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Characteristic classes of singular varieties 

Adam Parusinski 

Abstract. This is a short and concise survey on recent results on the 
Milnor classes of global complete intersections. By definition the Milnor 
class of X equals the difference between the Chern-Schwartz-MacPherson 
and the Fulton-Johnson classes of X and we describe the results that 
express it in terms of the local and global invariants of the singular locus 
of X. In this survey we underline the characteristic cycle approach and 
its realtion to the vanishing Euler characteristic, as for instance to the 
Euler characteristic of the Milnor fibre in the hypersurface case. 

We present some recent developments in the theory of characteristic 
classes of singular algebraic and analytic varieties. We would like, in 
particular, underline the characteristic cycle approach and the geometric 
insight given by this construction. For different approaches the reader 
may consult the excellent surveys [7] and [45]. 

Several different characteristic classes can be defined for a singular 
variety X: the Chern-Schwartz-MacPherson class c*(X), the Chern­
Mather class cM(X), the Fulton class cF(X) and the Fulton-Johnson 
class cF J (X). For nonsingular X they are all equal to the Poincare dual 
of the Chern class c(T X) of the tangent bundle. We present in this 
survey some results that answer the following question: how does the 
difference cF(X)-c*(X) (or cFJ(X)-c*(X)) depend on the singularities 
of X? 

The characteristic classes of singular varieties may be defined in 
different set-ups. For complex algebraic varieties they take values in the 
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Chow group A*(·). (They can be even defined for algebraic varieties over 
an arbitrary algebraically closed field of characteristic zero, cf. [21, 22].) 
For complex analytic spaces, assumed compact or such that they can be 
compactified, the characteristic classes take values in the Borel-Moore 
homology H!M (·; Z). For complex algebraic varieties both approaches 
are linked by the cycle map cl: A*(·)---> H!M(·;Z). For simplicity of 
exposition by variety we mean either a complex analytic space or an 
algebraic variety, and then by homology we mean H!M(·;Z) or A*(·) 
respectively. 

We shall also include a brief review of Stiefel-Whitney classes that 
can be defined for real algebraic varieties or, in general, for Euler mod 
2 triangulated spaces and that take values in H!M (·; Z2 ). 

If X is singular then the tangent bundle to X is not well-defined 
and therefore one cannot consider simply the characteristic classes of 
this bundle. Suppose X is a subvariety of a non-singular variety M. We 
recall briefely the definitions of the Fulton and Fulton-Johnson classes, 
see [16] for details. The idea is to find an object which plays the role of 
the normal bundle to X in M. Let C x M be the normal cone to X in M 
and let J be the ideal sheaf of X in Cx M. Denote by Nx M = J j J 2 

the conormal sheaf of X in M. Let p be the blow-up of X in M. The 
exceptional divisor of p can be identified with the projectivization of 
CxM. The Segre class of X in Misgiven by: 

where 0(1) denotes the canonical line bundle on JP>CxM. 
The Fulton class of X is defined by 

cF (X) = c(T Mix) n s(X, M). 

The Fulton-Johnson class of X equals 

cFJ(X) = c(TMix) n s(NxM). 

Both the Fulton and the Fulton-Johson classes are independent of the 
embedding of X into non-singular variety, cf. [16], Example 4.2.6. If X 
is regularly embedded in M (i. e. J is locally generated by a regular 
sequence) then the both classes coincide and 

where Tx = ™lx- NxM is the virtual tangent bundle to X. In this 
case NxM = dual(J) is a vector bundle and is canonically isomorphic 
to Cx M, cf. [16], Appendix B7. 
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Another possibility is to recover the tangent bundle to singular X 
by the means of the Nash-blowing-up, see [26], [16], Example 4.2.9. Let 
v : X ---+ X be the Nash blowing-up of X and let T denote the vector 
bundle on X that extends v*TX. Then the Chern-Mather class CM(X) 
of X equals by definition 

In section 1 below we recall the definition of the Chern-Schwartz­
MacPherson class c*(X) of X. Thus we have at least four different 
notions of characteristic classes that coincide for X nonsingular. 

Example 0.1. (Hypersurface with an isolated singularity). 
Let L ---+ M a line bundle, M nonsingular, and let X be the zero scheme 
of a holomorphic .section f of L. Suppose that, moreover, X has an 
isolated singularity SingX = {po}. Then 

cFJ(X) = cF(X) = c(TM- L) n [X] 
c*(X) = c(TM- L) n [X]+ (-1)nJLn[po] 

CM(X) = c(TM- L) n [X]+ ( -1)n(JLn + /Ln-l)[po]. 

where T M- L is the virtual tangent bundle of X, JLn is the Milnor num­
ber of f at p0 and /Ln-l is the Milnor number of the generic hyperplane 
section off at Po· 

We shall study the general hypersurface case in section 2 below. 

