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Weighted homogeneous polynomials and 
blow-analytic equivalence 

Ould M Abderrahmane 

Abstract. 

Based on the T. Fukui invariant and the recent motivic invariants 
proposed by S. Koike and A. Parusiliski we give a simple classification 
of two variable quasihomogeneous polynomials by the blow-analytic 
equivalence. 

§1. INTRODUCTION 

Unlike the topological triviality of real algebraic germs, the C 1-

equisingularity admits continuous moduli. For instance, the Whitney 
family Wt(x, y) = xy(x - y)(x - ty), t > 1, has an infinite number 
of different C 1-types. Nevertheless, as was noticed by Tzee-Char Kuo, 
this family is blow-analytically trivial, that is, after composing with 
the blowing-up /3: M 2 ~ R 2 , Wt o f3 becomes analytically trivial. T.
C. Kuo proposed new notions of blow-analytic equisingularity and the 
blow-analytic function (see [6, 3] for survey). Let f: U ~ R, U open 
in Rn, be a continuous function. We say that f is blow-analytic, if 
there exists a sequence of blowing-up f3 such that the composition f o f3 
is analytic (for instance f ( x, y) = xf:~2 is blow-analytic but not C 1). 

A local homeomorphism h: (Rn, 0) ~ (R n, 0) is called blow-analytic 
if so are all coordinate functions of h and h - 1. Two function germs 
ft, h: (Rn, 0) ~ (R, 0) are blow-analytically equivalent if there is a 
blow-analytic homeomorphism h such that ft = h o h. 

Observation. Let J, g: (en, 0) ~ (C, 0) be weighted homogeneous 
polynomials with isolated singularities. It is known, for n = 2, 3, that if 
(Cn,J-1(0)) and (Cn,g-1 (0)) are homeomorphic as germs at 0 E en, 
then, their systems of weights coincide. 
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We will consider real singularities. We can easily see that the notion 
of topological equivalence is too weak to consider the same problem for 
real analytic singularities. For example, consider f(x, y) = x3 + xy6 

and g(x, y) = x3 + y8 , they are topologically equivalent by Kuiper
Kuo Theorem (see [7, 8]). However, f and g have different weights. We 
replace the topological equivalence by the blow-analytic equivalence, and 
we will consider the following problem suggested by T. Fukui. 

Problem 1 (T. Fukui, [2], Conjecture 9.2 ). Let f, g: (Rn, 0) ---> 
(R, 0) be weighted homogeneous polynomials with isolated singularities. 
Suppose that f and g are blow-analytically equivalent. Then, do their 
systems of weights coincide? 

The purpose of this paper is to establish this conjecture for two 
variables. Namely, we will prove the following: 

Theorem 1. Let fi : (R 2 , 0) ....... (R, 0) ( i = 1, 2) be non-degenerate 
quasihomogeneous polynomials of type (1; Tit, Ti2) such that 0 < ri2 ::; 
Til· If ft and h are blow-analytically equivalent, then either both ft 
and h are nonsingular, or both are analytically equivalent to xy, or 
(ru,r12) = (r21,r22). 

We call a polynomial f quasihomogeneous of type ( d; w1 , ... , Wn) E 

Qn+l if i1w1 +· · ·+inWn = d for any monomial axi1 ••• x~· of f. We say 
that a polynomial f ( x) is non-degenerate if { .E.L88 ( x) = · · · = .E.L88 ( x) = 

Xt Xn 

0} C {0} as germs at the origin of Rn. 

We will next recall some important results on blow-analytic equiv
alence. 

Theorem 2 (T. Fukui- L. Paunescu [4]). Given a system of weights 
w = (wl, ... ,wn), let ft: (Rn,0)---> (R,O) be an analytic function for 
t E I = [0, 1]. Suppose that for each t E I, the weighted initial form 
of ft with respect to w is the same weighted degree and has an isolated 
singularity at 0 ERn. Then {!thEI is blow-analytically trivial over I. 

T. Fukui ([2]) gave some invariants for blow-analytic equivalence. 
One of them is defined as follows : 

For an analytic function f : (R n, 0) ---> (R, 0), set 

A(!)= {O(fo.X) I .X: (R,O) ....... (Rn,o) cwarc}. 

