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Numerical study and examples on singularities of 
solutions to anisotropic crystalline curvature flows of 

nonconvex polygonal curves 

Chiaki Hirota, Tetsuya Ishiwata and Shigetoshi Yazaki 

Abstract. 

We construct explicit solutions of the anisotropic motion of closed 
polygonal plane curves by a power of crystalline cuvature, in the case 
where the initial curves are nonconvex and the power is less than one: 
The solutions develop degenerate pinching singularities of a "whisker"­
type and a split-type in finite time, and do not become convex polygons. 
Moreover, in the splitting case, we conjecture degenerate pinching rate 
from numerical experiments. 

§1. Introduction 

In this paper we consider an evolution equation of a closed, simple 
N-sided polygonal curve P(t) in the plane JR2 : 

(1) 

for j = 0, 1, ... , N -1, where Vj, H1, a and a(e1) denote an inward nor­
mal velocity of the j-th edge of P(t), a crystalline curvature, a positive 
parameter and a positive function which describes anisotropy of mo­
bility, respectively. The detailed formulations will be mentioned later. 
The interface motions of polygonal curves in a certain class are called 
crystalline motion and the motions which is governed by crystalline cur­
vature are called crystalline curvature flow. These interface motions 
were introduced by J.E. Taylor[18] and S. Angenent and M.E. Gurtin[3] 
(precise history is found in e.g., [1]). They considered the case where an 
interfacial energy density is not smooth and its Wulff shape is a convex 
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Fig. 1. Numerical simulation for nonconvex solution (case 
a= 1, a(Bj) = 1 in (1)): (a) The initial nonconvex 
curve, (b) Motion of non convex solution curve, and 
(c) The solution curve becomes convex in finite time. 

polygon and introduced the suitable class of piecewise linear curve, so­
called admissible curve, and defined crystalline curvature for admissible 
curves. Since their pioneer works, various kinds of crystalline motion 
has been studied by several authors. 

For crystalline curvature flow (1), it is known that some kinds of 
singularities may happen in finite time. When the initial curve P(O) is 
convex, the solution curve shrinks to a single point or collapses to a line 
segment in finite time. In this case the velocity Vj and the curvature H1 
diverge to infinity in finite time. We call this phenomena blow-up. The 
blow-up rate and the relation between the blow-up rate and the limit 
shape are discussed in [2], [11, 15, 16], [17]. 

If the initial curve P(O) is not convex, there is a possibility that 
self-intersection or admissibility-breaking of solution curves may hap­
pen. K. Ishii and H.M. Soner [13] considered the flow Vj = H1 in the 
case where the Wulff shape is a regular polygon. They discuss edge­
disappearing and non-existence of self-intersection. M.H. Giga and Y. 
Gig a [5] considered a general flow Vj = g( e1, H1) and mentioned the 
convexity theorem, which means that nonconvex solution curve becomes 
convex in finite time (See Fig.1). This type of theorem is shown for 
smooth curve by curve-shortening flow in [6] and [4]. However, in [14] 
the examples of nonconvex self-similar solution are shown (see also [12, 
the second Remark in §3], Example 1 in §3 below and Fig.2). These 
solutions keep nonconvexity and shrink to a single point. Therefore the 
convexity theorem does not hold in general. Moreover, 1-shaped de­
generate pinching is shown in [12] (cf. Example 1): The solution curve 
keeps nonconvexity and converges to an 1-shaped line segment (does 
not shrink to a single point or collapse to one line segment). That is, 
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Fig. 2. Nonconvex self-similar solutions: The outermost 
curve in each figures is the initial curve and the solu­
tion curves shrink to a single point. 

the motion is more complicated than the convex case. Hence, it is nec­
essary to be clear the conditions for such a convexity theorem holding 
and for the nonconvexity being preserved. In this short paper, we show 
some examples of degenerate pinching phenomena and self-intersection 
of nonconvex curve. Also we study these singularities numerically for 
general cases. 

The organization of this paper is as follows. In Section 2, we formu­
late the crystalline curvature flow. In Section 3, we show some examples 
of degenerate pinching and discuss the singularities theoretically. In 
Section 4, we explain the numerical algorithm to estimate the extinction 
rate and show a numerical conjecture. 

§2. Crystalline curvature flow 

Let f ( n) be an interfacial energy defined on the unit circle S 1 = 
lR/2nZ. First we consider the smooth case. The gradient flow of to­
tal interfacial energy on a simple closed curve P, JP f(n) ds, yields a 
weighted curvature flow V = (u + u")K. Here ds is an arc-length pa­
rameter, V is a velocity in the n direction, K is a curvature in the n 
direction (K = 1 if P is a unit circle), and u(B) = f(n) (8 is a normal 
angle which satisfies n = -(cosB,sinB)). We denoted u" = d2u/d82 . 