§1. Chern-Schwartz-MacPherson classes and characteristic cy­
cles 

We recall some of the basic results on Chern-Schwartz-MacPherson 
classes and characteristic cycles. For the details the reader is refered to 
~' 1~ 21, 26, 32, 3~. 

1.1. Constructible functions 

For a variety X we denote by F(X) the group of integer-valued 
constructible functions on X i.e. finite sums 

where Vi are subvarieties of X. There are many interesting operations 
on constructible functions: sum, product, pull-back, push-forward, spe­
cialization, duality, and Euler integral inherited from sheaf theory by 
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taking the index of a constructible complex of sheaves. Recall that for 
a constructible complex of sheaves :F. on X its index is the stalkwise 
Euler characteristic p-> x(:F.)(p) = 2:(-1)idimHi(:F.)p· It is a con­
structible function. Note that this definition is purely local so the global 
properties of :F. are lost. The operations on constructible functions can 
be defined independently by means of Euler integral, see [42], [33], [20]. 

If X is compact then the Euler integral of a is defined as the 
weighted Euler characteristic: J adx := Li nix(Vi). For a proper map 
f: X-> Y the proper push-forward f* : F(X) -> F(Y) is given by 

Let f : X -> S be a morphism to a curve and let so be a nonsingular 
point of S. Denote X 0 = f- 1 (s0 ). The specialization homomorphism 
sp : F(X) -> F(Xo), or nearby Euler characteristic, is given by the 
Euler integral on the Milnor fibre of f. That is, at p E X 0 and for a as 
above 

(1) sp(a)(p) = f adx= L:nix(FpnVi), 
jFv i 

where Fp is the Milnor fibre off at p. That is, Fp = f- 1 (s) n B(p, c), 
where, in local systems of coordinates, B(p, e) denotes the ball centered 
at p of radius c and sis chosen so that 0 < Is- sol « c « 1. 

1.2. Chern-Schwartz-MacPherson classes 

The Chern-Schwartz-MacPherson class (the CSM class for short) 
c* is the unique transformation from constructible functions F( ·) to 
homology H*(·) and satisfying: 

(1) f*c*(a) = c*f*(a) for a proper morphism f: X-> Y. 
(2) c*(a + /1) = c*(a) + c*(/1), 
(3) c*(:D.x) = c(TX) n [X] for X nonsingular. 

Its existence was conjectured by Deligne and Grothendieck and proven 
by MacPherson in [26]. They are, by the Alexander duality isomorphism, 
equal to the characteristic classes introduced by M.-H. Schwartz, cf. 
[38, 9] 

By a theorem of Verdier [41] the CSM class commutes with special­
ization: c* qsp = Spoc*, where Sp: H*(X)-> H*(Xo) is the specializa­
tion on homology, see [22] for the Chow group counterpart. 
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1.3. Characteristic cycles 

Let M be a nonsingular variety of dimension n and let T* M de­
note the cotangent bundle of M. We consider £(M): the free abelian 
group generated by the set of conical Lagrangian subvarieties ofT* M. 
Thus each element of £(M) is an integral combination of irreducible 
Lagrangian subvarieties that can be described as follows. Let V be a 
closed subvariety of M and let Reg(V) = V \ Sing(V) denote the set of 
regular points of V. The co normal space to V in M 

TvM :=Closure { (x, ~) E T* M I X E Reg(V), ~IT,Reg(V) = o}) 

is a conical Lagrangian subvariety and each irreducible conical Lagrangian 
subvariety ofT* M is the conormal space of an irreducible subvariety of 
M. For a subvariety X C M let £(X) denote the subgroup of £(M) 
given by the conical Lagrangian subvarieties of T* M over X. We call 
an element of £(X) a conical Lagrangian cycle over X. 

To a constructible function a E F(X) we associate its characteristic 
cycle Ch(a) E £(X) so that we get a group isomorphism Ch: F(X) --+ 

£(X). For instance, for a subvariety V, Ch(:D. v) can be defined by means 
of the characteristic cycle of a sheaf, cf. for instance [11], by 

where i : V <--+ M is the inclusion. Then 

TvM = (-1)dimV Ch(Euv), 

where Euv denotes MacPherson's Euler obstruction [26]. (In literature 
there are two sign conventions in the definition of Ch that differ by 
(-1)dimM. We follow that of [21]) 

Let f: (M,p)--+ (C,O) be the germ of a holomorphic function and 
let a = Li ni :n. v, be a constructible function on M. Let sp a(p) be the 
specialization of a to the zero fibre off as defined in (1). The difference 
sp a(p) - a(p) can be interpreted as the vanishing Euler characteristic. 
Suppose that the graph Gr(df) of df, considered as a section ofT* M, 
intersects Ch(a) only at (p, df(p)). Then by the index formula for the 
sheaf vanishing cycles due toLe, Dubson, and Sabbah, cf. [13] and ( 4.5) 
and (4.6) of [32], the local intersection number of the cycles Ch(a) and 
Gr( df) equals 

(2) (Ch(a).Gr(df))(p,df(p)) = -(spa(p)- a(p)). 