Then we have 
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Theorem 3 (Fukui's invariant). Suppose that analytic functions 
f, g: (Rn, 0) ___. (R, 0) are blow-analytically equivalent, then A (f) = 
A(g). 

Recently in [5], S. Koike and A. Parusinski have defined motivic zeta 
functions (inspired by the work of Denef and Loser [1]) which are invari
ant for blow-analytic equivalence. We will briefly recall their definition 
of the zeta functions. 

Denote by C the space of analytic arcs at the origin 0 E R n : 

C = { "(: (R, 0) ___. (Rn, 0) I "( is analytic } 

and by Ck the space of truncated arcs : 

Given an analytic function f: (Rn, 0) ___. (R, 0). For k > 1 we 
denote 

Ak(f) = b E Lk I f 0 "((t) = ctk + ... ' c -=1- 0}. 

We define the zeta function of f by 

ZJ(T) = L( -1)-knXc(Ak(f))Tk 
k?:l 

where xc denotes the Euler characteristic with compact support. 
Then we have 

Theorem 4 (S. Koike- A. Parusinski [5]). Suppose that analytic 
functions f, g: (Rn, 0) ___. (R, 0) are blow-analytically equivalent, then 
ZJ = Z9 . 

Before starting the proof of Theorem 1, we will make one more 
remark, as follows. 

Remark 5. Let f: (Rn, 0) ___. (R, 0) be a non-degenerate quasiho
mogeneous polynomial of type (d; Wt, ... , wn)· Taking a new representa
tive of the blow-analytic class off if necessary we can suppose that, for 
each a E Nn such that (a, w) = O!tWt + · · · + O!nWn = d, the coefficient 
term Xa = xr1 • • • x~n is not zero in f(x). 

Our remark is a simple consequence of Theorem 2 (we omit the 
details). 
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§2. PROOF OF THEOREM 1 

Let fi: (R2,0)---. (R,O) (i = 1,2) be non-degenerate quasihomoge
neous polynomials of type (1; rib ri2)· Setting 

1 1 
ai =- and bi =- fori= 1, 2. 

ril ri2 

Modulo a permutation coordinate of R 2, we may assume that ai :::; bi. 
Moreover, if ai < 2, then fi is analytically equivalent to g(x, y) = x or xy 
by the Implicit Function Theorem. But 0 E R 2 is a regular point of x 
and the polynomial xy is a weighted homogeneous of type (1; !, !). 
Given this, we can assume that 

(2.1) 2 :::; ai :::; bi for i = 1, 2. 

Since fi are non-degenerate quasihomogeneous polynomials, we have 
the following cases for Newton boundary r(fi) as in the following figure: 

bi bi bi (1, Qi) 
r(fi) r(fi) 

\/ r(/;) ,/ ,/ 

(pi, 1) . (pi, 1) 

ai ai ai 

aj, biEN ai EN or biEN ai ~ N, bi ~ N 

These figures suggest that the proof of Theorem 1 should be divided 
into several steps, according to the possible cases for ai and bi : 

Case 1. In this case, we suppose ai, bi E N (i.e., fi nearly conve
nient). Here N denotes the set of positive integers and let for any a E N, 
N:;::a ={kEN I k ~a}. We first remark that the Fukui invariant of fi 
can be computed easily as follows : 

Assertion 6. 

(2.2) 
if fi- 1 (0) = {0}, 

otherwise. 



Blow-analytic equivalence 337 

Where [ai, bi] = LCM(ai, bi)· 

Proof. Let A: (R,O) --t (R2 ,0) be an analytic arc. Then A(t) = 
(X ( t), Y ( t)) can be expressed in the following way : 

where au, Cv =/- 0 and u, v ~ 1. By the above Remark 5, we may 
assume that there exist the terms xa; and yb, with non-zero coefficients 
in fi(X, Y). 

We will first consider the case whereby fi- 1(0) = {0}. If u ai =/- v bi, 
we have 

fi(X(t), Y(t)) = di tmin{ua; 'v b;} + ... ' di =/- 0 

then O(fi o A)= min{uai, vbi} E aiNU biN U {oo}. Thus it remains 
for us to consider the case u ai = v bi. In this case, we have 

since fi(au, cv) =/- 0. Therefore A(fi) <;;:;aiNU biN U { oo }. Any integer 
s E aiNU biN, for instances= kai, is attained by the arc 1'(t) = (tk, 0). 
Hence we have 

A(fi) =aiNu biN u { oo }. 

