Weighted homogeneous polynomials and blow-analytic equivalence

Ould M Abderrahmane

Abstract

. Based on the T. Fukui invariant and the recent motivic invariants proposed by S. Koike and A. Parusiński we give a simple classification of two variable quasihomogeneous polynomials by the blow-analytic equivalence.

§1. INTRODUCTION

Unlike the topological triviality of real algebraic germs, the C^{1} equisingularity admits continuous moduli. For instance, the Whitney family $W_{t}(x, y)=x y(x-y)(x-t y), t>1$, has an infinite number of different C^{1}-types. Nevertheless, as was noticed by Tzee-Char Kuo, this family is blow-analytically trivial, that is, after composing with the blowing-up $\beta: M^{2} \rightarrow \mathbf{R}^{2}, W_{t} \circ \beta$ becomes analytically trivial. T.C. Kuo proposed new notions of blow-analytic equisingularity and the blow-analytic function (see $[6,3]$ for survey). Let $f: U \rightarrow \mathbf{R}, U$ open in \mathbf{R}^{n}, be a continuous function. We say that f is blow-analytic, if there exists a sequence of blowing-up β such that the composition $f \circ \beta$ is analytic (for instance $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ is blow-analytic but not C^{1}). A local homeomorphism $h:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ is called blow-analytic if so are all coordinate functions of h and h^{-1}. Two function germs $f_{1}, f_{2}:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$ are blow-analytically equivalent if there is a blow-analytic homeomorphism h such that $f_{1}=f_{2} \circ h$.

Observation. Let $f, g:\left(\mathbf{C}^{n}, 0\right) \rightarrow(\mathbf{C}, 0)$ be weighted homogeneous polynomials with isolated singularities. It is known, for $n=2,3$, that if $\left(\mathbf{C}^{n}, f^{-1}(0)\right)$ and $\left(\mathbf{C}^{n}, g^{-1}(0)\right)$ are homeomorphic as germs at $0 \in \mathbf{C}^{n}$, then, their systems of weights coincide.

[^0]We will consider real singularities. We can easily see that the notion of topological equivalence is too weak to consider the same problem for real analytic singularities. For example, consider $f(x, y)=x^{3}+x y^{6}$ and $g(x, y)=x^{3}+y^{8}$, they are topologically equivalent by KuiperKuo Theorem (see [7, 8]). However, f and g have different weights. We replace the topological equivalence by the blow-analytic equivalence, and we will consider the following problem suggested by T. Fukui.

Problem 1 (T. Fukui, [2], Conjecture 9.2). Let $f, g:\left(\mathbf{R}^{n}, 0\right) \rightarrow$ $(\mathbf{R}, 0)$ be weighted homogeneous polynomials with isolated singularities. Suppose that f and g are blow-analytically equivalent. Then, do their systems of weights coincide?

The purpose of this paper is to establish this conjecture for two variables. Namely, we will prove the following:

Theorem 1. Let $f_{i}:\left(\mathbf{R}^{2}, 0\right) \rightarrow(\mathbf{R}, 0)(i=1,2)$ be non-degenerate quasihomogeneous polynomials of type $\left(1 ; r_{i 1}, r_{i 2}\right)$ such that $0<r_{i 2} \leq$ $r_{i 1}$. If f_{1} and f_{2} are blow-analytically equivalent, then either both f_{1} and f_{2} are nonsingular, or both are analytically equivalent to $x y$, or $\left(r_{11}, r_{12}\right)=\left(r_{21}, r_{22}\right)$.

We call a polynomial f quasihomogeneous of type $\left(d ; w_{1}, \ldots, w_{n}\right) \in$ \mathbf{Q}^{n+1} if $i_{1} w_{1}+\cdots+i_{n} w_{n}=d$ for any monomial $\alpha x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$ of f. We say that a polynomial $f(x)$ is non-degenerate if $\left\{\frac{\partial f}{\partial x_{1}}(x)=\cdots=\frac{\partial f}{\partial x_{n}}(x)=\right.$ $0\} \subset\{0\}$ as germs at the origin of \mathbf{R}^{n}.

We will next recall some important results on blow-analytic equivalence.

Theorem 2 (T. Fukui - L. Paunescu [4]). Given a system of weights $w=\left(w_{1}, \ldots, w_{n}\right)$, let $f_{t}:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$ be an analytic function for $t \in I=[0,1]$. Suppose that for each $t \in I$, the weighted initial form of f_{t} with respect to w is the same weighted degree and has an isolated singularity at $0 \in \mathbf{R}^{n}$. Then $\left\{f_{t}\right\}_{t \in I}$ is blow-analytically trivial over I.
T. Fukui ([2]) gave some invariants for blow-analytic equivalence. One of them is defined as follows:

For an analytic function $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$, set

$$
A(f)=\left\{O(f \circ \lambda) \mid \lambda:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{n}, 0\right) C^{w} \operatorname{arc}\right\} .
$$

Then we have

Theorem 3 (Fukui's invariant). Suppose that analytic functions $f, g:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$ are blow-analytically equivalent, then $A(f)=$ $A(g)$.