When u = 1, this flow is well-known curve-shortening flow. 
If the Wulff shape of u, defined by 

Wa = n {(x,y) E 1R2 Ixcos8+ysin8 :S: u(B)} 
&ES 1 

is a convex polygon, then u is not differentiable and the weighted cur­
vature flow v = (u + u")K is not well-defined in the usual sense. In 
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this case, f = rr is called crystalline energy. When W,. is an N,.-sided 
polygon (N,. 2: 3), the set of its normal angles is defined as 

where 'Pn E 8 1 is a normal angle of the n-th edge satisfying 'Po < 'Pl < 
· · · < '{JN,.-1 < r.po + 27!" with 'Pn+l - 'Pn < 7r for all n (r.pN,. ='Po mod 
2n). Then the Wulff polygon W,. can be restated as follows: 

W,. = n {(x, y) E lR.2 j xcosr.p + ysinr.p :S rr(r.p)}. 
<pE'l> Na 

When rr is a crystalline, we restrict curves to piecewise linear curves 
in a specific class in the following way: A curve P has N vertices (xj, Yj) 
(j = 0, 1, ... , N- 1), which are labeled iri an anticlockwise order with 
(xN, YN) = (xo, Yo). Let sj = {(1- t)(xj, Yj) + t(xJ+l, Yj+l) I 0:::; t:::; 1} 
be the j-th edge of P. Then we may express Pas P = Uf=~1 Sj. Let (}j 
be a normal angle of Sj. We say that P is an N- admissible curve if the 
all normal angles belong to <I> N,. and the angles of adjacent edges in P 
are adjacent in <I>N,. ((}N = (}0 mod 2n). 

For an admissible curve P, the total interfacial crystalline energy is 
given by Ef=~1 rr((}j)dj (dj is the length of Sj), and then the gradient 
flow (in the family of admissible curves) of this yields Vj = Xjl,.((}j)/dj, 
where Vj is a normal velocity at Sj in the inward normal direction nj = 
-(cos(}j,sin(}j), l,.((}j) is a length of the n-th edge of W,. satisfying 
'Pn = (} j, and Xj is a transition number, which takes + 1 ( resp. -1) if 
P is convex (resp. concave) at Sj in the nj direction; otherwise we set 
Xj = 0. The quantity 

H .- x·z,.(ej) 
J - J 

dj 

is called crystalline curvature, and then Vj = Hj is called crystalline 
curvature flow. Note that Xj = +1 for all j if P is a convex polygon, 
and that the every crystalline curvature of W,. equals + 1 on each edge. 

In this paper we consider the following generalized crystalline cur­
vature flow 

(2) 

for j = 0, 1, ... , N- 1, where a is a positive parameter and a(·) is a 
positive function which describes anisotropy of mobility. 

Under the generalized crystalline curvature flow, each edge Sj keeps 
the same normal angle but moves in the nj direction with the velocity 
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v1. Then we have the following system of ordinary differential equations 

for j = 0, 1, ... , N- 1 where 7J1 = e1+l - e1. Here and hereafter we 

denote()= d(·)/dt. See, e.g., M.E. Gurtin [7]. The local existence and 
uniqueness of solutions of this problem follow from a general theory of 
system of ODEs. Therefore, if the initial curve P(O) is admissible, then 
the admissibility of a solution curve P(t) is preserved as long as all edges 
of the solution curve exist. 

§3. Examples of degenerate pinching singularities in noncon­
vex case 

In this section, we show some examples for degenerate pinching sin­
gularities for nonconvex curves and discuss them theoretically. Through­
out this section, we assume that the Wulff shape is a square (Na = 4), 
centered at the origin, with 'Pn = 7rn/2 and la('Pn) = 1 for n = 0, 1,2,3. 
For more general case, we treat them numerically. 

We first mention an example of a "capital L" -shaped (L-shaped in 
short) degenerate pinching singularity has been shown in [12]. 