Thus one may interpret Ch( a) as the set of such covectors (p, ~) E 

T* M that the Euler integral of the fibers of functions f : ( M, p) --+ 
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( C, 0) with df (p) = ~ changes at p. To be more precise, fix a Whitney 
stratification { Sj} of M, such that each Vi is the union of strata. Then, 
by Thorn-Mather theory, there is no change of topology of fibers of flv; 
if (p, ~) ~ U T8i M. In particular, Ch( a) = Li niTs, M with integer 
coefficients ni. In general these coefficients may be zero or negative. By 
(2) they are determined by the vanishing Euler characteristic of such f 
that Gr( df) intersects T.$, M at a generic point. 

Example 1.1. Let p EX C M. The coefficient ofT;M in Ch(:D.x) 
equals 

1- x(tkc(X,p)) 

where lkc(X,p) is the complex link of X at p (in local coordinates the 
intersection of X with generic hyperplane near p). 

There are operations of proper push-forward and specialization on 
conical Lagrangian cycles defined geometrically. Ch is a natural trans­
formation in the sense that it commutes with these operations and the 
corresponding operations on constructible functions, cf. [17], [21], [32], 

(1) f* Ch(a) = Chf*(a) for proper morphisms f: X-+ Y 
(2) Ch(a + (3) = Ch(a) + Ch((3) 
(3) Ch(sp(a)) = Sp(Ch(a)). 

By a formula of Sabbah [32], (1.2.1), for a E F(X) 

(3) c*(a) := (-1)n-1c(TM1x) n1r* (c(0(1))- 1 n [JP>Chal), 

where 0(1) is the canonical line bundle on JP>T* M and 1r: JP>T* MIX-+ X 
denotes the projection. Using Sabbah's own words "cela montre que la 
theorie des classes de Chern de [26] se ramtme a une theorie de Chow 
sur T* M, qui ne fait intervenir que des classes fondamentales" . 

The Chern-Mather class of V, see [26], equals 
(4) 
CM(V) = c*(Euv) = ( -l)n- 1-dim v c (TMiv )n7r* (c(O( -1)) n [JP>TtM]) . 

Remark 1.2. The CSM class and the Euler obstruction are closely 
related to the geometry of polar varieties, see [24], and also [7] and the 
references therein. 

§2. Characteristic cycles and Stiefel-Whitney classes 

Characteristic cycles can be also defined in real analytic and alge­
braic geometry for semi-algebraic and subanalytic sets cf. [19], [20], [14], 
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or even for sets defined in any o-minimal structure [34], see also an ex­
plicit construction in [36]. More precisely, given an oriented real analytic 
manifold M, we have a group isomorphism 

Ch : F(M) --+ .C(M) 

between the group of subanalytically constructible functions F( M) on M 
and the group of subanalytic conical Lagrangian cycles .C(M) in T* M. 
(Here by conical we mean llt>0-homogeneous.) The most important 
difference from the complex case is that the subanalytic Lagrangian 
conical cycles in T* M are not necessarily combination of co normal spaces 
but usually more complicated subanalytic cycles of T* M. Moreover 
usually the co normal space T\f M is not a cycle. These differences are 
caused by the fact that for a subanalytic continuous function f : (V, 0) --+ 

(lit, 0), V C M subanalytic closed, or even for f and V real analytic, the 
vanishing Euler characteristic from the right (i.e., defined by the positive 
Milnor fiber) may not be equal to that from the left ((i.e., defined by 
the negative Milnor fiber). Note that in the real set-up there are more 
possible conventions on the sign, for instance the characteristic cycle 
constructed by Fu [14] corresponds to that of Kashiwara-Schapira [20] 
after the application of the antipodal map (multiplication by -1 in the 
fibers of T* M). 

Example 2.1. Let V c M be subanalytic closed and let {Si} be a 
subanalytic Whitney stratification of V. Define 

Ao ·- UAo . - si' Asi = T?,iM \ U T?,1 M . 
#i 

Decompose A o into the connected components A 0 : = U Aj. Then 

for some integers ni that can be described topologically by the vanishing 
Euler characteristic, see the index formula below. 