We will next consider the case whereby fi- 1(0) =/- {0}. Similarly we 
have 

Obviously we only have to prove that N?:[a;,bi] <;;:; A(fi)· Suppose that 
k E N?:[a,,b;]· Then there exists an arc 1' through 0 E R 2 such that O(fo 
1') = k. Setting [ai, bi] = ni ai = mi bi, since fi is non-degenerate and 
fi- 1(0) =/- {0}, there exists a (a, c) E fi- 1(0) such that (~(a, c), W(a, c)) 
=f- (0,0), we may assume that ~(a, c)=/- 0. Then it is easy to see that 
for any positive integers [ai, bi] + s E A(f), sEN, is attained by an arc 
1'(t) = (atn; +ts+n;,ctm'). 

Evidently, this completes the proof of the Assertion. Q.E.D. 

From Theorem 3, A(ft) = A(/2). Thus, by the above Assertion, we 
have the following result : 

a1 = a2 same multiplicity for fi, 

b1 = b2 if b1 ~ a1N or b2 ~ a2N, 

b1 = b2 if fi- 1(0) =1- {0}. 



338 0. M. Abderrahmane 

Manifestly, the Fukui invariant determines the weights except in the 
following case : 

where a = a 1 = a 2 is the smallest number in A(fi), and there remains 
to prove k1 = k2. In fact, assume that k1 =/=- k2, for example k2 > k1. 
We will show that this gives rise to a contraduction by comparing the 
coefficients of the zeta functions. If k2 > k1 then we may write 

Ab1 (h) = { l'(t) = (ck1 tk 1 + · · · + cbt tb 1 , d1t1 + · · · + db 1 tb1 ) I Ck1 =/=- 0} 

~ R* X Rbt-kl X Rbt. 

That is 

Also, since / 1- 1 (0) = {0}, we obtain 

Ab1 (h) = {/' = (uk 1 tk 1 + ··· +ub1 tb1 ,v1t1 + ··· +vb1 tb 1 ) I (uk 1 ,vi) =/=- 0} 
~ (R2- {0}) X RLkt X Rbt-1 

which means 

xc(Abt(h)) = xc(R2- {O})xc(R2bt-kt-1). 

Since xc(R2 - {0}) = 0 we get by (2.3) that xc(Ab1 (/I)) =/=- xc(Ab1 (h)). 
Therefore Z h =/=- Z h, which contradicts Theorem 4. This ends the proof 
of Theorem 1 in the first case. 

Case 2. In this case, we suppose ai et N, bi E N for i = 1, 2. Since 
fi is non-degenerate, then there exists the term xPi y for some integers 
Pi :::: 1 with non-zero coefficients in fi(x, y). By Theorem 2 and (2.1), 
it is easy to see that for any integers s :::: 1, fi(x, y) + xPi+s is blow
analytically equivalent to fi(x, y). Then the Fukui invariant of fi is 
determined by 

(2.4) A(fi) ={Pi+ 1, Pi+ 2, Pi+ 3, · · ·} U {oo}. 

Moreover A(h) = A(h), and it follows that PI = P2· Consequently it 
is sufficient to prove that b1 = b2 . Indeed, suppose that b1 < b2 . Then, 
we let 
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and 

c~. = {'-y(t) = (urtr + ... + Untn, v.t· + ... + Vntn) I Ur, Vs -1=- 0} 

~ (R*)2 X R2n-r-s. 

339 

Let us first compute xc(Ah (fi) ). It is easy to see that for any 
positive integers n < bi, we have that An(fi) = Ucr,s)E!Rn c~s (Remark 
that the union is disjoint). Thus, by the additivity of xc, we have 

(2.5) xc(Ab,(h)) = L (-2)2(-1)2b,-r-s. 

(r,s)E!R&1 

Similarly if b1 -1 tJ_ pN, we obtain 

(2.6) xc(Ab,(h)) = (-2)(-1)2b,-d + L (-2)2(-1)2b,-r-s 

(r,s)E!R& 1 

where d is the smallest number in { 1, ... , b1 } such that d p + 1 > b1 . 

