 for any local sections x andy of E. 

Definition 2.12. For an anti-symmetric homomorphism a : E ® 
E--+ L, we define the degeneracy subscheme R(a) as follows. Let U be 
an arbitrary Zariski open subset of X over which E and L are trivialized. 
Let Au be the anti-symmetric matrix with components in r(U, Ox) 
expressing a over U. By Lemma 2.8, there exists fu E r(U,Ox) such 
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that det Au = /{;. Then the closed subschemes Uu = 0} of Zariski 
open subsets U patch together to form a closed subscheme R(a) of X, 
which is the degeneracy subscheme of a. 

Definition 2.13. For a closed subscheme W of X, we denote by 
[W] the class of Win the Chow group of X. 

The following was proved by Harris-Tu [4] in characteristic 0 and by 
Pragacz [1 7] in any characteristics. 

Theorem 2.14. Suppose that the rank e of E is even, and that 
R( a) is of codimension 1 in X. Then we have 

[R(a)] = ( ~ c1(L) - c1(E)) n [X] 

in the Chow group of X. 

Remark 2.15. Suppose that R(a) is of codimension 1 in X. Let 

a- : E ----+ L 181 Ev 

be the homomorphism induced from a, where Ev is the dual vector 
bundle of E. Then the degeneracy subscheme of a- is also a divisor of 
X, and is equal to 2 R( a) as a divisor of X. 

2.4. Ordinary cusps 

Let P be a point of a smooth surface S, and let (s, t) be a formal 
parameter system of Sat P. For¢ E (Os,P)A = k[[s,t]], we denote by 
¢[d] the homogeneous part of degree d in (s, t). Let C be a divisor of S 
that contains P and is singular at P. 

Definition 2.16. We say that ¢ E k[[s, t]] is degenerate if ¢l01 = 
¢l11 = 0 and ¢l21 = l(s, t) 2 hold for some linear form l(s, t) of (s, t). It is 
obvious that this definition of degeneracy does not depend on the choice 
of the formal parameter system (s, t). We say that C has a degenerate 
singularity at P if a (and hence any) formal power series defining C at 
P is degenerate. 

The equivalence of the following conditions on the singularity of 
the curve C at P, which is well-known in characteristic 0, holds also in 
characteristic 2. 

(i) For an arbitrary formal parameter system (s, t) of Sat P, any 
formal power series ¢ defining C at P is degenerate and the 
linear form J¢12T is not zero and does not divide ¢l31. 
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(ii) There exist a formal parameter system (s, t) of S at P and a 
defining formal power series ¢ of C at P such that ¢ is degen­
erate and that the linear form J¢12] is not zero and does not 
divide ¢[31. 

(iii) There exists a formal parameter system (s, t) of S at P such 
that C is defined by s 2 + t3 = 0 locally at P. 

Definition 2.17. We say that C has an ordinary cusp at P if the 
conditions (i)-(iii) above are satisfied. 

§3. Hypersurface singularities in characteristic 2 

From now on until the end of the paper, we assume that the base 
field k is of characteristic 2. 

Let X be a smooth variety of dimension n. Let p be a point of X, 
and let D be a hypersurface of X that passes through p and is singular 
at p. Let (x1 , ... , xn) be a formal parameter system of X at p. Suppose 
that D is defined by ¢ = 0 locally at p, where ¢ is a formal power series 
of (x1 , ... , Xn)· Then x n matrix 

defining the Hessian 

of D at p is anti-symmetric because we are in characteristic 2. 

Definition 3.1. A formal parameter system ( X1, ... , Xn) of X at 
p is said to be admissible with respect to ¢ if the matrix Hq,,p is of the 
form hr,n, where 2r is the rank of the Hessian of D at p. 

Remark 3.2. By Lemma 2.7, a formal parameter system admissible 
with respect to¢ is obtained from an arbitrarily given formal parameter 
system by a linear transformation of parameters. 

From now on to the end of this section, we assume that n is even. 

We put 

P := fn (. · ·, ···) 
where fn is the polynomial defined in §2.2. 
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Definition 3.3. We put (X,p)A := Spec(Ox,p)A. Let C(D,p) be 
the subscheme of (X,p)A defined by 

fJ¢ fJ¢ 
¢=-=···=-=0 

fJx1 fJxn ' 

and let R(D,p) be the subscheme of (X,p)A defined by 

fJ¢ fJ¢ 
¢=-=···=-=p=O 

fJxl fJxn . 

It is obvious that each of C(D,p) and R(D,p) depends only on D and 
p, and not on the choice of¢ and (x1, ... , Xn)· 

Using the admissible formal parameter system with respect to¢, or 
the subschemes C(D,p) and R(D,p) of (X,p)\ we can define various 
classes of hypersurface singularities in characteristic 2. 

Suppose that the rank of the Hessian matrix Hc/J,p is n- 2. Let 

be an admissible formal parameter system with respect to ¢. We put 

G := {ME GL(n- 2, k) I t M ln-2,n-2M = Jn-2,n-2 }. 