The analogue of the index formula (2), [20] Thm. 9.5.6, see also [19] 
and [37], has even more flavour of the Morse Theory. It says that for 
V C M subanalytic closed, and a real analytic f: (M,p)--+ (llt,O) such 
that Gr(df) intersects Ch(D.v) only at (p,df(p)) 

(Gr(df). Ch(D.v ))(p,df(p)) x(B n {x E V,f(x):::; +J}) 

-x(B n {x E V, f(x):::; -J}), 
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where B denotes the ball of radius E centered at p, 0 < J « E « 1. 
Given a conical Lagrangian cycle A = Ch(a) E .C(M). In order to 
recover the value a(p) at p E M it suffices to intersect A with Gr(df), 
where f : (M,p) --+ (~, 0) is a Morse function of index 0 (for instance 
f ( x) = xi + · · · + x; in local coordinates). Then 

a(p) = (Gr(df).A)(p,df(p)) 

Remark 2.2. The operation inverse to Ch is related to MacPher­
son's Euler obstruction as follows. Let M be a complex manifold and V 
a complex analytic subvariety of M. Consider V as a subanalytic subset 
of M and M itself as an oriented real analytic manifold. Then T{rM is a 
real Lagrangian cycle. Let p E V and f : ( M, p) --+ (~, 0) be a real Morse 
function of index 0. Then (Gr(df).T{rM))(p,df(p)) = ( -1)dimc: v Euv(p). 
This formula for the Euler obstruction is essentially the definition of 
MacPherson, where the intersection Gr(df) is replaced by the intersec­
tion with the section given by the radial vector field. 

2.1. Stiefel-Whitney classes 

In 1935 Stiefel defined a characteristic class wi(X) E Hi(X; Z2) for 
any smooth compact manifold. He conjectured that wi(X) is represented 
by the sum of all the i-simplices of the first barycentric subdivision of 
a triangulation of X. Stiefel's Conjecture was proved by Whitney in 
1939. In 1969 Sullivan observed that Stiefel's definition can be applied 
to real analytic spaces since they are (mod 2) Euler spaces, that is to 
say, the link of each point has even Euler characteristic. Then, for 
a triangulated Euler space, the sum of all the i-simplices of the first 
barycentric subdivision is a Z2-cycle. 

It was noticed in [15] that the Stiefel-Whitney classes of subanalytic 
sets can be defined via the characteristic cycles. We give below just a 
short account, for details the reader is refered to [15]. 

Remark 2.3. ([33], [20]) Verdier Duality on sheaves induces a duality 
on constructible functions. This duality can be written as 

Da(p) = a(p)- { adx, 
}se 

p 

where s; is a small sphere centered at p. The corresponding duality 
on the conical Lagrangian cycles is given by the antipodal map that 
is by the multiplication by ( -1) in the fibres of T* M. Note that in 
the complex case the duality on constructible function and the one on 
conical Lagrangian cycles are the identity maps. 
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Let M be an oriented real analytic manifold. A subanalytically 
constructible function a E F(M) is called (mod 2) Euler if it is self dual 
modulo 2 (equivalently-its Euler integral along any small sphere is even). 
For such a function the projectivization of its characteristic cycle 

IP'Ch(a) c IP'T* M 

is a (mod 2)-cycle. 
For a (mod 2) Euler constructible function a E F(M) one may 

define its ith Stiefel-Whitney class by a formula corresponding to (3) 

where 1r: IP'T* M---> M is the projection and 

/'~ = L n*(wi(TM)) n (~J, 
j 

where (M E H 1 (IP'T* M; Z2 ) is the first Stiefel-Whitney class of the tau­
tological line bundle on IP'T* M. 

Defined this way, Stiefel-Whitney homological classes satisfy the ax­
ioms analogous to the Deligne-Grothendieck axioms for the CSM-classes 
and the Verdier specialization property. 

§3. Hypersurface case 

Let M be a nonsingular compact complex analytic variety of pure 
dimension n and let L be a holomorphic line bundle on M. Take f E 

H 0 (X, L) a holomorphic section of L such that the variety X of zeros of 
f is a reduced hypersurface in M. 

Consider the constructible function x : X ---> Z defined for x E X 
by x(x) := x(Fx), where Fx denotes the Milnor fibre at X and x(Fx) 
its Euler characteristic. Also, define J.L := (-l)n-l(X -lx), that is the 
signed vanishing Euler characteristic. 

In this section, following [1], [2], [29], [3], we give the common de­
scriptions of the CSM and Fulton classes of X as well as the results that 
present the contribution of the singularities of X to the difference of 
these two classes. Similarly to [29] our approach is based on the compu­
tation of characteristic cycle of X. For an account on different possible 
approaches see [4]. 
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3.1. Local description of characteristic cycle 

The characteristic cycle of X was calculated in [5] and [23] in terms 
of the blow-up of the Jacobian ideal of a local equation of X in M. 
More precisely, let X c U c en be the zero set of a holomorphic 
function f : U ---+ C and denote by 1r : Bl.71 U ---+ U the blowing-up of 

the Jacobian ideal of Jf = ( *t, ... , It:). 
Let X= 1r- 1 (X) denote the total transform of X by 1r and we denote 

the irreducible components of X by Di and by Ci their projections onto 
U. Denote by Ic, the ideal defining Ci and the multiplicities of Ic, j, 
and Jf along Di by ni, mi and Pi respectively. Note that Di is contained 
in the exceptional divisor of 1r if and only if Pi = 0. It is known by the 
transversality of polar varieties that mi = ni +Pi, see [40], [5], and [31]. 