Recently in [5], S. Koike and A. Parusiński have defined motivic zeta functions (inspired by the work of Denef and Loser [1]) which are invariant for blow-analytic equivalence. We will briefly recall their definition of the zeta functions.

Denote by \mathcal{L} the space of analytic arcs at the origin $0 \in \mathbf{R}^{n}$:

$$
\mathcal{L}=\left\{\gamma:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{n}, 0\right) \mid \gamma \text { is analytic }\right\}
$$

and by \mathcal{L}_{k} the space of truncated arcs:

$$
\mathcal{L}_{k}=\left\{\gamma \in \mathcal{L} \mid \gamma(t)=v_{1} t+\cdots+v_{k} t^{k}, v_{i} \in \mathbf{R}^{n}\right\}
$$

Given an analytic function $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$. For $k \geq 1$ we denote

$$
A_{k}(f)=\left\{\gamma \in \mathcal{L}_{k} \mid f \circ \gamma(t)=c t^{k}+\cdots, c \neq 0\right\}
$$

We define the zeta function of f by

$$
Z_{f}(T)=\sum_{k \geq 1}(-1)^{-k n} \chi^{c}\left(A_{k}(f)\right) T^{k}
$$

where χ^{c} denotes the Euler characteristic with compact support.
Then we have
Theorem 4 (S. Koike - A. Parusiński [5]). Suppose that analytic functions $f, g:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$ are blow-analytically equivalent, then $Z_{f}=Z_{g}$.

Before starting the proof of Theorem 1, we will make one more remark, as follows.

Remark 5. Let $f:\left(\mathbf{R}^{n}, 0\right) \rightarrow(\mathbf{R}, 0)$ be a non-degenerate quasihomogeneous polynomial of type $\left(d ; w_{1}, \ldots, w_{n}\right)$. Taking a new representative of the blow-analytic class of f if necessary we can suppose that, for each $\alpha \in \mathbf{N}^{n}$ such that $\langle\alpha, w\rangle=\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}=d$, the coefficient term $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is not zero in $f(x)$.

Our remark is a simple consequence of Theorem 2 (we omit the details).

§2. PROOF OF THEOREM 1

Let $f_{i}:\left(\mathbf{R}^{2}, 0\right) \rightarrow(\mathbf{R}, 0)(i=1,2)$ be non-degenerate quasihomogeneous polynomials of type $\left(1 ; r_{i 1}, r_{i 2}\right)$. Setting

$$
a_{i}=\frac{1}{r_{i 1}} \text { and } b_{i}=\frac{1}{r_{i 2}} \quad \text { for } i=1,2
$$

Modulo a permutation coordinate of \mathbf{R}^{2}, we may assume that $a_{i} \leq b_{i}$. Moreover, if $a_{i}<2$, then f_{i} is analytically equivalent to $g(x, y)=x$ or $x y$ by the Implicit Function Theorem. But $0 \in \mathbf{R}^{2}$ is a regular point of x and the polynomial $x y$ is a weighted homogeneous of type $\left(1 ; \frac{1}{2}, \frac{1}{2}\right)$. Given this, we can assume that

$$
\begin{equation*}
2 \leq a_{i} \leq b_{i} \quad \text { for } i=1,2 \tag{2.1}
\end{equation*}
$$

Since f_{i} are non-degenerate quasihomogeneous polynomials, we have the following cases for Newton boundary $\Gamma\left(f_{i}\right)$ as in the following figure:

These figures suggest that the proof of Theorem 1 should be divided into several steps, according to the possible cases for a_{i} and b_{i} :

Case 1. In this case, we suppose $a_{i}, b_{i} \in \mathbf{N}$ (i.e., f_{i} nearly convenient). Here \mathbf{N} denotes the set of positive integers and let for any $a \in \mathbf{N}$, $\mathbf{N}_{\geq a}=\{k \in \mathbf{N} \mid k \geq a\}$. We first remark that the Fukui invariant of f_{i} can be computed easily as follows:

Assertion 6.

$$
A\left(f_{i}\right)=\left\{\begin{array}{lc}
a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup\{\infty\} & \text { if } f_{i}^{-1}(0)=\{0\} \tag{2.2}\\
a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup \mathbf{N}_{\geq\left[a_{i}, b_{i}\right]} \cup\{\infty\} & \text { otherwise }
\end{array}\right.
$$