The following lemma is trivial: 

Lemma 3.4. Let 

be another formal parameter system of X at p. Then (x', () is admis­
sible with respect to ¢ if and only if (x, ~) and (x', () are related by the 
transformation of the form 

[-:] [A* I Boo][:,'] ' ~ ' + (tenns of de!l'ee 2 2) 

such that A E G and B E GL(2, k). 

We denote the coefficients in the formal power series expansion of 
¢ in the parameters (x, ~) as indicated in Table 3.1. The following 
Proposition follows immediately from Lemma 3.4. 
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X1 X2 + ... + Xn-3 Xn-2 + 
a1 x~ + + an-2Xn-2 2 + 
b1 x1 e~ + + bn-2Xn-2e~ + 
Cl X1 e~ + + Cn-2 Xn-2 e~ + 
d1x166 + + dn-2Xn-266 + 

+ (terms of degree 3 in (x, e) and degree 2:: 2 in x) 

ale~+ a2e~+ 

!31 e~ + !32 e~ 6+ 
1'1 6 e~ + 1'2 e~+ 

+ f4oet + h1ef6 + h2e~e~ + h36e~ + fo4ei+ 

+ (terms of degree 4 in (x, e) and degree2:: 1 in x) 

+ (terms of degree 2:: 5 in (x, e)) 

Table 3.1. The coefficients of a formal power series in (x,e) 

Proposition 3.5. Suppose that the rank of H¢,p is n- 2. Then the 
following condition is independent of the choice of </J and (X, e): at least 
one of the coefficients a1, a2, /31, /32, 1'1, 1'2 is not zero. 

Definition 3.6. We say that the singularity of D at pis of type (A) 
if H¢,p is of rank n- 2 and at least one of the coefficients a 1 , a 2 , (31 , 

/32, 1'1 or ')'2 is not zero. 

Proposition-Definition 3;7. (1) The following three conditions 
are equivalent: 

(i) dimk Oc(D,p),p ~ 4, 
(ii) Oc(D,p),p ~ k[[s, t]]/(s2 , t2), and 

(iii) the rank of the Hessian H¢,p is n- 2, and 

(3.1) rank [ a1 /31 /32 ] = 2. 
a2 1'1 1'2 

We say that the singularity of D at p is of type (C) if these conditions 
are satisfied. 

(2) We put 

n-2 

T1 := L dibr(i) + !J1 
i=l 

n-2 

and T2 := L diCr(i) + !13· 
i=l 

The following three conditions are equivalent: 
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(ii) 

(iii) 

(3.2) 
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dimk OR(D,p),p ::; 4, 
OR(D,p),p ~ k[[s,t]]/(s2,t2), and 
the rank of the Hessian H,p,p is n - 2, and 

rank [ a1 /31 /32 T1 ] = 2. 
a2 'Y1 'Y2 T2 
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We say that the singularity of D at p is of type (R) if these conditions 
are satisfied. 

Remark 3.8. As a corollary of Proposition-Definition 3.7, we see 
that the conditions (3.1) and (3.2) do not depend on the choice of the 
admissible formal parameter system (x, e). This fact can also be proved 
directly by means of Lemma 3.4. 

For the proof of Proposition-Definition 3.7, we use the following easy 
lemma: 

Lemma 3.9. Let g1, ... , g1 be degenerate formal power series in 
k[[s, t]], and let J be the ideal of k[[s, t]] generated by g1, ... , 91· We 
denote by ai and bi the coefficients of s2 and t 2 in gi, respectively; 

9i = ais2 + bit2 +(terms of degree ~ 3). 

Then the following equivalence holds: 

dimk k[[s, t]]/ J ::; 4 ¢:=::> J = (s2 , t2 ) ¢:=::> rank [ ab 1 .. • abl ] = 2. 
1 .. · I 

Proof of Proposition-Definition 3. 7. Since the proof of the asser­
tion (1) is similar to and simpler than that of (2), we prove only the 
assertion (2). For simplicity, we put · 

8¢ 
Di¢ := -;::;----, 

UXi 

and let I denote the ideal of ( 0 x,P )A generated by ¢, D 1 ¢, ... , Dn¢ and 
p. Suppose that rank H ,p,p = n-2l, and let ( x1, ... , Xn) be an admissible 
formal parameter system with respect to ¢. Then the linear parts of ¢ 
and Di¢ are given as follows; 

¢[1] = 0, (Di¢)[1] = { ~r(i) 

By Corollary 2.9, we also have 

p[1]- {0 
d1x1 + · · · + dn-2Xn~2 

if i ::; n - 2l 

if i > n- 2l. 

if n - 2l ::; n - 4 

if n - 2l = n - 2. 
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Therefore the classes of 1 E k and Xn-2!+1l ... , Xn span a (2l + 1)­
dimensionallinear subspace in (OR(D,p),p)" = k[[xll ... ,xnlJ/I. Conse­
quently the condition that dimk OR(D,p),p ::::; 4 implies that rankH¢,p is 
n- 2. Hence it suffices to show the equivalence of the conditions (i), (ii) 
and (iii) under the assumption that rankH¢,p = n- 2. 