It follows from (2.5) and (2.6) that xc(Ab, (h)) -/=- xc(Ab, (h)). But 
this implies a contradiction, by comparing the coefficients of the zeta 
functions. Hence we have b1 -1 E pN. Now assume b1 = kp+ 1. Then 
by elementary computation, we have 

Ab, (h)= Ch U (U(r,s)E!Rb1 \{(k,l)}C~,18 ), 

where 

Ch = {'-y(t) = (uktk + ··· +ub,tb', v1t1 + ··· +vb,tb,) I h(uk,vi)-/=- 0} 

~ {h -1=- 0} X R2b,-k-I, 

Also, by the additivity of the Euler characteristic with compact support, 
we obtain 

(r,s)E!R&1 \{(k,l)} 

Together with (2.5), it follows that 

(2.7) 

We will next compute the xc(Ab, +I (fi) ), ( i = 1, 2). Setting m = 
kp + 2 = b1 + 1. Then, by the above, m- 1 tJ_ pN and m:::; b2 , we can 
easily see the following 
(2.8) 

{ 
'\' 4( 1 )2m-r-s if m < b2, c(A (J )) _ L....(r,s)E!Rm -

X m 2 - _ 2 ( _ 1)2m-k-l + 2::: 4( -1)2m-r-s if m = b2 (r,s)E!Rm 
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Now we compute xc(Am(h) ). Let >.(t) = (X(t), Y(t)) be an analytic 
arc defined by 

We can write 

where 

X(t) = Uktk + · · · + Umtm, 

Y(t) = v1t + · · · + Vmtm. 

8JI. 8h 
(V'h(uk,vd; (uk+1,vz) I= ax (uk,v1)uk+l + -ay(uk,vl)vz. 

Moreover, if h(uk,vl) = 0 and (V'h(uk,v1); (uk+l,vz) I i=- 0, then we 
have O(h o >.) = m. Let us put 

B1 = {(u,v,w,z) E (!:[1(0) -{0}) x R 2 1 (V'/I(u,v); (w,z)/ i=-0}, 

Bz = {(u,v,w,z) E (!:[1(0)- {0}) x R 2
1 (V'fi(u,v); (w,z) I= 0}, 

c'Vfl = {(uktk + ... + Umtm, v1t1 + ... + Umtm)i (uk, Uk+1, v1, vz) E Bl} 

'::::: B1 X R2m-k-3, 

Then, by the above, the Am(h) given by 

Am(h) = c'Vf, u (u(r,s)E!Rm c;:s)· 
Thus the Euler characteristic with support compact of Ab, (h) equals 

(2.9) xc(Am(h)) = xc(B1)( -1)2m-k-3 + L ( -2)2( -1)2m-r-s. 

(r,s)E!Rm 

By identification of the m-coefficients of both zeta functions of fi for 
i = 1, 2, it follows from (2.8) and (2.9) that xc(Bl) = 0 or - 2. On the 
other hand, (!:[ 1 (0)- {0}) x R 2 = B 1 U B 2 . Therefore 

xc(f:[ 1(0)- {0}) = xc(Bl) + Xc(Bz), 

but B 2 -::::: (!:[ 1(0)- {0}) x R. This is clear because his non-degenerate, 
then we have 

Since xc(Bl) = 0 or - 2, this yields 

xc(f:[ 1(0)) = 1 or 0, 

which contradicts (2. 7). This ends the proof of Theorem 1 in the second 
case. 
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Remark 7. If we drop the assumption that b2 is an integer, then 
the above proof still holds. 

Case 3. In this case, we suppose ai E N, bi tf- N for i = 1, 2. 
Since fi is non-degenerate, then there exists the term xyq' for some 
integers qi 2 1 with non-zero coefficients in fi(x, y). For any real a we 
denote by e(a) the minimum positive integer n such that n 2 a. By an 
argument similar to that of Assertion 6 and (2.4), we can compute the 
Fukui invariant of fi as follows : 

A(fi) =aiNU {e(bi), e(bi) + 1, · · ·} U {oo}. 