Where $\left[a_{i}, b_{i}\right]=\operatorname{LCM}\left(a_{i}, b_{i}\right)$.
Proof. Let $\lambda:(\mathbf{R}, 0) \rightarrow\left(\mathbf{R}^{2}, 0\right)$ be an analytic arc. Then $\lambda(t)=$ $(X(t), Y(t))$ can be expressed in the following way:

$$
X(t)=\alpha_{u} t^{u}+\alpha_{u+1} t^{u+1}+\cdots, \quad Y(t)=c_{v} t^{v}+c_{v+1} t^{v+1}+\cdots,
$$

where $\alpha_{u}, c_{v} \neq 0$ and $u, v \geq 1$. By the above Remark 5 , we may assume that there exist the terms $X^{a_{i}}$ and $Y^{b_{i}}$ with non-zero coefficients in $f_{i}(X, Y)$.

We will first consider the case whereby $f_{i}^{-1}(0)=\{0\}$. If $u a_{i} \neq v b_{i}$, we have

$$
f_{i}(X(t), Y(t))=d_{i} t^{\min \left\{u a_{i}, v b_{i}\right\}}+\cdots, d_{i} \neq 0
$$

then $O\left(f_{i} \circ \lambda\right)=\min \left\{u a_{i}, v b_{i}\right\} \in a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup\{\infty\}$. Thus it remains for us to consider the case $u a_{i}=v b_{i}$. In this case, we have

$$
f_{i}(X(t), Y(t))=f_{i}\left(\alpha_{u}, c_{v}\right) t^{u a_{i}}+\cdots,
$$

since $f_{i}\left(\alpha_{u}, c_{v}\right) \neq 0$. Therefore $A\left(f_{i}\right) \subseteq a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup\{\infty\}$. Any integer $s \in a_{i} \mathbf{N} \cup b_{i} \mathbf{N}$, for instance $s=k a_{i}$, is attained by the $\operatorname{arc} \gamma(t)=\left(t^{k}, 0\right)$. Hence we have

$$
A\left(f_{i}\right)=a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup\{\infty\} .
$$

We will next consider the case whereby $f_{i}^{-1}(0) \neq\{0\}$. Similarly we have

$$
a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup\{\infty\} \subseteq A\left(f_{i}\right) \subseteq a_{i} \mathbf{N} \cup b_{i} \mathbf{N} \cup \mathbf{N}_{\geq\left[a_{i}, b_{i}\right]} \cup\{\infty\}
$$

Obviously we only have to prove that $\mathbf{N}_{\geq\left[a_{i}, b_{i}\right]} \subseteq A\left(f_{i}\right)$. Suppose that $k \in \mathbf{N}_{\geq\left[a_{i}, b_{i}\right]}$. Then there exists an arc γ through $0 \in \mathbf{R}^{2}$ such that $O(f \circ$ $\gamma)=k$. Setting $\left[a_{i}, b_{i}\right]=n_{i} a_{i}=m_{i} b_{i}$, since f_{i} is non-degenerate and $f_{i}^{-1}(0) \neq\{0\}$, there exists a $(\alpha, c) \in f_{i}^{-1}(0)$ such that $\left(\frac{\partial f_{i}}{\partial X}(\alpha, c), \frac{\partial f_{i}}{\partial Y}(\alpha, c)\right)$ $\neq(0,0)$, we may assume that $\frac{\partial f_{i}}{\partial X}(\alpha, c) \neq 0$. Then it is easy to see that for any positive integers $\left[a_{i}, b_{i}\right]+s \in A(f), s \in \mathbf{N}$, is attained by an arc $\gamma(t)=\left(\alpha t^{n_{i}}+t^{s+n_{i}}, c t^{m_{i}}\right)$.

Evidently, this completes the proof of the Assertion.
Q.E.D.

From Theorem 3, $A\left(f_{1}\right)=A\left(f_{2}\right)$. Thus, by the above Assertion, we have the following result:

$$
\begin{aligned}
& a_{1}=a_{2} \text { same multiplicity for } f_{i}, \\
& b_{1}=b_{2} \text { if } b_{1} \notin a_{1} \mathbf{N} \text { or } b_{2} \notin a_{2} \mathbf{N}, \\
& b_{1}=b_{2} \text { if } f_{i}^{-1}(0) \neq\{0\} .
\end{aligned}
$$