By [5], [23], we have the following explicit formulas 

Ch(lx) = (-1)n- 1 'L:niTc,U; 

Ch(x) = Ch(R w 1c u) = ( -1)n- 1 L miTcP; 

Ch(J-L) = (-l)n- 1 Ch(R«<>1Cu) = LPiTcP· 

(Here R W f and R «<> f denote the complexes of nearby and vanishing 
cycles respectively.) 

Bl.71 U can be interpreted geometrically by means of the relative 
co normal space Tj C T* U 

Tj := Closure {(x,ry) C T*U;df(x) -1- O,::JA such that 1J = .Adf(x)}. 

Let f : Tj ---+ C denote the composition of the projection Tj ---+ U and f. 

Then ]-1 (c), for a regular value c, equals the conormal space to f- 1 (c). 
Thus by Lagrangian specialization, cf. [25], [18], j-1 (0) is a conical 
Lagrangian subvariety of T*U. It is equal to Ch(x) since Ch commutes 
with specialization. Moreover the total transform X of X by 1r, is the set 
of limits of the direction of the gradient [ *t ( x) : ... : It: ( x)] and hence 

equals, at least as a set, the projectivization of j-1 (0). Thus j-1(0) is 
the union of conormals Tlf and each Di = W'T0,U. In particular, we 
may rewrite the above formulas as follows 

(5) 

[W'Ch(lx)] 

[W'Ch(x)] 

[W'Ch(J-L)] 

= ( -1)n-1 ([X]- [Y]) ; 
= (-1)n-1 [X]; 

=[Y] 
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where Y denote the exceptional divisor of 1r. 

Remark 3.1. The computation of coefficients ni, mi and Pi can be 
done by a topological argument based on the Morse theory and generic 
polar curves, see for instance [23]. In particular, in the isolated sin­
gularity case, SingX = {p0 }, the coefficients at r;ou are equal to 
( -1 )n- 1/ln-1, ( -1 )n-1 (!ln +lln-1), and fln respectively. Here fln denotes 
the Milnor number off at Po and /ln- 1 the Milnor number of the generic 
hyperplane section of f at Po. One may show that 1 - ( -1) n-1/ln-1 
equals the Euler characteristic of the complex link of X at p0 . 

3.2. Global description of characteristic cycle 

The singular scheme of X, that we denote by Y, is defined in local 

coordinates by(!, .1t) = (!, *t, ... , /t). Since f belongs to the inte­

gral closure of .Jf, the normalizations of blow-ups of .1t and (!, .J1) are 
equal. Hence the formulas (5) hold true locally if we replace the blow-up 
of the former ideal by the blow-up of the latter one. We shall see that 
they hold true globally. 

Let B = Bly M ----> M be the blow-up of M along Y. Let X and 
Y denote the total transform of X and the exceptional divisor in B 
respectively. To get a convenient description of B, we use the bundle 
Pi,1L of principal parts of L over M, as in [2], [31]. The differentials 
and the sections of L take values in PJvrL and also PJvrL fits in an exact 
sequence 

0----> T* M 181 L----> PJvrL----> L----> 0. 

Thus f determines a section of PJvrL that is written locally as (df, f) = 

( *t, ... , /t, f) . The closure of the image of the meromorphic map 

M ---> IF'PJvrL induced by this section is the blow-up B ----> M. Thus 
we may treat B as a subvariety of IF'PJvrL. Clearly, the total transform 
X of X equals B n JF>(T* M 181 £), that we identify with a subvariety of 
JF>(T* M 181 L). Since JF>(T* M 181 L) = JF>(T* M) we see that the formulas 
(5) hold globally. 

By an elementary computation on JF>(T* M 181 L), see [31], this gives 

= c (T Ml ) n 1r ( [X] - [Y] ) 
X * 1+X-Y 

(6) ( [X] ) 
=c(TMix)n7r. 1 +X-Y 

=(-1)n-1c(TMI )n1r ( [Y] ) 
X * 1+X-Y 
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The first of the above formulas was obtained by Aluffi [2] by means of 
resolution of singularities and a detailed description of how the formula 
changes under a blowing-up. He has also got the following formula for 
the Chern-Mather class of X. 

( [X'] ) 
cM(X) = c(TMix) n 1r* 1 +X_ y , 

where X' is the proper transform of X. In local coordinates [X'] 
lP'T xU and hence this result follows from ( 4). 