Example 1 (L-shaped). Let the initial curve P(O) be a 6-admissible 
elbow-like curve with ej = 'PJ (j = 0, 1, 2, 3) and ej = 'PJ-4 (j = 4, 5). 
We assume symmetry of P(O) such as d0 (0) = d5 (0), d1 (0) = d4(0) and 
d2(0) = d3 (0) = d0 (0) + d1 (0). See Fig.3 (left) and Fig.4 (left). Suppose 
that a E (0, 1), and that a(rpn) = 1-L E (0, 1) for n = 0,1 and a(rpn) = 1 
for n = 2, 3. If d2(0)/d1 (0) ::::0: max{r* + c:, (1- 1-L)-l/a} for any fixed 
E > 0, where r * > 1 satisfies r;-a - r;<>- 1-L = 0, then there exists T > 0 
such that limt___,T d1 (t) = 0 and info<t<T d2 (t) > 0 hold, that is, the 
nonconvex solution curve shrinks to an L-shaped line (see Fig.4). The 
extinction rate of d1(t) is exactly T- t. (This is the same rate in the 
case of degenerate pinching singularity for convex curves.) We refer the 
reader [12, §3] for the proof, and [12, the second Remark in §3] and [14] 
for self-similar solutions of elbow-like curve (see also Fig.2). 

Next we show "whisker" -type singularities. 

Example 2 (T-shaped). Let the initial curve P(O) be an 8-admissible 
"capital T" -shaped (T-shaped in short) curve with e1 = 'PJ (j = 0, 1, 2, 3) 
and e4 = rp2, e6 = rpo, e5 = e1 = 'P3· We assume do(O) = d2(0), 
d1 (0) = d3 (0) + d5 (0) + d7 (0) and d4(0) = d5(0). See Fig.3 (middle 
left). Suppose that a E (0, 1), and that a(rpn) = 1 for n = 0, 1, 2 and 
a(rp3 ) = 1-L > 0. If 1-L E (0, 1-L') with 1-L' = (d4(0)/d0 (0))(d5 (0)/dl(O))<>, 
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Fig. 3. Symmetric 6-admissible elbow-like curve (left), non­
symmetric 8-admissible "capital T"-shaped curve 
(middle left), symmetric 8-admissible "capital Z"­
shaped curve (middle right), and symmetric 8-
admissible "capital U"-shaped curve (right). In each 
figure, the number i = 0, 1, ... in a circle denotes the 
i-th edge. 
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Fig. 4. Numerical simulations ofL-shaped degenerate pinch­
ing singularity (case a= 1/2 and a('Pn) '¢ 1). The 
initial symmetric 6-admissible elbow-like curve (left), 
time evolution of solution curves (middle) and the 
limit shape at t = T (right). 

and Co = d1(0) 1-a- 2d0 (0) 1-a > 0 and d;(O) > C1 fori = 3, 7 with 

C1 = ( d1 (0) - C~/(1-a)) /2 > 0, then there exists T > 0 such that 
limt--+rdj(t) = 0 (j = 0,2) and info<t<Tdj(t) > 0 (j cf:- 0,2) hold, that 
is, the nonconvex solution curve shrinks to a rectangle with two whiskers. 
(See Fig.5). Moreover, the extinction rate of dj(t) (j = 0, 2) is exactly 
T-t. 

Proof From assumption, we have the following evolution equations: 

do= d2 =-d)"", 
d4 = d6 = -~-tdf,", 

~1 = -d[J"- d;;", 
ds = 0, 

d3 = -d;;", 
d7 = -d[J", 
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Fig. 5. Numerical simulation ofT-shaped degenerate pinch­
ing singularity (case a = 1/2 and a(tpn) = 1). The 
initial non-symmetric 8-admissible T-shaped curve 
(left), time evolution of solution curves (middle) and 
the limit shape at t = T (right). 

since Vj = a(()j)Xjdja.. Therefore we have 

(3) 

and also we have d2(t) = do(t), ds(t) = ds(O), and 

(4) 
p, 

d4(t) = d6(t) = d4(0) - ds(o)a. t. 

It holds that, by (3), 

Hence if C0 > 0, then inft>O d1 (t) > 0 holds. Moreover, we have 

(5) 

Therefore the maximal existence time of do ( t) is less than or equal to 
T1: 

1do(O) 
t = (2e-a. + Co)a./(1-a.l d~ 

da(t) 
rdo(O) 

:=:: Jo (2do(0) 1-a.+ Co)a./(1-a.) d~ = do(O)d1(0)a. =: T1. 

From (3)(right), fori= 3, 7 we have 

di(t) = ~((2do(t) 1 -a. + Co)1/(1-a.) + 2di(O)- d1(0)) 2:: di(O)- C1, 

c1 = !(d1(o)- c51<1-a.)) > o. 
2 
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Hence if di(O) > C1, then inft>O di(t) > 0 for i = 3, 7. On the other 
hand, from (4), d4 (t) = d6(t) = 0 holds just at t = T2 = d4(0)d5(0)a I J.L· 
Therefore, if T2 > T1, then the first assertion holds. From (5), -c1 < 
do < -c2 holds for some positive constants c1 and c2 since d1 is positive. 
By integration from t to T1, we have the second assertion. Q.E.D. 