Manifestly, the Fukui invariant determines the weights except in the following case:

$$
b_{1}=k_{1} a, b_{2}=k_{2} a \text { and } f_{i}^{-1}(0)=\{0\},
$$

where $a=a_{1}=a_{2}$ is the smallest number in $A\left(f_{i}\right)$, and there remains to prove $k_{1}=k_{2}$. In fact, assume that $k_{1} \neq k_{2}$, for example $k_{2}>k_{1}$. We will show that this gives rise to a contraduction by comparing the coefficients of the zeta functions. If $k_{2}>k_{1}$ then we may write

$$
\begin{aligned}
A_{b_{1}}\left(f_{2}\right) & =\left\{\gamma(t)=\left(c_{k_{1}} t^{k_{1}}+\cdots+c_{b_{1}} t^{b_{1}}, d_{1} t^{1}+\cdots+d_{b_{1}} t^{b_{1}}\right) \mid c_{k_{1}} \neq 0\right\} \\
& \simeq \mathbf{R}^{*} \times \mathbf{R}^{b_{1}-k_{1}} \times \mathbf{R}^{b_{1}}
\end{aligned}
$$

That is

$$
\begin{equation*}
\chi^{c}\left(A_{b_{1}}\left(f_{2}\right)\right)=(-2) \chi^{c}\left(\mathbf{R}^{b_{1}-k_{1}+b_{1}}\right)=(-2)(-1)^{2 b_{1}-k_{1}} \tag{2.3}
\end{equation*}
$$

Also, since $f_{1}^{-1}(0)=\{0\}$, we obtain

$$
\begin{aligned}
A_{b_{1}}\left(f_{1}\right) & =\left\{\gamma=\left(u_{k_{1}} t^{k_{1}}+\cdots+u_{b_{1}} t^{b_{1}}, v_{1} t^{1}+\cdots+v_{b_{1}} t^{b_{1}}\right) \mid\left(u_{k_{1}}, v_{1}\right) \neq 0\right\} \\
& \simeq\left(\mathbf{R}^{2}-\{0\}\right) \times \mathbf{R}^{b_{-} k_{1}} \times \mathbf{R}^{b_{1}-1}
\end{aligned}
$$

which means

$$
\chi^{c}\left(A_{b_{1}}\left(f_{1}\right)\right)=\chi^{c}\left(\mathbf{R}^{2}-\{0\}\right) \chi^{c}\left(\mathbf{R}^{2 b_{1}-k_{1}-1}\right)
$$

Since $\chi^{c}\left(\mathbf{R}^{2}-\{0\}\right)=0$ we get by (2.3) that $\chi^{c}\left(A_{b_{1}}\left(f_{1}\right)\right) \neq \chi^{c}\left(A_{b_{1}}\left(f_{2}\right)\right)$. Therefore $Z_{f_{1}} \neq Z_{f_{2}}$, which contradicts Theorem 4. This ends the proof of Theorem 1 in the first case.

Case 2. In this case, we suppose $a_{i} \notin \mathbf{N}, b_{i} \in \mathbf{N}$ for $i=1,2$. Since f_{i} is non-degenerate, then there exists the term $x^{p_{i}} y$ for some integers $p_{i} \geq 1$ with non-zero coefficients in $f_{i}(x, y)$. By Theorem 2 and (2.1), it is easy to see that for any integers $s \geq 1, f_{i}(x, y)+x^{p_{i}+s}$ is blowanalytically equivalent to $f_{i}(x, y)$. Then the Fukui invariant of f_{i} is determined by

$$
\begin{equation*}
A\left(f_{i}\right)=\left\{p_{i}+1, p_{i}+2, p_{i}+3, \cdots\right\} \cup\{\infty\} \tag{2.4}
\end{equation*}
$$

Moreover $A\left(f_{1}\right)=A\left(f_{2}\right)$, and it follows that $p_{1}=p_{2}$. Consequently it is sufficient to prove that $b_{1}=b_{2}$. Indeed, suppose that $b_{1}<b_{2}$. Then, we let

$$
p=p_{1}=p_{2}, \quad \Re_{n}=\left\{(r, s) \in \mathbf{N}^{2} \mid r p+s=n\right\}
$$

and

$$
\begin{aligned}
C_{r, s}^{n} & =\left\{\gamma(t)=\left(u_{r} t^{r}+\cdots+u_{n} t^{n}, v_{s} t^{s}+\cdots+v_{n} t^{n}\right) \mid u_{r}, v_{s} \neq 0\right\} \\
& \simeq\left(\mathbf{R}^{*}\right)^{2} \times \mathbf{R}^{2 n-r-s} .
\end{aligned}
$$

Let us first compute $\chi^{c}\left(A_{b_{1}}\left(f_{i}\right)\right)$. It is easy to see that for any positive integers $n<b_{i}$, we have that $A_{n}\left(f_{i}\right)=\bigcup_{(r, s) \in \Re_{n}} C_{r, s}^{n}$ (Remark that the union is disjoint). Thus, by the additivity of χ^{c}, we have

$$
\begin{equation*}
\chi^{c}\left(A_{b_{1}}\left(f_{2}\right)\right)=\sum_{(r, s) \in \Re_{b_{1}}}(-2)^{2}(-1)^{2 b_{1}-r-s} \tag{2.5}
\end{equation*}
$$