3.3. Aluffi's formulas. Milnor class of a hypersurface. 
From (6) we derive the formulas obtained by Aluffi in [1]. First note 

that in our case 

cF(X) = cFJ(X) = c(TMix- Llx) n [X]. 

By birational invariance of Segre classes [16], Chap.4: 

cF(X) = c(TMix) n s(X, M) c(TMix) n 1r*s(X, B) 

= c(TM1x)n7r* ( 1 ~~). 
In [1] Aluffi defines a "thickening" of X along its singular subscheme Y: 
Xk is the subscheme of M defined by the ideal 'Ix'I~. He shows that 
the Fulton class of Xk is a polynomial in k with the CSM class being 
equal to cF(x-1). Indeed, as above, 

(7) cF(Xk) = c(TMix) n s(Xk, M) = c(TMix) n 1r* (}~l; ~[~1). 

This can be expressed in the following suggestive form, cf. [1], 

c*(X) = cF(x-1) = c(TMix) n s(X \ Y, M). 

The Milnor class was first defined by Yokura [44] as 

M(X) := ( -1)n- 1(cFJ(X)- c*(X)). 

As follows from (6), (7) 

M(X) 

(8) 

= (-1)n-1c(TMix) n 7r* ( (1 + X)(~l X- Y)) 
=(-1)n-1c(TMI )n1r ( [IP'Ch(JL)] ) 

X * (1 + X)(1 +X - Y) 

= c(Lix )-1c*(JL),. 
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Let S = { S} be any stratification of X such that J1, is constant on the 
strata of S. (One may take, for instance, any Whitney stratification of 
X.) Denote the value of J1, on the stratum S by Jl,s and let 

a(S) := Jl,s- L a(S') 
S'#S,SCS' 

be the numbers defined inductively on descending dimension of S. Then 
J1, = LSES a(S):n.s and 

Ch(J.l,) = L a(S) Ch(:n.8 ). 
SES 

This gives the following formula on the Milnor class, see [29], 

(9) M(X) = L a(S) c(Lix)- 1 n (is,x)* c*(S), 
SES 

where is x : S -+ X denotes the inclusion. This formula was first 
conjectur'ed by Yokura in [44] and proven in [31]. If Y is smooth and J1, 
is constant on Y, equal say Jl,Y, then it reads 

If the singular set of X is finite, then we get 

(10) M(X) = L Jl,(x)[x]. 
xESing(X) 

This formula was obtained also by Suwa [39] in a more general set-up of 
isolated singularities of (global) complete intersections. 

The Milnor class is related to the J.l,-class supported on Y, introduced 
by Aluffi in [1], 

J1,L(Y) = c(T* M 0 L) n s(Y, M). 

As shown in [2] 

For the notation J.1,L(Y)v and the proof we refer the reader to [2]. We 
just note that the above formula can be derived from (8). 

Following [3] we give another interpretation of (8). Let Y be a 
subvariety of M. Let 1r: GyM-+ Y denote the normal cone toY in M 
and let Ci be the irreducible components of Cy M. Denote by mi their 
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multiplicities and let Yi = 1r( Ci). Then the weighted Mather class of Y 
is defined by 

CwM(Y) := 2:)-l)dimY,miCM(Yi). 

(here the factor ( -1 )dim Y is removed from the original Aluffi's defini­
tion). Note that CwM(Y) depends on the scheme structure of Y, in 
particular it is sensitive to the presence of embedded components. An 
important property is that CwM(Y) is intrinsic to Y (independent of 
the ambient nonsingular variety). In the particular case when Y is the 
singular scheme of a hypersurface X 

Thus (8) takes the following form 

(11) CFJ (X)- c*(X) = ( -l)n-1c(Lising(X))- 1 n CwM(Sing(X)) 

with the right hand side depending only on the scheme structure of 
Sing(X) and on c(Lising(X))· 

Remark 3.2. Many of the results presented above were motivated 
by their corresponding formulas for the Euler characteristic. The gener­
alized Milnor number was first defined in [28] as 

f.l(X) := (-l)n- 1 (c(TM1x- Llx) n [X]- x(X))). 

If X has only isolated singularities then the generalized Milnor number 
of X equals the sum of their local Milnor numbers. Yokura's Conjec­
ture, i.e. formula (9), was motivated by a similar formula for the Euler 
characteristic established in [29]. 

3.4. Specialization 
Suppose now that the line bundle L admits a section g E H 0 (M, L) 

such that X' = g-1(0) is smooth and transverse to the strata of a 
Whitney stratification of X. This is for instance the case when L is very 
ample. The Milnor class, and so the Fulton class, of X equals the CSM 
class of a simple constructible function on X. 

FortE C, denote ft = f- tg. In this paragraph by X we denote 

X:= { (x, t) EM X c I ft(x) = o}. 