Example 3 (Z-shaped). Let the initial curve P(O) be an 8-admissible 
"capital Z"-shaped (Z-shapedin short) curve with ()j = I.{Jj (j = 0, 1, 2, 3), 
(Jj = I.{Jj-2 (j = 4, 5) and ()j = I.{Jj-6 (j = 6, 7). Put wo = do(O)- d2(0) > 
-d2(0). We assume dj(O) = dj+4(0) (j = 0, 1, 2, 3) and w1 = d1(0)­
d3 (0) > 0. See Fig.3 (middle right) and Fig.6 (left). Suppose that 
a E (0, 1), and that a('Pn) = 1 for n = 0, 2 and a('Pn) = J.L > 0 for 
n = 1, 3. If wo > 0 and J.L > J.L1 with J.L1 = d2(0) 1-a l(d1(0) 1-a- w~-a), 
then there exists T > 0 such that limt-->T dj(t) = 0 (j = 2, 6) and 
info<t<T dj(t) > 0 (j i= 2, 6) hold, that is, the nonconvex solution curve 
shrinks to a rectangle with two whiskers and the extinction rate of dj(t) 
(j = 0, 2) is exactly T- t. (See Fig.6). Moreover, if w0 = 0 and J.L > 1-l', 
then there exists T > 0 such that limt__,T dj (t) = 0 (j = 0, 2, 4, 6) and 
info<t<T dj(t) > 0 (j = 1, 3, 5, 7) hold, that is, the nonconvex solution 
curve collapses to a line segment directly. 

Remark 3.1. In case w0 E ( -d2(0), 0), the nonconvex solution 
curve shrinks to a rectangle in a finite time, and eventually shrinks to a 
single point or a line segment. 

Proof From assumption, we have the following evolution equations: 

do= d2 = -J.Ld!a, d1 = d3 = -d2a, 

and dj(t) = dj+4(t) (j = 0,1,2,3), since Vj = a(Bj)xjdja. Therefore 
we have 

(6) 

and do(t)- d2(t) = w0 and d1(t)- d3(t) = w1 hold fort~ 0. We note 
that there are no self-similar solutions since d1 ( t) ~ w1 > 0, and that 
there exists T > 0 such that either limt__,T d2(t) = 0 or limt__,T d3(t) = 0 
hold. 

From (6), J.Ldl/df = d2ld'2, and then 

d1(t)1-a = d1(0)1-a- d2(0)1-a + d2(t)1-a. 
J.L J.L 

By virtue of d1(t) = d3(t) + w1 and d2(t) 1-a I J.L ~ 0, it holds that 

( 
d (0)1-a) 1/(1-a) 

d3(t) ~ d1(0) 1-a- 2 J.L - W1, 
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Fig. 6. Numerical simulation of Z-shaped degenerate pinch­
ing singularity (case a= 1/2 and a(cpn) = 1)- The 
initial symmetric 8-admissible Z-shaped curve (left), 
Time evolution of solution curves (middle) and the 
limit shape at t = T (right). 

since a < 1. Hence if J.L > J.L1 , then the right hand side is positive, that is, 
inft>O d3(t) > 0 holds, while there exists T > 0 such that limt--+T d2(t) = 
0 holds, and so limt__,T do(t) = wo ~ 0 holds. 

By the same argument in the previous example, we can obtain that 
the extinction rate of d2(t) and d6 (t) is exactly T- t. Q.E.D. 

Example 4 (U-shaped). Let the initial curve P(O) be an 8-admissible 
"capital U"-shaped (U-shaped in short) curve with 01 = 'Pj (j = 0, 1, 2), 
83 = 'Pl and (}j = I.{Jj-4 (j = 4, 5, 6, 7). Put u = d1(0)/d3(0), v = 
di(O)/do(O) and w = (do(O)-d2(0))/do(O). We assume d3+i(O) = d3-i(O) 
(i = 1, 2, 3), d7 (0) = d3(0) + 2d1(0) and w E (0, 1). See Fig.3 (right). 
Suppose that a E (0, 1), and that a(cpn) = J.L > 0 for n = 0, 2, a(cpl) = 
>. > 0 and a(cp3) = p > 0. Put 

do2(t) = do(t)- d2(t). 