Similarly if $b_{1}-1 \notin p \mathbf{N}$, we obtain

$$
\begin{equation*}
\chi^{c}\left(A_{b_{1}}\left(f_{1}\right)\right)=(-2)(-1)^{2 b_{1}-d}+\sum_{(r, s) \in \Re_{b_{1}}}(-2)^{2}(-1)^{2 b_{1}-r-s} \tag{2.6}
\end{equation*}
$$

where d is the smallest number in $\left\{1, \ldots, b_{1}\right\}$ such that $d p+1>b_{1}$. It follows from (2.5) and (2.6) that $\chi^{c}\left(A_{b_{1}}\left(f_{2}\right)\right) \neq \chi^{c}\left(A_{b_{1}}\left(f_{1}\right)\right)$. But this implies a contradiction, by comparing the coefficients of the zeta functions. Hence we have $b_{1}-1 \in p \mathbf{N}$. Now assume $b_{1}=k p+1$. Then by elementary computation, we have

$$
A_{b_{1}}\left(f_{1}\right)=C_{f_{1}} \cup\left(\cup_{(r, s) \in \Re_{b_{1}} \backslash\{(k, 1)\}} C_{r, s}^{b_{1}}\right),
$$

where

$$
\begin{aligned}
C_{f_{1}} & =\left\{\gamma(t)=\left(u_{k} t^{k}+\cdots+u_{b_{1}} t^{b_{1}}, v_{1} t^{1}+\cdots+v_{b_{1}} t^{b_{1}}\right) \mid f_{1}\left(u_{k}, v_{1}\right) \neq 0\right\} \\
& \simeq\left\{f_{1} \neq 0\right\} \times \mathbf{R}^{2 b_{1}-k-1}
\end{aligned}
$$

Also, by the additivity of the Euler characteristic with compact support, we obtain
$\chi^{c}\left(A_{b_{1}}\left(f_{1}\right)\right)=\chi^{c}\left(\left\{f_{1} \neq 0\right\}\right)(-1)^{2 b_{1}-k-1}+\sum_{(r, s) \in \Re_{b_{1} \backslash\{(k, 1)\}}} 4(-1)^{2 b_{1}-r-s}$.
Together with (2.5), it follows that

$$
\begin{equation*}
\chi^{c}\left(\left\{f_{1}=0\right\}\right)=-3 \tag{2.7}
\end{equation*}
$$

We will next compute the $\chi^{c}\left(A_{b_{1}+1}\left(f_{i}\right)\right),(i=1,2)$. Setting $m=$ $k p+2=b_{1}+1$. Then, by the above, $m-1 \notin p \mathbf{N}$ and $m \leq b_{2}$, we can easily see the following

$$
\chi^{c}\left(A_{m}\left(f_{2}\right)\right)= \begin{cases}\sum_{(r, s) \in \Re_{m}} 4(-1)^{2 m-r-s} & \text { if } m<b_{2} \tag{2.8}\\ -2(-1)^{2 m-k-1}+\sum_{(r, s) \in \Re_{m}} 4(-1)^{2 m-r-s} & \text { if } m=b_{2}\end{cases}
$$

Now we compute $\chi^{c}\left(A_{m}\left(f_{1}\right)\right)$. Let $\lambda(t)=(X(t), Y(t))$ be an analytic arc defined by

$$
\begin{aligned}
X(t) & =u_{k} t^{k}+\cdots+u_{m} t^{m}, \\
Y(t) & =v_{1} t+\cdots+v_{m} t^{m} .
\end{aligned}
$$

We can write

$$
f_{1}(X(t), Y(t))=f_{1}\left(u_{k}, v_{1}\right) t^{m-1}+\left\langle\nabla f_{1}\left(u_{k}, v_{1}\right) ;\left(u_{k+1}, v_{2}\right)\right\rangle t^{m}+\cdots,
$$

where

$$
\left\langle\nabla f_{1}\left(u_{k}, v_{1}\right) ;\left(u_{k+1}, v_{2}\right)\right\rangle=\frac{\partial f_{1}}{\partial x}\left(u_{k}, v_{1}\right) u_{k+1}+\frac{\partial f_{1}}{\partial y}\left(u_{k}, v_{1}\right) v_{2} .
$$