Let p: X ___, C be the restriction to X of the projection onto the second 
factor of M x C. Then p- 1 (t) = {x EM I ft(x) = 0} fortE C. Denote 
by 

sp : F(X) ___, F(X) 
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the specialization by p. By Proposition 5.1 of [31] 

:n. () {
x(x)=1+(-1)n- 1JL(x) forxfj.XnX', 

Sp X X = 1 for x E XnX'. 

Then by the commutativity of the CSM class with specialization 

cF(X) = c*(sp:D.x), M(X) = (-1t- 1c*(sp:D.x- :D.x), 
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see [31] for details. In particular thelast equality gives the formula (8) 
for the Milnor class. 

Remark 3.3. One may show easily that in the algebraic case cF (X) 
or M(X), or indeed any algebraic cycle, is of the form c*(o:) for a con­
structible function a. Note that the above formulas give such a's ex­
plicitely (under the assumption of ampleness of L). 

§4. Milnor classes 

One would like to extend the results described in the previous section 
to the local complete intersection case. To be more precise, let M be a 
nonsingular variety and let i : X '----> M be a regular embedding ( cf. [16] 
Appendix B7). Then 

cF(X) = cFJ(X) = c(Tx) n [X], 

Let N x M denote its normal bundle. The question is whether there is a 
formula so that 

M(X) = c(NxM)- 1 n class(SingX) ? 

and class(SingX) is a characteristic class depending only on some data 
given by Sing(X), see also [46] for similar questions. 

By a result of Suwa [39] this is the case if X has only isolated 
singularities. Then 

M(X) = ~ Jlx [x], 
xESing(X) 

where Jlx denotes the Milnor number at x. 
But the very first obstacle to extend the hypersurface case is the ab­

sence of a good candidate for constructible function Jl· For f : (Cn+k, 0) --+ 

(Ck,O),k 2:2, the Milnor fibration (or the nearby cycles functor) is not 
well-defined in general unless f is "sans eclatement en codimension 0", 
see [18], that is the case, for instance, in the isolated singularity case. 

Nevertheless there are some partial answers that we describe below. 
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4.1. Milnor class by the obstruction theory 
In [8] the authors assume that M is a complex manifold and XC M 

is a local complete intersection. We assume moreover that X is the zero 
set of a holomorphic section, generically transverse to the zero section, 
of a holomorphic vector bundle E on M (this case is sometimes called 
a global complete intersection). X is also assumed to be compact. Let 
n =dim X. It is showed in [8] that M(X) can be localized at a connected 
component S of the singular set Y of X. For such a component S and the 
following data: a tubular neighbourhood U of S in X, a positive integer 
r, and an r frame vCrl of vectors tangent to X defined on au n D, 
D being the 2(n- r + 1)-skeleton of a cellular decomposition of X, 
the authors define two classes: the localized Schwartz class Sch( vCr), S) 
and the localized virtual class Vir(vCrl,S) both living in E H 2cr-l)(S). 
The former class contributes to Cr- 1(X) and the latter to the homology 
characteristic class of the virtual tangent bundle Tx = TM I x - N x M. 
Then, as shown in [8], 

J.l.r-l(X, S) := ( -1)n- 1 ((Sch(v(r), S)- Vir(v(r), S)) 

is independent on the choices and the total Milnor class is the sum over 
the connected components Sa 

where ia: Sa"--> X and J.l.*(X,Sa) = LJ.l.i(X,Sa)· 

4.2. On Verdier-type Riemann-Roch for CSM classes 

Let f : X ~ Y be a local complete intersection morphism (an 
l.c.i. for short), that is the composition of a regular embedding i and a 
smooth morphism p, cf. [16] Appendix B. 7. Guided by the Riemann­
Roch theorem and by the bivariant theory of Chern classes, Yokura [43] 
posed the question of commutativity (or rather of understanding the 
non-commutativity) of the following diagram 

F(Y) ~ A*(Y) 

j* 1 lc(TJ)nj* 

F(X) ~ A*(X) 

where TJ is the virtual tangent bundle, f* on the left-hand side is the 
pull-back of constructible functions, f* on the right-hand side is the 
Gysin homomorphism, i.e., the composition of the smooth pull-back p* 
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and the Gysin i* for regular embeddings. The non-commutativity of 
the above diagram is related to the Milnor class as follows, cf. [43] 
Example (3.1). Let i : X '---4 M be a regular embedding as above and 
let p : M ---> pt be the projection to a point. Then f = p o i : X ---> pt 
is an l.c.i. morphism and applying the morphisms of the diagram to :U.pt 
we get 

c*(j*:U.pt) = c*(X), 

c(TJ) n f*c*(:U.pt) = c(TJ) n [X] = cFJ (X). 

Thus, in this case, the non-commutativity of the diagram is measured 
exactly by the Milnor class. 