We use the admissible formal parameter system (x, e) and Table 3.1. 
Let I' be the ideal of k[[x, e]J generated by D1¢, ... , Dn-2¢, and put 

s:=6modi', t:=6modi'. 

For i = 1, ... , n- 2, we have 

Di¢ = xr(i) + bie~ + cie~ + di66 + 

+ (terms of degree 2: 2 in (x, e) and degree) 
2: 1 in x, or degree 2: 3 in (x, e) . 

Hence we obtain 

Xi mod I' = br(i)s2 + Cr(i)t2 + dr(i)St +(terms of degree 2: 3 in (s, t)) 

fori = 1, ... , n- 2. In particular, we have k[[x, elJ/ I' = k[[8, t]J. We put 

91 :=¢mod I', 92 := (Dn-1¢) mod I', 93 := (Dn¢) mod I'. 

Then we have 

91 a1 8 2 + a2 t 2 + (terms of degree 2: 3 in (8, t)), 
92 !31 8 2 + ')'1 t2 + (terms of degree 2: 3 in (8, t)), 
93 !32 8 2 + 1'2 t 2 + (terms of degree 2: 3 in ( 8, t)). 

On the other hand, we see that 

fP¢ I 

8xi86 mod I, and 

are equal to 

n-2 
h1 82 + /13 t2 + L di (br(i)82 + Cr(i)t2 + dr(i)8t)+ 

i=1 
+(terms of degree 2: 3 in (8, t)), 

di t +(terms of degree 2: 2 in (8, t)) and 

dis+ (terms of degree 2: 2 in (8, t)), 
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respectively. Moreover, we have 

8 2¢ mod I' = {1 + (terms of degree 2: 1 in (s, t)) if i = T(j), 
8xi8Xj (terms of degree 2: 1 in (s, t)) if i =/= T(j), 

for i, j = 1, ... , n- 2. By Corollary 2.9 and using '£~::} didT(i) = 0, we 
obtain 

g4 := p mod I' = T 1 s2 + T2 t2 + (terms of degree 2: 3 in (s, t)). 

Since 

we obtain the equivalence of the conditions (i)-(iii) from Lemma 3.9. 
Q.E.D. 

The following remark is crucial in the proof of Proposition 6.12. 

Remark 3.10. Each of the conditions that the singularity of D at p 

is of type (A), (C) and (R) is an open condition on the coefficients of the 
formal power series¢ with rankHq,,p ::; n- 2 in the following sense. We 
denote by m the maximal ideal of k [[x1 , ... , xnll· For a positive integer 
d 2: 2, we put 

vd := m2 /md+l_ 

For ¢ E m2 , let (j} E Vd denote the class of ¢ modulo md+l. By 
Lemma 2.10, the locus 

~ := { ¢ E V2 I rankHq,,p ::; n- 2} 

is a closed irreducible hypersurface of V2. For d 2: 3, let ~d denote the 
pull-back of~ by the natural linear homomorphism Vd ____, V2 . Note that 
the types (A), (C) and (R) of the hypersurface singularities are defined 
by using the coefficients of terms of degree ::; 3, ::; 3 and ::; 4 of the 
formal power series defining the hypersurface, respectively. Hence the 
loci 

~(A) 
~(C) 

~(R) 

·-
·-

·-

{ ¢ E V3 

{ ¢ E v3 

{ ¢ E v4 

the singularity of ¢ = 0 at p is of type (A) } , 

the singularity of¢ = 0 at pis of type (C) }, 

the singularity of¢= 0 at p is of type (R) }, 

are well defined. The loci ~(A) and ~(C) are Zariski open dense subsets 
of ~3 , and the locus ~(R) is a Zariski open dense subset of ~4· 
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§4. The singular schemer m-1 

We define a homomorphism 

over k by 

-y*u1 = x~, -y*v1 = x1z, -y*u2 = x~, 
-y*v2 = X2Z, -y*w = X1X2Z, -y*y = Z, 

and denote by 

the scheme-theoretic image of the morphism 

induced from -y*. The critical subscheme of 'Y is defined by z2 = 0. 
Calculating the Grabner basis (see [1]) of the ideal 

in the polynomial ring k[xb x2, z, u1, VI, u2, v2, w, y] under the pure lex­
icographic order 

we see that r is a 3-dimensional singular scheme defined by the equa­
tions (1.2) given in Introduction. The singular locus of r is equal to the 
2-dimensional plane 

V1 = V2 = W = y = 0. 