Moreover, if $f_{1}\left(u_{k}, v_{1}\right)=0$ and $\left\langle\nabla f_{1}\left(u_{k}, v_{1}\right) ;\left(u_{k+1}, v_{2}\right)\right\rangle \neq 0$, then we have $O\left(f_{1} \circ \lambda\right)=m$. Let us put

$$
\begin{aligned}
B_{1} & =\left\{(u, v, w, z) \in\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}^{2} \mid\left\langle\nabla f_{1}(u, v) ;(w, z)\right\rangle \neq 0\right\}, \\
B_{2} & =\left\{(u, v, w, z) \in\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}^{2} \mid\left\langle\nabla f_{1}(u, v) ;(w, z)\right\rangle=0\right\}, \\
C_{\nabla f_{1}} & =\left\{\left(u_{k} t^{k}+\cdots+u_{m} t^{m}, v_{1} t^{1}+\cdots+u_{m} t^{m}\right) \mid\left(u_{k}, u_{k+1}, v_{1}, v_{2}\right) \in B_{1}\right\} \\
& \simeq B_{1} \times \mathbf{R}^{2 m-k-3},
\end{aligned}
$$

Then, by the above, the $A_{m}\left(f_{1}\right)$ given by

$$
A_{m}\left(f_{1}\right)=C_{\nabla f_{1}} \cup\left(\cup_{(r, s) \in \Re_{m}} C_{r, s}^{m}\right) .
$$

Thus the Euler characteristic with support compact of $A_{b_{m}}\left(f_{1}\right)$ equals

$$
\begin{equation*}
\chi^{c}\left(A_{m}\left(f_{1}\right)\right)=\chi^{c}\left(B_{1}\right)(-1)^{2 m-k-3}+\sum_{(r, s) \in \Re_{m}}(-2)^{2}(-1)^{2 m-r-s} . \tag{2.9}
\end{equation*}
$$

By identification of the m-coefficients of both zeta functions of f_{i} for $i=1,2$, it follows from (2.8) and (2.9) that $\chi^{c}\left(B_{1}\right)=0$ or -2 . On the other hand, $\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}^{2}=B_{1} \cup B_{2}$. Therefore

$$
\chi^{c}\left(f_{1}^{-1}(0)-\{0\}\right)=\chi^{c}\left(B_{1}\right)+\chi^{c}\left(B_{2}\right),
$$

but $B_{2} \simeq\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}$. This is clear because f_{1} is non-degenerate, then we have

$$
\chi^{c}\left(f_{1}^{-1}(0)-\{0\}\right)=\chi^{c}\left(f_{1}^{-1}(0)-\{0\}\right)(-1)+\chi^{c}\left(B_{1}\right) .
$$

Since $\chi^{c}\left(B_{1}\right)=0$ or -2 , this yields

$$
\chi^{c}\left(f_{1}^{-1}(0)\right)=1 \text { or } 0,
$$

which contradicts (2.7). This ends the proof of Theorem 1 in the second case.

Remark 7. If we drop the assumption that b_{2} is an integer, then the above proof still holds.

Case 3. In this case, we suppose $a_{i} \in \mathbf{N}, b_{i} \notin \mathbf{N}$ for $i=1,2$. Since f_{i} is non-degenerate, then there exists the term $x y^{q_{i}}$ for some integers $q_{i} \geq 1$ with non-zero coefficients in $f_{i}(x, y)$. For any real α we denote by $e(\alpha)$ the minimum positive integer n such that $n \geq \alpha$. By an argument similar to that of Assertion 6 and (2.4), we can compute the Fukui invariant of f_{i} as follows:

$$
A\left(f_{i}\right)=a_{i} \mathbf{N} \cup\left\{e\left(b_{i}\right), e\left(b_{i}\right)+1, \cdots\right\} \cup\{\infty\}
$$

By Theorem 3, $A\left(f_{1}\right)=A\left(f_{2}\right)$. Then we have the following result:

$$
\begin{equation*}
a_{1}=a_{2} \text { and } e\left(b_{1}\right)=e\left(b_{2}\right) \tag{2.10}
\end{equation*}
$$

Suppose now $b_{1} \neq b_{2}$. Then $q_{1} \neq q_{2}$, but $\left|b_{1}-b_{2}\right| \geq\left|q_{1}-q_{2}\right| \geq 1$. It follows that $e\left(b_{1}\right) \neq e\left(b_{2}\right)$, which contradicts (2.10). This complete the proof of Theorem 1 in the third case.