Then there exists a time T > 0 such that at least one of d1 ( t), d2 ( t) or 
d02 (t) converges to zero as t tends toT, and d1(t) > 0 holds fortE [0, T), 
j = 1, 2, 02. Therefore five limit shapes are possible as in Table 1. 

The case (a) is similar to the previous two examples. The case (b) 
means that the region enclosed by solution curve is split. The other 
cases are a combination or special case of (a) and (b). In the following, 
we will consider only cases (a) and (b). (See Fig.7). 

From assumption, we have the following evolution equations: 
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(a) (b) (c) (d) (e) 

as t----> T t:::J [lJ] u - D 
d1 (t) 0 + 0 +/0 +/0 
d2(t) + + + 0 0 
do2(t) + 0 0 0 + 

Table 1. Possible five limit shapes at a time T in the U­
shaped case. In the table, the mark "+" means 
info<t<Tdj(t) > 0, and "0" means limt__.rdj(t) = 
0 for j = 1, 2 and 02. 

and d3+i(t) = d3-i(t) (i = 1, 2, 3), since Vj = a(Bj)xjdja.. Therefore we 
have 

(7) 

(8) 

(9) 

(10) 

do= -Ad1(t)-a.- p(d3(0) + 2d1(t))-a., 

d1 = -p,do(t)-a., 

d2 = -Ad1(t)-O'.- Ad3(o)-a., 

do2 = Ad3(0)-a.- p(d3(0) + 2d1(t))-a.. 

We note that there are no self-similar solutions since d3(t) = d3(0) > 0. 

Case (a). From (7), d1(0) ~ d1(t), and d3(0) + 2d1(t) ~ d1(t)ju + 
2d1(t) = (2 + u-1)d1(t), we have 

do ~ - (A+ (2 + ~- 1 )a) d!a.. 

Then by (8), 

d-ad > - (A+ p ) d-ad-a = Mod-ad . 
o o - (2 + u-1 )a o 1 J-L 1 1 

Here 
Mo =A+ P 

(2 + u- 1)a. 

By the assumption a E (0, 1), (d~-a.)" ~ M0 (d~-a.))p, holds, and then 
we obtain 
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since d1(t)1-a ~ 0. 
Hence if we assume 

(AO) 

then we have the positivity of do(t) for all t: 

( 
M, ) 1/(1-a) 

do(t) ~Co, Co = do(O) I- -;-v1-a > 0. 

By (IO) and d1(0) ~ d1(t), we have 

· >. p ( u )a ( p ) 
do2(t) :::; d3 (0) 0 - d3 (0) 0 (1 + 2u) 0 = - vd0 (0) (I + 2u) 0 - >. · · 

Therefore if we assume 

(AI) 
>.(I+ 2u) 0 I 
--'------'- < ' 

p 

then 

c1 = (vd:(o)) 0 ((1+2~)0 -A) >O 

holds, and we have do2(t) :::; -C1. 
Assume (AO) and (AI), then do2(t):::; do2(0)- C1t = wd0 (0)- C1t 

holds, and so we have 

(( 
M, ) 1/(1-a) ) 

d2(t) ~ Co - wdo(O) = do(O) I - -;-v1-a - w . 

Hence if we assume (AI) and 

(A2) J-l > /-linf, 
Mo 1-a 

J-linf = I - w1-a v ' 

then we have the positivity of d2 ( t) for all t: 

d2(t) ~ C2, C2 =Co- wdo(O) > 0, 

since if (A2), then (AO) holds. 
If we assume (AO), then by d2(t) :::; d2(0) = (1 - w)do(O) we have 

(( 
M, ) 1/(1-a) ) 

do2(t) ~Co- (I- w)do(O) = do(O) 1- -;-v1-a - 1 + w . 



554 C. Hirota, T. Ishiwata and S. Yazaki 

Hence if we assume 

(A3) 
, Mo 1_ 0 

J.linf = 1- (1- w)l-<> V ' 

then we have the positivity of d02 (t) for all t: 

do2(t) 2: C4, C4 =Co- (1- w)do(O) > 0, 

since if (A3), then (AO) holds. 
Consequently, we have the following assertion: 

Q.E.D. 

Lemma 3.2 (Case (a)). Assume (A1), (A2) and (A3), then there 
exists T > 0 such that info<t<rd1(t) > 0 holds for j = 2,02, and 
limt--+T d1 (t) = 0 holds. 