For a k-algebra R, we denote by 

the morphism obtained from 'Y by k '----+ R, and by 

the scheme-theoretic image of -yR. 
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Theorem 4.1. Let V be a smooth variety of dimension l ~ 3, and 
let ¢ : V -> W be a morphism to a smooth variety W. Suppose that 
there exists a smooth hypersurface H of V such that, at every point P 
of H, the kernel of 

is of dimension 2 and is contained in Tp(H). 
Let P be a point of H. We denote by R the ring of formal power 

series k[[x3, ... , X!-1]] of l - 3 variables. Then there exists an isomor­
phism 

over k with the following properties: 

(i) the divisor (H, P)f' of (V, P) 11 is mapped by the isomorphism [ 
to the divisor given by z = 0, and 

(ii) there exists a unique morphism'¢: rR-> (W, ¢(P))11 such that 
the formal completion ¢~ of ¢ at P factors as the following 
diagram: 

(V, P) 11 <P~ (W, ¢(P)) 11 --+ 

• ll '"' Spec R[[x1, x2, z]] --+ rR. 
'YR 

Proof We denote by 

cPH: H-> W 

the restriction of¢ to H. The kernel K of the homomorphism 

d¢H : T(H) -> ¢'HT(W) 

is an integrable subbundle of T(H) with rank 2 by the assumption. Let 
P be an arbitrary point of H. By [18, Proposition 6], there exist a basis 
(D1 , D 2 ) of the 0H,P-module K Q9 OH,P and a system of uniformizing 
variables (Yb ... Yl-1) of H at P such that 

(i = 1, 2, j = 1, ... 'l- 1). 

In other words, the submodule K l8l OH,P of T(H) l8l OH,P is equal to 

a a 
OH p~ EB OH P-;:;-· 

' uy1 ' uy2 
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We can choose a formal parameter system ( x 1, ... , X!-1, z) of V at P 
such that H is defined by z = 0, and that the restriction Xi I H of Xi to 
His equal to Yi· Then, for every element g E (Ow,¢(P))\ we have 

a (¢'Hg) = a (¢*g) 1 = o and 
ay1 ax1 H 

a (¢'Hg) = a (¢*g) I = o; 
ay2 ax2 H 

that is,¢* g is contained in the subring A of (Ov,P )A = k[[x1, ... , X!-1, z]] 
defined by 

A:= {t E (Ov,P)i\ I :;1 and:~ are contained in the ideal (z)}. 

Putting R := k[[x3 , ... , X!- 1]], we have 

Therefore, the subring A is the image of the homomorphism 

We denote by 

the induced isomorphism. Let (t1 , ... , tq) be a formal parameter system 
of W at ¢(P), where q =dim W. Since ¢*ti E A, there exists a unique 
element 

such that j('I/Ji) = ¢*ti. Define a morphism 

1/J : rR --> (W, ¢(P)t 

by 'lj;*ti = 1/Ji· Then ¢~ factors as 1/J o 'yR o ~, where ~ is the isomorphism 
given by the canonical isomorphism R[[x1 ,x2 ,z]J ~ (Ov,P)i\. Q.E.D. 

Definition 4.2. When R is the ring offormal power series in (m-4) 
variables with coefficients in k, the scheme-theoretic image rR is an 
(m- I)-dimensional singular scheme, which we will denote by r m- 1 . 

Remark 4.3. A normal form theorem similar to Theorem 4.1 for a 
morphism from a smooth surface to a smooth curve was proved in [20]. 
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§5. The discriminant variety 

In this section, we recall the definitions and results in [19, Section 
3], which are valid in any characteristics. 

Let X be a projective variety of dimension n > 0, £ a line bundle 
on X, and M a linear subspace of H 0 (X, £)with dimension m + 1 2:: 2. 
We denote by 

the parameter space of the m-dimensionallinear system IMI of divisors 
on X corresponding to M, and put 

X:= X\ (Sing(X) u Bs(IMI)), 

where Sing(X) is the singular locus of X and Bs(IMI) is the base locus 
of IMI. We denote by 1lt: X~ pv the morphism induced by P, and set 

Note that xo =X if X is smooth and IMI is very ample. 

Assumption 5.1. Throughout the paper, we assume that m > n, 
and that xo is dense in X. 

For a non-zero vector f E M, we denote by [!] E P the correspond­
ing point of P, by D[/] the divisor of X defined by f = 0, and by D[/] 

the intersection D[/1 n X. Let 

pr 1 : X x P ~ X and pr2 : X x P ~ P 

be the projections. We put 

There exists a canonical isomorphism Mv ~ H 0 (P, Op (1)) unique up to 
multiplicative constants. Combining this isomorphism with the inclusion 
M ~ H 0 (X, £), we obtain a natural homomorphism 

We denote by 
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the global section of C corresponding to the identity homomorphism of 
M. Note that a is determined uniquely up to multiplicative constants. 
The zero locus of a is equal to 

{ (p, [f]) EX X p I p E D[f] }. 

Let D be the subscheme of X x P defined by a= 0, and let 

Pl : D -----* X and pz : D -----* P 

be the projections. Then D is smooth of dimension m + n- 1, and 
pz : D _____. P is the universal family of the divisors D[f] ([f] E P). We 
have a natural homomorphism 

da : T(X x P) ® Ov -----* l ® Ov 

defined by 8 f----4 (8a) I 'D0 , where 8 is a local section of T(X x P) 
considered as a derivation of 0 x x p. We denote by 

the restriction of da to the direct factor piT(X) of 

T(X x P) ® Ov = pi:T(X) EB p~T(P). 

Let C be the critical subscheme of p2 : D -----* P. 