By Theorem 3, A(!I) = A(fz). Then we have the following result: 

(2.10) 

Suppose now h -=1- bz. Then q1 -=1- qz, but I b1 - bz 121 q1 - qz 12 1. It 
follows that e(bl) -=1- e(b2 ), which contradicts (2.10). This complete the 
proof of Theorem 1 in the third case. 

Case 4. In this case, we suppose ai, bi tf- N for i = 1, 2. Since 
fi is non-degenerate, then there exist the terms xP' y and xyq' for some 
integers Pi 2 1 and qi 2 1 with non-zero coefficients in fi(x, y). Thus, 
the Fukui invariant of fi can be written as 

A(fi) = {Pi + 1, Pi + 2, Pi + 3, · · · } U { oo}, 

which implies Pl = pz. Thus we only have to prove that b1 = bz. 
Indeed, let us assume that b1 < b2 . Then we have q1 < q2 which implies 
b1 < e(b1) < bz. Let us put 

p =p1 =pz, m = e(b1) and ~m = {(r,s) E (N- {0}) 2
1 rp+s = m}. 

We first observe that m - 1 tf- p N. Otherwise, if m - 1 = r p, then we 
have: 

(2.11) 

This is a consequence of b1 < m = r p + 1 and also (1 , q1 ) and (p, 1) 
are vertices of f(JI). But m = min{n EN In> b1 }, which contradicts 
(2.11). Hence we have m- 1 tf_ pN. Using this observation and by 
elementary computation we obtain the following result: 

xc(AmUz)) = 2:.: (-2)2(-l)zm-r-•, 

(2.12) 
(r,s)E!Rm 

(r,s)E!Rm 
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This means that Z !1 =/= Z 12, which contradicts Theorem 4. This 
complete the proof of Theorem 1 in the fourth case. 

In order to finish the proof of Theorem 1, it suffices to show the 
following lemmas. 

Lemma 8. a1 EN if and only if a2 EN. 

Proof. Suppose that this is not the case. Namely, a1 E N and 
a2 rJ. N. Since h is non-degenerate, then there exists the term xP2 y for 
some integers P2 2:: 1 with non-zero coefficients in h(x, y). Again using 
the same argument in (2.4) one gets 

A(h) = {P2 + 1, P2 + 2, P2 + 3, · · · , oo }, 

Since A(f!) = A(h), then we have a1 = b1 = P2 + 1, set m = P2 + 1. 
We shall compute the xc(Am(fi)) fori= 1, 2, that is 

Am(h) = {'y(t) = (u1t + · · · + Umtm, v1t + · · · + Vmtm) I u1, V1 =/= 0} 

~ (R*)2 X R2m-2, 

so 

Am(fl) = {'y(t) = (u1t + · · · + Umtm, v1t + · · · + Vmtm) I fl(ul,vl) =/= 0} 

~ {fl =/= 0} X R2m-2, 

and hence to 

(2.13) 

(2.14) 

if i = 2, 

if i = 1. 

Using the same argument as Case 2, the (m +I)-coefficients of ZJ; 
for i = 1, 2 can be computed as follows : 

We recall that : 

if m =/= b2, 

ifm=h 

Bl={(u,v,w,z)E(/11(0)-{0})xR2 1 (V'fl(u,v);(w,z))=/::.0}, 

B2 = {(u,v,w,z) E (/11(0)- {0}) x R 2
1 (V'fl(u,v); (w,z)) = 0}. 
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Finally, by comparing the ( m + 1 )-coefficients of both zeta functions Z 1,, 
it is evident that xc(Bl) = -4 or -6, but (!1 1 (0)-{0}) xR2 = B 1 UB2 . 

It follows from the additivity of the Euler characteristic that xc(f1 1(0)
{0}) = xc(BI) +xc(B2)· On the other hand, by B2 ~ (!1 1(0)- {0}) X R 
(because h is non-degenerate), then we have 

which contradicts (2.14). This proves the lemma. Q.E.D. 

Lemma 9. hEN if and only if b2 EN. 

Proof. Suppose now that b1 E N and b2 if. N. Since h is non
degenerate, then there exists the term xyq2 for some integers q2 ~ 1 
with non-zero coefficients in h(x, y). 