Actually, only the regular em beddings contribute to the non-commu­
tativity of the diagram. Yokura [43] shows that the diagram is commu­
tative for smooth morphisms. Indeed, let us verify it for X and Y 
non-singular on :O.y E F(Y): 

c(TJ) n f*c*(:U.y) = c(TJ) n j*(c(TY) n [Y]) 
= (c(Tt) u c(f*TY)) n j*[Y] 

= (c(TJ) U f*c(TY)) n [X] 
=c(TX) n [X]. 

The general case can be reduced to the above one by the resolution of 
singularities. 

4.3. Schiirmann's formula 

We present the main result of [35] that generalizes the results on the 
hypersurface case to the case of the regular embedding. Recall that for 
a general holomorphic map f: (Cn+k,O)---> (Ck,O), k ~ 2, the Milnor 
fibration and the nearby Euler characteristic are not well-defined. The 
main idea of Schiirmann is to overcome this difficulty by replacing X by 
a hypersurface using the classical construction of the deformation to the 
normal cone, cf. [16] Ch. 5. 

Let i : X '---4 Y be a regular embedding, and we do not have to 
assume that Y is smooth. Let Cx Y be the normal cone of X in Y 
and let 1r : Cx Y ---> X and k : X ---> Cx Y denote the projection and 
the. embedding as the zero section respectively. Since i is a regular 
embedding, CxY is equal to the normal bundle NxY. In paricular, 1r 

is smooth. Denote by Mx Y ---> C the deformation of Y to the normal 
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cone Cx Y. We have the commutative diagram 

CxY '-+ MxY ,......., y XC* 

1 1flat 1 
{0} '-+ c ,......., C* 

Denote by ii" : Y x C* -. Y the projection to the first factor. Schiirmann 
defines the "constructible function version" of Verdier specialization as 

sp = SPxw = 1/Jh o ii"*: F(Y) __.... Fmon(Cx Y), 

whose image is in monodromic, i.e. conical, constructible functions on 
Cx Y. By Verdier specialization, the CSM class commutes with the anal­
ogously defined specialization on homology Sp : H.(Y) -. H.(CxY): 
Sp oc* = c. o sp. The "vanishing Euler characteristic" transformation 
associated to the embedding i is defined by ~Pi = sp -n*i*. Thus 

(12) c.(IPi(·)) = c.(sp(·)- n*i*(·)) = Sp(c.(·))- c.(n*i*(·)). 

This formula holds in H.(CxY). To go down to H.(X), we use the 
Gysin isomorphism k* = (n*)- 1 : H.(CxY) -. H.(X) (recall that 
k: X-. Cx Y denotes the embedding on the zero section) 

k*c.(IPi(a)) = k* Sp(c.(a))- k*c.(n*i*(a)). 

The Gysin homomorphism i* is defined by i* = k* o Sp. Since 1r is 
smooth, by Yokura's theorem c. ( n* ( ·)) = c(T71") n n* (c. ( ·)) and hence 

k*c.(n*(·)) = c(k*T71") n k*n*(c.(·)) = c(Nx Y) n c.(·). 

Consequently 

k*c.(IPi(a)) = i*(c.(a))- c(NxY) n c.(i*(a)). 

Thus applying c(NxY)- 1 n k* to both sides of (12) 

(13) c(Nx Y)- 1 n k*c.(IPi(·)) = c(NxY)- 1 n i*c.(·)- c.(i*(·)). 

This is the formula of Schiirmann [35]. 
If Y is smooth, this formula applied to 11. y reads 

(14) c(NxY)- 1 n k*c.(1Pi(11.y)) = cF(X)- c.(X). 

If i : X '-+ Y is a regular embedding of codimension 1, Y arbitrary, 
then the specialization in local coordinates defines the vanishing Euler 
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characteristic functor J.L : F(Y) ~ F(X). It satisfies <Pi = 7r* o J.L- k* o J.L 
and Schiirmann's formula takes the following simple form 

(15) c(NxY)-1 n c*(J.L(a)) = c(NxY)-1 n i*c*(a)- c*(i*(a)), 

for a E F(Y). If Y is smooth and a= lly, we recover the formula of 
Yokura's Conjecture (8). 

Suppose that Y is smooth. Since the geometric construction of 
deformation onto the normal cone can be localized, Schiirmann's formula 
for the Milnor class can be also localized at each connected component 
of Sing(X). For such a connected componentS denote: is: S <---+X the 
inclusion, ns: NxYIS ~ NxY the induced inclusion of normal cones, 
J.Ls := ns<Pi(llv), and ks : S ~ NxYIS is the inclusion on the zero 
section. Then 

cFJ (X)- c*(X) = 2)is)*(c(Nx YIS)- 1 n kf,c*(J.Ls)). 
s 
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