Proposition 5.2. (1) The scheme C is equal to the degeneracy sub­
scheme of dax. 

(2) The intersection co of C and xo x P is smooth, irreducible and 
of dimension m - 1. 

Corollary 5.3. (1) The support of C is equal to the set 

{ (p, [f]) E D I D[f] is singular at p }. 

(2) Let P = (p, [f]) be a point ofC, and let n~: C-----* P be the projec­
tion. Then, as a subscheme of(pr2 1([f]),P)/\ ~ (X,p)\ the completion 
(n~- 1 ([f]), P)A of the fiber of n~ at P coincides with C(D[fj,P) defined 
in Definition 3.3. 

We denote by 

the projections from co = C n (X 0 x P). We can define the universal 
Hessian 
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on co. Because we are in characteristic 2, the universal Hessian 1i on 
co is anti-symmetric. Let 

be the homomorphism obtained from 'H. Let £ be the critical subscheme 
of the projection 1r2 : co --+ P. 

Proposition 5.4. The scheme £ is equal to the degeneracy sub­
scheme of 1i-. 

Corollary 5.5. The support of£ is equal to the set of all point 
(p, [f]) E co such that the Hessian of the hypersurface singularity p E 

D[fl is degenerate. 

Since the rank of an anti-symmetric form is always even, we obtain 
the following: 

Corollary 5.6. Suppose that n is odd. Then £ coincides with co. 

§6. Main results 

From now on until the end of the paper, we assume that n is even. 

Definition 6.1. Let 'R c co be the degeneracy subscheme R('H) of 
the anti-symmetric form 1i, and let 

be the projections. 

Proposition 6.2. (1) The subscheme 'R is of codimension :::; 1 in 
co. lf'R is of codimension 1 in co' then£ coincides with 2 n as a divisor 
of Co. 

(2) Let P = (p, [f]) be a point of n. Then, as a subscheme of 
(pr21([f]),P)A ~ (X,p)A, the completion (w21([f]),P)A ofthefiberof 
tv2 at P coincides with R( D[fl, p) defined in Definition 3. 3. 

Proof The assertion (1) follows from Remark 2.15 and Proposi­
tion 5.4. The assertion (2) follows from the definition. Q.E.D. 

It is possible that 'R is of codimension 0 in co. The following is a classical 
example due to Wallace [22]. See also [21]. 

Example 6.3. Let X be the Fermat hypersurface of degree 2v + 1 
in pn+l with v ~ 1, and let IMI be the complete linear system IOx(1)1. 
Then the rank of the Hessian of D[f] at p is zero at every point (p, [f]) 
of co = C. In particular, 'R coincides with co. 
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Let P = (p, [f]) be a point of R, so that D[f] is singular at p and 
the Hessian of D[f] at p is of rank :::; n - 2. We investigate the formal 
completion of the morphism 1r2 : co -+ P at P. For this purpose, we 
introduce a good formal parameter system of xo x P at P. 

Because p E X 0 , we can choose a basis b0 , ... , bm of the vector 
space Min such a way that the following conditions (i)-(iv) hold. Let b; 
be the global section of£ corresponding to b;, and let D; be the divisor 
defined by b; = 0. Then 

(i) b0 = j, so that Do = D[f] passes through p and is singular at 
p, 

(ii) p E D; for i = 0, 1, ... , m- 1, and p 1- Dm, 
(iii) D 1 , ... , Dn are smooth at p and intersect transversely at p, and 
(iv) Dn+l, ... , Dm-1 are singular at p. 

For i = 0, ... , m- 1, we put 

which is a rational function on X regular at p. Then ( ¢ 1 , ... , ¢n) forms 
a local parameter system of X at p by (iii). We put 

x; := ¢; (i = 1, ... ,n). 

We will regard ( x1 , ... , Xn) as a formal parameter system of X at p, and 
consider ¢o and ¢n+1, ... ,¢m-1 as formal power series of (x1, ... ,xn), 
which have no terms of degree :::; 1 by (i) and (iv). Note that the rank of 
the anti-symmetric matrix Hq, 0 ,p is :::; n- 2, because PER. Using Re­
mark 3.2, we can further assume the following by a linear transformation 
of b1, ... , bn: 

(v) the formal parameter system (x1 , ... , xn) is admissible with 
respect to <Po. 

Let (Yo, ... , Ym) be the linear coordinates of M with respect to the 
basis bo, ... , bm, and let (y1, ... , Ym) be the affine coordinate system of 
P given by 

Yi := Yi/Yo. 

Then the point [f] E P is the origin. We regard 

as a formal parameter system of xo x P at P = (p, [f]). 

We can regard the coordinates Y; as global sections of Op(1). Recall 

that a is the canonical section of Z := pri £@ pr2 Op(1). Multiplying 
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a by a suitable non-zero constant, we have 

m 

a= I: bi ® }i. 
i=O 

We put 

which is a rational function of xo x P regular at P. By definition, we 
have 

The scheme Vis defined by q, = 0 locally at P. For simplicity, we put 

aq, 
Diq, := ~· 

UXi 

By Proposition 5.2, the subscheme co of xo x P is defined by 

locally at P. We put 

R := fn ( ... , ... ) = ( f)2q, ) 
det 8xiOXj ' 

where fn is the polynomial defined in §2.2. The subscheme 'R of xo x P 
is defined by 

locally at P. 