Case 4. In this case, we suppose $a_{i}, b_{i} \notin \mathbf{N}$ for $i=1,2$. Since f_{i} is non-degenerate, then there exist the terms $x^{p_{i}} y$ and $x y^{q_{i}}$ for some integers $p_{i} \geq 1$ and $q_{i} \geq 1$ with non-zero coefficients in $f_{i}(x, y)$. Thus, the Fukui invariant of f_{i} can be written as

$$
A\left(f_{i}\right)=\left\{p_{i}+1, p_{i}+2, p_{i}+3, \cdots\right\} \cup\{\infty\}
$$

which implies $p_{1}=p_{2}$. Thus we only have to prove that $b_{1}=b_{2}$. Indeed, let us assume that $b_{1}<b_{2}$. Then we have $q_{1}<q_{2}$ which implies $b_{1}<e\left(b_{1}\right)<b_{2}$. Let us put
$p=p_{1}=p_{2}, m=e\left(b_{1}\right)$ and $\Re_{m}=\left\{(r, s) \in(\mathbf{N}-\{0\})^{2} \mid r p+s=m\right\}$.
We first observe that $m-1 \notin p \mathbf{N}$. Otherwise, if $m-1=r p$, then we have:

$$
\begin{equation*}
b_{1}<q_{1}+r<r p+1<r a_{1} . \tag{2.11}
\end{equation*}
$$

This is a consequence of $b_{1}<m=r p+1$ and also ($1, q_{1}$) and $(p, 1)$ are vertices of $\Gamma\left(f_{1}\right)$. But $m=\min \left\{n \in \mathbf{N} \mid n>b_{1}\right\}$, which contradicts (2.11). Hence we have $m-1 \notin p \mathbf{N}$. Using this observation and by elementary computation we obtain the following result:

$$
\begin{align*}
& \chi^{c}\left(A_{m}\left(f_{2}\right)\right)=\sum_{(r, s) \in \Re_{m}}(-2)^{2}(-1)^{2 m-r-s}, \tag{2.12}\\
& \chi^{c}\left(A_{m}\left(f_{1}\right)\right)=(-2)^{2}(-1)^{m+q_{1}-1}+\sum_{(r, s) \in \Re_{m}}(-2)^{2}(-1)^{2 m-r-s} .
\end{align*}
$$

This means that $Z_{f_{1}} \neq Z_{f_{2}}$, which contradicts Theorem 4. This complete the proof of Theorem 1 in the fourth case.

In order to finish the proof of Theorem 1, it suffices to show the following lemmas.

Lemma 8. $a_{1} \in \mathbf{N}$ if and only if $a_{2} \in \mathbf{N}$.
Proof. Suppose that this is not the case. Namely, $a_{1} \in \mathbf{N}$ and $a_{2} \notin \mathbf{N}$. Since f_{2} is non-degenerate, then there exists the term $x^{p_{2}} y$ for some integers $p_{2} \geq 1$ with non-zero coefficients in $f_{2}(x, y)$. Again using the same argument in (2.4) one gets

$$
A\left(f_{2}\right)=\left\{p_{2}+1, p_{2}+2, p_{2}+3, \cdots, \infty\right\}
$$

Since $A\left(f_{1}\right)=A\left(f_{2}\right)$, then we have $a_{1}=b_{1}=p_{2}+1$, set $m=p_{2}+1$. We shall compute the $\chi^{c}\left(A_{m}\left(f_{i}\right)\right)$ for $i=1,2$, that is

$$
\begin{aligned}
A_{m}\left(f_{2}\right) & =\left\{\gamma(t)=\left(u_{1} t+\cdots+u_{m} t^{m}, v_{1} t+\cdots+v_{m} t^{m}\right) \mid u_{1}, v_{1} \neq 0\right\} \\
& \simeq\left(\mathbf{R}^{*}\right)^{2} \times \mathbf{R}^{2 m-2}
\end{aligned}
$$

so

$$
\begin{aligned}
A_{m}\left(f_{1}\right) & =\left\{\gamma(t)=\left(u_{1} t+\cdots+u_{m} t^{m}, v_{1} t+\cdots+v_{m} t^{m}\right) \mid f_{1}\left(u_{1}, v_{1}\right) \neq 0\right\} \\
& \simeq\left\{f_{1} \neq 0\right\} \times \mathbf{R}^{2 m-2}
\end{aligned}
$$

and hence to

$$
\chi^{c}\left(A_{m}\left(f_{i}\right)\right)= \begin{cases}(-2)^{2}(-1)^{2 m-2} & \text { if } i=2 \tag{2.13}\\ \chi^{c}\left(\left\{f_{1} \neq 0\right\}\right)(-1)^{2 m-2} & \text { if } i=1\end{cases}
$$

Since $\chi^{c}\left(A_{m}\left(f_{1}\right)\right)=\chi^{c}\left(A_{m}\left(f_{2}\right)\right)$, then we have

$$
\begin{equation*}
\chi^{c}\left(\left\{f_{1}=0\right\}\right)=-3 \tag{2.14}
\end{equation*}
$$

Using the same argument as Case 2, the $(m+1)$-coefficients of $Z_{f_{i}}$ for $i=1,2$ can be computed as follows:

$$
\chi^{c}\left(A_{m+1}\left(f_{1}\right)\right)=\chi^{c}\left(B_{1}\right) \text { and } \chi^{c}\left(A_{m+1}\left(f_{2}\right)\right)= \begin{cases}-4 & \text { if } m \neq b_{2} \\ -6 & \text { if } m=b_{2}\end{cases}
$$