Remark 3.3. The set of parameters {a E (0, 1), J.L, >., p > 0} 
satisfying (A1), (A2) and (A3) is not empty for any parameters of the 
initial shape {u, v > 0, wE (0,1)}. Conversely, for any a E (0,1), 
J.L > 0 and p > >. > 0, one can find u satisfying (A1), and v and 
w satisfying (A2) and (A3), since small J.linf and J.L(nf can be achieved 
taking small v > 0. In Fig.7, Case (a), we show a numerical example 
using the parameters satisfying all of the assumptions: The parameters 
are a= 1/2, J.L = 27, >. = 0.1, p = 16, and the data of the initial shape 
are do(O) = d5(0) = 8, dl(O) = 1, d2(0) = 7, d3(0) = 9, d7 (0) = 11. Note 
that assumptions (A1), (A2) and (A3) are sufficient conditions. One can 
control parameters which realize case (a), at least numerically, without 
satisfying some of the assumptions. Fig.8 (a) (upper middle) suggests 
that such parameters exist: All the parameters except a = 2/3 are the 
same as those in the above example of Fig. 7, Case (a). 

Case (b). From (8), (9) and -d2 2: Ad!", we have 

d" a>. d. aAJ.L > _ aAJ.L ( -d2 ) (HnJ/n 
2 = d1+n 1 = -d"'d1+a d \ 1 0 1 - g /\ 

If we assume ( AO), then 

.. aJ.L ( . ) (1+<>)/<> 
d2 >- -d2 - C[f ).1/n . 

We put D2 = -d2, and we obtain 

_ (n-1/a) · < J.L 
2 - C"'J.1/a" 

0 
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Integration of this over (0, t) yields 

(11) D (t)- 1/a > D (0)- 1/a - f.L t. 
2 - 2 ca>Jia 

0 

By (9), we have 

By the way, from (10) and d1(t):::; d1(0), we have do2:::; -C1, and 
so d02 (t) :::; wd0 (0)- C1t holds. Hence if we assume (AI), then C1 > 0 
and the maximum existence time of d02 (t) is less than or equal to T02 : 

,.., _ wdo(O) 
.L02- c1 . 

Hereafter we will show that d1 ( t) is positive at least until t = To2. 
From (11), we have 

D (t)- 1/a > C 2 - 5, 

Therefore if C5 > 0, then 

and so d!a :::; (C5a- .Ad3(0)-a)/.A holds. Here we claim that C5a > 
.Ad3(o)-a holds. Indeed, we have 

-1/a - 1 ( Ua ) 1/a d3(0) 
0 < Cs < D2(0) - .A1/a 1 + ua d3(0) < _x1;a · 

Hence if C5 > 0, then we have 

d1(t) ~ 06, C6 = .A1/a(C5a- .Ad3(0)-a)-1/a > 0, 

for all t E [0, To2l· 
Now we will show 0 5 > 0. If we assume (Al) and (A2), then 

d2(t) ~ C2 =Co- wdo(O) > 0 holds. Therefore we have 

vdo(O) Wf.Ldo(O)l+a (v(l +2u))a 
_A1/a(l + uap!a - _A1/a(p- .A(l + 2u)a) C0 u 

> do(O) (v(l + 2u))a (M1v1-a _ f.LW1-a ) . 
_A1/a u p- .A(l + 2u)a 
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Here 

If we assume 

(A4) 

then J.Lsup > J.linf holds, where 

Hence we can assume (A2) and 

(A5) J.lsup ~ J.L, 

simultaneously, and then finally we obtain c5 > 0. 
Let T be an extinction time. Then, from positivity and boundedness 

of d1 and C1 > 0, we have -C7 < do2 < -Cs for some positive constants 
C7 and C8 . Thus, the extinction rate of d02 (t) is exactly T- t. Q.E.D. 

Consequently, we have the following assertion: 

Lemma 3.4 (Case (b)). Assume (A1), (A2), (A4) and (A5), then 
there exists T > 0 such that info<t<T dj (t) > 0 holds for j = 1, 2, 
and limt-.T do2(t) = 0 holds. Moreover, the extinction rate of do2(t) is 
exactly T - t. 