Note that the divisor D[f] of X is defined by ¢0 = 0 locally at p. Let 
2r be the rank of the Hessian H¢0 ,p of D[f] at p. Since (x1, ... , Xn) is 
admissible with respect to ¢0 , we see that the linear parts of the formal 
power series q, and Diq, are as follows: 

(6.1) 

q,[l] 

(Diq,)[lJ 
(Diq,)[lJ 

Ym, 

Xr(i) +Yi fori= 1, ... ,2r, 

Yi fori=2r+1, ... ,n. 

When 2r = n- 2, we use the parameter system (xb ... ,Xn-2,6,6) 
admissible with respect to ¢o as in §3, and adopt Table 3.1 to denote 
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the coefficients of ¢0. We also denote by e1 E k the coefficients of the 
term 66 in ¢j for j = n + 1, ... , m- 1. By Corollary 2.9, we see that 
the linear part of R is equal to 

(6.2) 

{ 0(~)[1] 
8686 

if 2r < n- 2, 

if 2r = n- 2, 

6.1. A normal form theorem 

We put 

if 2r < n- 2, 

if 2r = n- 2. 

nsm := {pEn I n is smooth of dimension m- 2 at p }, 

and denote by w~m : nsm---> p the projection. 

Theorem 6.4. Let P = (p, [f]) be a point of R. 
(1) If P E nsm, then the rank of the Hessian Hq, 0 ,p of D[f] at pis 

n - 2. Conversely, suppose that Hq, 0 ,p is of rank n - 2. Then P is a 
point of nsm if and only if at least one of 

is not zero. 
(2) The kernel /C of the homomorphism 

dw2m : T(R8m) ---> (w2m)*T(P) 

is a subbundle ofT(nsm) with rank 2. 

Proof The assertion (1) follows immediately from (6.1) and (6.2). 
Suppose that P E nsm. Then the kernel of dpw~m: Tp(nsm)--. T(JJ(P) 
is of dimension 2 and generated by the vectors 

of Tp(X 0 X P). Since this fact holds at every point p of nsm' we see 
that /C is a subbundle of T(nsm) with rank 2. Q.E.D. 

Corollary 6.5. Suppose that (n, m) = (2, 3). Then nsm is empty. 
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By definition, the kernel K of dw'2m is an integrable subbundle of 
T(R8m). From Proposition 2.4, we obtain the following: 

Corollary 6.6. The morphism w2m : nsm -+ P factors through the 
quotient morphism q: nsm -+ (Rsm)K by K, which is finite of degree 4. 

From Theorems 4.1 and 6.4, we obtain the following normal form 
theorem for the morphism 11"2 : co -+ p at a point p = (p, [f]) of nsm. 

Corollary 6. 7. Let P = (p, [f]) be a point of nsm. Then there exist 
an isomorphism 

and a morphism 
'1/J : r m-1 -+ (P, [f])A 

such that the formal completion 

of 11"2 at P factors as 'ljJ o "(R o [, where 

'YR : Spec k[[wb ... 'Wm-1ll -+ r m-1 

is the morphism defined in §4. 

6.2. General plane sections 

Let P = (p, [f]) be a point of R. We choose linear subspaces L and 
A of P with dimension 3 and 2, respectively, such that 

[f] E A C L. 

We set 

and denote by 

the restrictions of n2 :co -+ P to SL and to CA, respectively. 

Proposition 6.8. Suppose that L is chosen generically over k. The 
scheme SL is smooth of dimension 2 at P if and only if the rank of the 
Hessian H</>o,p of D[f] at p is n- 2. 
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Proof. We can assume that L is defined by 

(6.3) (i -1=- n- 1, n, m), 

where Ai, Bi, Ci are generic over k. Then the assertion follows from the 
linear parts (6.1) of the defining equations ofC0 • Q.E.D. 

Proposition 6.9. Suppose that Land A are chosen generically over 
k, and that S L is smooth of dimension 2 at P. 

(1) If CA is of codimension 1 in SL, then CA has a degenemte sin­
gularity at P. 

(2) The following two conditions are equivalent: 

(i) CA is of codimension 1 in SL, and the multiplicity of CA at P 
is 2, 

(ii) the singularity of D[JJ at p is of type (A). 
(3) Suppose that CA is of codimension 1 in SL, that the multiplicity 

of c A at p is 2, and that p is a point of nsm. Then p is an ordinary 
cusp of CA if and only if the singularity of D[J] at p is of type (R). 