We first consider ai E N for i = 1, 2. Then, by the same reason as 
above, we can compute the Fukui invariant of fi as follows: 

A(h) = a1N U b1N U N~[a 1 ,b1 J U { oo }, 

A(h) = a2N U N~e(b2 ) U {oo}. 

Since A(h) = A(h), then we have the following result: 

(2.15) 

Since b1 = ka1 , we may assume by Remark 5 that there exists the 
term xyk(a 1 - 1) with non-zero coefficients in h(x,y). But lb2- hi ~ 
lq2- k(a1- 1)1 ~ 1, which implies b2 ~ b1 + 1 or b1 ~ b2 + 1. It follows 
that e(b2) > b1 + 1 or e(b2) < b1 , which contradicts (2.15), and ends the 
first part of the lemma. 

Now we consider the case where ai if. N for i = 1, 2. Since fi is 
non-degenerate, then there exists the term xP' y for some integers Pi ~ 1 
with non-zero coefficients in fi(x, y). It is easy to see that 

A(fi) = {Pi+ 1, Pi+ 2, Pi+ 3, · · ·} U { oo }. 

Moreover A(h) = A(h), and we get P1 = P2· Set 

P = P1 = P2, m = e(b2) and ~m = {(r, s) E N 2 I rp + s = m}. 

As stated in Remark 7, we can exclude the case where h < b2 (because 
this is proved in exactly the same way as Case 2). Thus it remains to 
consider the case b2 < b1. 

We next compute the m-coefficients of both zeta functions Z f, for 
i = 1, 2. For this, we can assert that m -1 if. pN. Indeed, suppose that 
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m - 1 = a p for some positive integer a. Since b2 < m = a p + 1 which 
implies b2 < q2 +a < ap + 1. This is clear because (1, q2) E f(f2). 
But m = e(b2) is equal to the smallest integer greater than b2, which is 
a contradiction. Therefore we obtain that m- 1 tj. pN, and so on by 
elementary computation, we have the following result : 

(2.16) xc(Am(h)) = ( -2)2( _ 1)m+q2-1 + :L ( _2)2( _ 1)2m-r-s. 

(r,s)E1Rm 

And 

xc(Am(h)) = :L ( -2)2( -1)2m-r-s 

(r,s)E1Rm 

xc(Am(h)) = ( -2)( -1)m+q2 + :L ( -2)2( -1)2m-r-s if m = b1. 

(r,s)E1Rm 

Now it suffices to note by the above equalities that Z h of. Z h, which 
contradicts Theorem 4. This completes the proof. Q.E.D. 

Theorem 1 is therefore proved. 

Example 10. Let k be an arbitrary integer greater than or equal to 
4. We consider quasihomogeneous polynomial functions fk, 9k: (R2 , 0) -+ 
(R, 0) defined by 

Note that the weights of fk and 9k are ( t , 52k) and ( t , 2 k 1+ 2 ) re
spectively. Since fk and 9k have different weights for k > 4, they are 
not blow-analytically equivalent by Theorem 1. However, fk and gk are 
topologically equivalent. In fact, the above fk ( x, y) = x 5 + x y 2 k E 

Jitk+ 1 (2, 1) is C 0-sufficient by the Kuiper-Kuo Theorem (see [7, 8]). 
Therefore, fk is topologically equivalent to fk - y2 k + 2 . On the other 
hand, gk and gk + x y 2 k are blow-analytically equivalent by Theorem 2. 
Besides fk - y2 k + 2 = gk + x y2 k, hence the conclusion holds. Conse
quently, fk E Jitk+l(2, 1) is not blow-analytically sufficient fork> 4. 

In the case k = 4, the weights of !4 and 94 are equal to ( t, 110 ). 

Furthermore, j4 is blow-analytically equivalent to 94. Indeed, consider 
the family Ht: (R2,0)-+ (R,O) (t E [0,1]) defined by Ht(x,y) = 

(1- t)j4(x, y) + t g4(x, y). It is easy to see that for each t E [0, 1], Ht has 
an isolated singularity at 0 E R 2 . Therefore, it follows from Theorem 
2 that {Ht}o:St:Sl is blow-analytically trivial over [0, 1]. In particular, 
Ho = !4 is blow-analytically equivalent to H 1 = g4. 
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