Remark 3.5. Under the conditions a E (0, 1), wE (0, 1) and (A1), 
the assumption (A4) is equivalent to the following inequality 

p(1- 8) (-u-)" + >.(1 + 8u") < 0, 
1 +2u 

If a ,:S 1 or w ,:S 1 or u is sufficiently large, then 8 < 1 holds and the left 
hand side of the above inequality is positive. Therefore (A4) is not satis­
fied. However, for parameters of the initial shape {u, v > 0, wE (0, 1)} 
in an appropriate range, the set of parameters {a E (0, 1), J.L, >., p > 0} 
satisfying (A1), (A2), (A4) and (A5) is not empty, and the converse is 
also true. In Fig. 7, Case (b), we show a numerical example using the 
parameters satisfying all of the assumptions. The initial shape and all 
the parameters except J.L = 2.694 are the same as those in Fig.7, Case 
(a) (see Remark 3.3). Note that assumptions (A1), (A2), (A4) and (A5) 
are sufficient conditions. One can control parameters which realize case 
(b), at least numerically, without satisfying some of the assumptions. 
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8 l 
7 

I 
I 

I 
I· 

8 

7 

4 

3 

-12 -10 .a .a -4 -2 0 -12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0 

Case (a) 

~t :3768 u~ 6 ~ 
sl 

; 
41 
3 ~ 
2~ 2 1 

1~~~~~~~~ 1 
0 t.--·-·"'"·---·-'-·--·-·.._ ____ ... _____ ,_ ____ ,__ 
-12 -1o -8 -a -4 -2 o -12--~io--·:a--:s--:;;---~---ii-

!U 
Case (b) 

Fig. 7. Numerical simulation for U-shaped curves (case a= 
1/2 and a( 'Pn) '¥= 1). The upper figures show the time 
evolution of solution curves in the case (a). The lower 
figures are for the case (b): The initial symmetric 8-
admissible U-shaped curve (left), time evolution of 
solution curves (middle) and the limit shape at t = T 
(right). See Remark 3.3 and 3.5 for the data and 
comments. 

Fig.8 (b) (upper right) suggests that such parameters exist: All the pa­
rameters except a= 1/3 and p. = 3 are the same as those in the above 
example of Fig.7, Case (b). 

Remark 3.6. In Fig.8, we show examples which realize all limit 
shapes numerically starting with the same initial shape and changing 
only the parameters. The initial shape is the same as one in Fig.7, 
Case (a) (see Remark 3.3), and the parameters are given in Table 2. 
Conversely, one can easily realize the limit shapes in the cases (a), (b) 
and (e) numerically controlling only the initial shapes without changing 
parameters, while we need fine tuning to realize the cases (c) and (d). 



558 C. Hirota, T. Ishiwata and S. Yazaki 

f.l I ..\ I p I (A1) I (A2) I (A3) I (A4) I (A5) I 
(a) t:j 213 27 0.1 16 OK. OK. I I 
(b) OJ] 113 3 0.1 16 OK. OK. I I 
(c) U 112 13.8 0.1 16 OK. OK. I OK. 

(d)- 112 0.1 9.25 16 OK. I I I 
(e) D 112 27 50 16 I I I I 

Table 2. The parameters in Fig.8. See Remark 3.6. 

a: 
7 ~ 

6' 

S' 

4' 

3' 
2' 

1· 

0 ' '::::;:=:::=:::;===:;::=:: 
·,12. :.!.9 ...... :8. :,6. :~ '' :2 

Sl 

7: 
st 
si 
4' 

3f 
2l 

1' 
Oi 
-12-··-~;o-··-·:a -s 

nmJ 
- - L ·-••••-••-'-••-•~ 

·2 0 

Fig. 8. Numerical examples of all limit shapes starting with 
the same initial shape (upper left). See Remark 3.6 
in detail. 

§4. Numerical algorithm and results 

I 
I 
I 

OK. 

I 

In [9, 10], Hirota and Ozawa developed a new numerical estimating 
method of blow-up time and (T- t)-P type blow-up rate of solutions 
to a system of ordinary differential equations. We apply this method to 
1 I d1 ( t) and estimate (T - t) -p type extinction rate numerically. 

Let us consider the following system of ordinary differential equa­
tions: 

d 
dtYJ(t) = fJ(t, Yo, .. ·, YN-1), j = 0, 1, ... , N- 1. 
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We suppose that some of Yi(t) blow up in finite timeT. The numerical 
method consists of the following three parts: 

Part 1. Arc-length transformation technique. We translate 
the blow-up problem to the following: 

( 
t(s) ) 

d Yo(s) 

ds : 

YN-1(s) 

1 ( ;0 ) -Vt=1=+=E=N=-=1=J=2 : , 
k=O k ~~- 1 

t(O) = 0. 

From this transformation, a solution of a new system never blows up in 
a finite time even if the solution of the original problem blows up in a 
finite time. This transformation is called arc-length transformation. 