Proof. By Proposition 6.8 and the assumption, the rank of H¢0 ,p is 
n- 2. We use the formal parameter system (x1, ... , Xn-2, 6, 6) admis­
sible with respect to ¢0 as in §3, and refer to Table 3.1 for the name of 
coefficients of ¢o. We also use the defining equations (6.3) of the linear 
subspace L. By (6.1) and (6.3), we see that 

s := 6 I SL and t := 61 SL 

form a formal parameter system of SLat P. We put 

u := Yn-1 I L, v := Yn I L and w := Ym I L, 

which form an affine coordinate system of L with the origin [f]. For a 
formal power series F of (xt, ... , Xn-2, 6, 6, Y1, ... , Ym), we denote by 
FL the formal power series of 

(x1, ... , Xn-2, s, t, u, v, w) 

obtained from F by making the substitutions 

Regarding 

Yn-1 = U, Yn = V, Ym = W, 

Yi = Aiu + Biv + Ciw (i -1=- n- 1, n, m), and 

6 = s, 6 =t. 
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as equations with indeterminates X1, ... , Xn- 2; u, v, w and with coef­
ficients in (OsL,PY' = k[[s,t]], and solving them, we obtain the formal 
power series expansion 

XiiSL Xi(s, t) L:Xi,11-v s~-'tv (i=l, ... ,n-2), 

uiSL U(s, t) L:U/1-vs~-'tv, 

viSL V(s, t) L:V11-v s~-'tv, 

wiSL W(s, t) L:W/1-vs~-'tv, 

of the functions x1ISL, ... , Xn-2ISL, uiSL, viSL, wiSL on SL in (s, t). 
The formal power series U, V and W give the formal completion of 
'TrL : SL --t L at P. We will calculate the homogeneous parts U[dJ, V[dJ, 
W[d] of degree d of them up to d = 3. From IPL = 0 and (Dn-11P)L = 
(Dnii?)L = 0, we obtain 

ul1J = vl1J = wl1J = o. 

From (Diii?)L = 0 fori= 1, ... , n- 2, we obtain 

xl1J =O 
• (i=l, ... ,n-2) . 

Looking at the homogeneous parts of degree 2 in (s, t) of II?L and (Dilf?)L, 
we obtain the following equations: 

a1 s2 + a2 t2 + Wl21 0, 

bi s2 + ci t2 + di st + X~~) + Ai Ul21 + Bi Vl21 + Ci Wl21 0 

(i::;n-2), 

!31 s2 + 1'1 t2 + ul2J o, 
{32 s2 + 12 t2 + Vl21 = 0. 

Thus we obtain 
ul2J !31 s2 + 1'1 t2, 
vl2J !32 s2 + 1'2 t2' 

Wl21 a1 s2 + a2 t2, 

and 

X}2J b..-(i) s2 + C-r(i)t2 + d..-(i) St 

+ A..-(ijUl21 + B..-(i) Vl21 + C..-(i) Wl21 

(b..-(i) + A..-(i) f11 + B..-(i) {32 + C..-(i) al) s2 

+ (c-r(i) + A..-(i) 1'1 + B..-(i) 12 + C..-(i) a2) t2 

+d-r(i) st. 
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Looking at the homogeneous part of degree 3 in (s, t) of 4PL, we get the 
equation 

!31 s3 + !32 s2t + 'Y1 st2 + 'Y2 t3 + u!21 s + v!21 t + w!31 = 0. 

Thus we obtain 
w!31 =0. 

Looking at the homogeneous part of degree 3 in ( s, t) of ( Dn_ 1 cp) L and 
(Dn4P)£, we obtain the equations 

n-2 

L diX}21 t + /31s2t + ft3t3 + u!31 + 
i=1 

m-1 

L (AjUI21 + BjVI21 + ojw!21) ejt = 0, 
j=n+1 

n-2 

L diX}21 s + h1s3 + ft3st2 + v!31 + 
i=1 

m-1 

L (AjUI21 + Bj v!21 + cj w!21) ejS = 0, 
j=n+1 

where ei is the coefficient of 66 in ¢i· We put 

n-2 

Q(s, t) := L diX}21 + h1s2 + ft3t2+ 
i=1 

m-1 

L (Aiul21 +Bivl21 +Ciwl2l)ei 
j=n+1 

where Q 8 and Qt are given in Table 6.1. (Note that the coefficient of st 
in Q(s, t) is E~;:12 didr(i) = 0.) Then we obtain 

u!31 = t Q(s, t) and v!31 = s Q(s, t). 

Suppose that A is defined in L by 

Du + Ev + Fw = 0, 

where D, E, F are generic over k. From the assumption, Ai, Bi, Ci and 
D, E, F are algebraically independent over k. The scheme C A is defined 
in SL by r = 0 locally at P, where r is the formal power series of (s, t) 
defined by 

r :=DU +EV +FW. 
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n-2 

Qs .- ~)br(i) + Ar(i)lh + Br(i)fJ2 + Cr(i)a1)di+ 
i=1 

m-1 

+ h1 + L (AJfJ1 + BJfJ2 + Cja1)ej, 
j=n+1 

n-2 

Qt L(cr(i) + Ar(i)'Y1 + Br(i)'Y2 + Cr(i)a2)di+ 
i=1 

m-1 

+ !13 + L (An1 + Bn2 + CJa2)eJ. 
j=n+1 

Table 6.1. The coefficients Q. and Qt 

Obviously, we have f[O] = f[1l = 0. We also have 

where 

Hence, if r 1=- 0, then the curve CA on SL has a degenerate singu­
larity at P. Moreover, f[2l is not zero if and only if at least one of 
a1, a2, fJ1> fJ2, "!1, "!2 is not zero. Thus the assertions (1) and (2) are 
proved. 