Part 2. Generate a linearly convergent sequence to T. As­
sume that there is only (T- t)-P type singularity. Here p > 0, and Tis 
a blow-up time of the original problem. We note that blow-up time is 
given by 

T- {co ds 

- lo J1 + E:=~1 if 
Let { sn} be the geometric sequence given by 

Sn = sorn (so > 0, r > 1, n = 0, 1, 2, ... ), 

and let { tn} be the time sequence given by 

rn ds 

tn = Jo J1 + E:=~1 if 
Then {tn} converges toT linearly, that is, limn-+co len/en-11 = r-1/P, 
where en= T- tn. 

Part 3. Acceleration by the Aitken ~2 method. The Aitken 
~2 method can be applied to linearly convergent sequence in order to 
accelerate the convergence. Thus, we obtain an approximation of the 
blow-up time, say 'i'. Using T instead ofT, we can calculate an approx­
imate value of p by p ~ Pn = -logr/ log len/en-11, wher.e e.n = T- tn. 
Fro~ this procedure, we obtain a sequence {Pn} and extinction rate 
numerically. For a numerical integrator of ODEs from s = Sn- 1 to 
s = Sn, we use the DOPRI5 code (see [8]) with parameters ITOL=O and 
RTOL=ATOL=1. d-15 and we set Sn = 1 · 2n (so = 1 and r = 2). And 
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4.5,.....~~~~~~--, 4.5,--i ~~~~~~ ...... 

~f\ ~~ 
2~5r \ \ I 2~5t 
\

5 t \ u 1.
5 f 

I 1 ~ 
0.5~ 0.5r 

o L~~~-~-~ o -~~ ~~~-~ 
4 ~ 0 1 2 3 4 5 6 7 4 ~ 0 1 2 3 4 5 6 7 ° -2=----:_1,....-:-0 -1,--:-2,.--:-3 -":4:-

Fig. 9. Numerical simulation of splitting-type degenerate 
pinching singularity (case N<7 = 6, a = 1/2 and 
a( 'Pn) =j. 1). The initial 10-admissible curve (left), 
time evolution of solution curves (middle) and the 
limit shape at t = T (right). 

we apply the Aitken ~2 method three times. All computations are per­
formed by using the double precision IEEE arithmetic. 

Here we only treat splitting-type singularities. Note that the flows 
are not isotropic. In this case, we introduce a new variable w(t) which 
is the distance between two parallel edges which are touched each other 
at splitting timeT. We consider the extinction rate of w(t) "' (T- t)P. 
Table 3 (a) shows the sequence {Pn} in the case where the Wulff shape 
is a regular hexagon centered at the origin (Na = 6), and a = 1/2 and 
a(cpn) ¢ 1. Fig.9 (middle) shows time evolution of solution curves with 
the initial shape (left) and the limit shape at t = T (right). From them 
we see that the solution polygon splits two regions at t = T and the 
extinction rate is exactly T - t (p = 1). Table 3 (b) shows the sequence 
{Pn} in the case where the Wulff shape is a regular octagon centered 
at the origin (Na = 8), and a = 1/2 and a(cpn) ¢ 1. Fig.lO (middle) 
shows time evolution of solution curves with theinitial shape (left) and 
the limit shape at t = T (right). From them we see that the solution 
polygon splits two regions at t = T and the extinction rate is exactly 
T-t(p=1). 

From the above numerical computations and the examples in the 
previous section suggest that in every splitting-type degenerate pinching 
cases the extinction rate is exactly T - t or very close to T - t. 

Conjecture I. Suppose that 0 < a < 1 and a solution polygon splits 
more than two regions and let w(t) be the width of the pinching part. 
Then there exist two positive constants c1 and c2 such that c1 (T-t)l+'::::; 
w(t) ::::; c2(T- t) 1-' for any E > 0. 
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Pn In I Pn I In I Pn In I Pn 
1.818e+OO 7 1.013e+00 1 1.472e+OO 7 1.002e+OO 
1.404e+OO 8 1.006e+OO 2 1.157e+OO 8 1.001e+OO 
1.202e+OO g 1.003e+OO 3 1.053e+OO g l.OOOe+OO 
1.101e+00 10 1.002e+OO 4 1.019e+OO 10 l.OOOe+OO 
1.051e+00 11 1.001e+OO 5 1.008e+OO 11 l.OOOe+OO 
1.025e+OO 12 1.000e+OO 6 1.004e+OO 12 1.000e+OO 

(a) Nu = 6 (b) Nu = 8 
Table 3. Convergent behavior of extinction rate. 

Fig. 10. Numerical simulation of splitting-type degenerate 
pinching singularity (case N" = 8, et = 1/2 and 
a(<pn) =/'- 1). The initial 16-admissible curve (left), 
time evolution of solution curves (middle) and the 
limit shape at t = T (right). 
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