Suppose that P E nsm and that f[2l = £2 /=- 0. The degenerate 
singular point P of C A is an ordinary cusp if and only if the linear form 
£ does not divide 

The two linear forms £ and Dt + Es are proportional if and only if 

holds. Since D, E, F are generic over k, and at least one of a1, a2, fJ1> 
(32 , "(1 , "(2 is not zero by f[2l 1=- 0, the equality (6.4) does not hold. The 
two linear forms£ and v'Q";s + ,;Q;.t are proportional if and only if 
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holds. Since P E nsm, we see from Theorem 6.4 (1) that at least one of 
dt. ... , dn-2, en+b ... , em-1 is not zero. Expanding the left hand side 
of (6.5) as a polynomial of Ai, Bi, Ci and D, E, F, we see that (6.5) holds 
for a generic choice of Ai, Bi, Ci, D, E, F if and only if the condition (3.2) 
does not hold. Therefore the assertion (3) is proved. Q.E.D. 

Proposition 6.10. Suppose that CA is of codimension 1 in SL at 
P, and is reduced and irreducible locally at P. Let v: CA ~ CA be the 
normalization of C A at P, and let z be a formal parameter of C A at the 
point P' E CA such that v(P') = P. Then the image of 

is contained in the subring 

of(00 p,)'' = k[[z]]. 
A, 

Proof We use the same notation as in the proof of Proposition 6.9. 
The formal completion at P' of the composite of v: CA ~ CA and the 
inclusion t : C A ~ S L is given by 

(tov)*s 

(to v)*t 

= a z2 + b z3 + (terms of degree 2:: 4) and 

c z2 + d z3 + (terms of degree 2:: 4), 

where a, b, c, dE k. Since A is general in L, the variables 

u' := u I A and v' := vI A 

form a formal parameter system of A at [f]. The formal completion at 
P' of the morphism 1r A o v : C A ~ A is given by 

(7rA o v)*u' 

(7rA o v)*v' 

U ( az2 + bz3 + . · · , cz2 + dz3 + · · · ) and 

V( az2 + bz3 + · · · , cz2 + dz3 + · · · ). 

Since U[l] and V[l] are both zero, and the coefficients of st in U[21 and 
V[21 are also zero, we see that (7rA o v)*u' and (7rA o v)*v' are contained 
in the subring T of k[[z]]. Q.E.D. 
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6.3. The case where the linear system is sufficiently ample 

Definition 6.11. For a point p of X and a positive integer d, we 
denote by 

v[d] . M ____, £ jmd+l£ p . p p p 

the evaluation homomorphism at p, where mp is the maximal ideal of 
Ox,p, and £Pis the Ox,p-module £@ Ox,p· 

Proposition 6.12. (1) Suppose that vb21 is surjective at every point 
p of xo. Then R is irreducible. 

(2) Suppose that vb31 is surjective at every point p of xo. Then nsm 
is dense in R. Moreover, if P = (p, [f]) is a general point of R, then 
the singularity of D[t] at p is of type (A) and of type (C). 

(3) Suppose that vb41 is surjective at every p E xo. If P = (p, [f]) is 
a general point of R, then the singularity of D[f] at p is of type (R). 

Proof. Considering the first projection R ----+ xo, we deduce the 
statements of Proposition from Remark 3.10 and Theorem 6.4. Q.E.D. 

Combining Proposition 6.12 with the results proved so far, we obtain 
the facts (I)-(IV) stated in Introduction. 

§7. Divisibility of a Chern number 

We assume that X is smooth and£ is very ample, and put IMI = 1£1. 
Then we have xo = X = X and C = co. We further assume that nsm 
is dense in R. Under these assumptions, we calculate 

We put 

Then we have 

degR := r Cl(pr; Op(1))m-Z n [R]. 
lxxP 

c1(l) = h + >.. 
For simplicity, we write ci(X) for pri ci(X). By Proposition 5.2 and 
Thom-Porteous formula [3, Chapter 14], we have 

in the Chow group of X x P. By Theorem 2.14, we have 
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We put 

Then we obtain 

degR = L (the coefficient of h2 in G) n [X]. 

By Corollary 6.6, the integer deg n is divisible by 4. If the coefficient 
of h2 in G is regarded as a polynomial of>., then the constant term is 
equal to ( -l)n(nc,.(X)/2 + cl(X)Cn-l(X)). Putting .C = A04 with A 
a sufficiently ample line bundle, we obtain the following: 

Corollary 7 .1. Let X be a smooth projective variety in character­
istic 2 of dimension n being even. Then the integer 

is divisible by 4. 

In fact, this divisibility relation can be deduced from the Hirzebruch­
Riemann-Roch theorem by means of the argument of Libgober and 
Wood. See [15, Remark 2.4]. 
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