We recall that:

$$
\begin{aligned}
& B_{1}=\left\{(u, v, w, z) \in\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}^{2} \mid\left\langle\nabla f_{1}(u, v) ;(w, z)\right\rangle \neq 0\right\} \\
& B_{2}=\left\{(u, v, w, z) \in\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}^{2} \mid\left\langle\nabla f_{1}(u, v) ;(w, z)\right\rangle=0\right\}
\end{aligned}
$$

Finally, by comparing the ($m+1$)-coefficients of both zeta functions $Z_{f_{i}}$, it is evident that $\chi^{c}\left(B_{1}\right)=-4$ or -6 , but $\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}^{2}=B_{1} \cup B_{2}$. It follows from the additivity of the Euler characteristic that $\chi^{c}\left(f_{1}^{-1}(0)-\right.$ $\{0\})=\chi^{c}\left(B_{1}\right)+\chi^{c}\left(B_{2}\right)$. On the other hand, by $B_{2} \simeq\left(f_{1}^{-1}(0)-\{0\}\right) \times \mathbf{R}$ (because f_{1} is non-degenerate), then we have

$$
\chi^{c}\left(f_{1}^{-1}(0)\right)=-1 \text { or }-2,
$$

which contradicts (2.14). This proves the lemma.
Q.E.D.

Lemma 9. $b_{1} \in \mathbf{N}$ if and only if $b_{2} \in \mathbf{N}$.
Proof. Suppose now that $b_{1} \in \mathbf{N}$ and $b_{2} \notin \mathbf{N}$. Since f_{2} is nondegenerate, then there exists the term $x y^{q_{2}}$ for some integers $q_{2} \geq 1$ with non-zero coefficients in $f_{2}(x, y)$.

We first consider $a_{i} \in \mathbf{N}$ for $i=1,2$. Then, by the same reason as above, we can compute the Fukui invariant of f_{i} as follows:

$$
\begin{aligned}
& A\left(f_{1}\right)=a_{1} \mathbf{N} \cup b_{1} \mathbf{N} \cup \mathbf{N}_{\geq\left[a_{1}, b_{1}\right]} \cup\{\infty\}, \\
& A\left(f_{2}\right)=a_{2} \mathbf{N} \cup \mathbf{N}_{\geq e\left(b_{2}\right)} \cup\{\infty\}
\end{aligned}
$$

Since $A\left(f_{1}\right)=A\left(f_{2}\right)$, then we have the following result :

$$
\begin{equation*}
a_{1}=a_{2}, \quad b_{1}=k a_{1}, \quad \text { and } \quad e\left(b_{2}\right)=b_{1} \text { or } b_{1}+1 \tag{2.15}
\end{equation*}
$$

Since $b_{1}=k a_{1}$, we may assume by Remark 5 that there exists the term $x y^{k\left(a_{1}-1\right)}$ with non-zero coefficients in $f_{1}(x, y)$. But $\left|b_{2}-b_{1}\right| \geq$ $\left|q_{2}-k\left(a_{1}-1\right)\right| \geq 1$, which implies $b_{2} \geq b_{1}+1$ or $b_{1} \geq b_{2}+1$. It follows that $e\left(b_{2}\right)>b_{1}+1$ or $e\left(b_{2}\right)<b_{1}$, which contradicts (2.15), and ends the first part of the lemma.

Now we consider the case where $a_{i} \notin \mathbf{N}$ for $i=1,2$. Since f_{i} is non-degenerate, then there exists the term $x^{p_{i}} y$ for some integers $p_{i} \geq 1$ with non-zero coefficients in $f_{i}(x, y)$. It is easy to see that

$$
A\left(f_{i}\right)=\left\{p_{i}+1, p_{i}+2, p_{i}+3, \cdots\right\} \cup\{\infty\}
$$

Moreover $A\left(f_{1}\right)=A\left(f_{2}\right)$, and we get $p_{1}=p_{2}$. Set

$$
p=p_{1}=p_{2}, m=e\left(b_{2}\right) \quad \text { and } \quad \Re_{m}=\left\{(r, s) \in \mathbf{N}^{2} \mid r p+s=m\right\}
$$

As stated in Remark 7, we can exclude the case where $b_{1}<b_{2}$ (because this is proved in exactly the same way as Case 2). Thus it remains to consider the case $b_{2}<b_{1}$.

We next compute the m-coefficients of both zeta functions $Z_{f_{i}}$ for $i=1,2$. For this, we can assert that $m-1 \notin p \mathbf{N}$. Indeed, suppose that
$m-1=\alpha p$ for some positive integer α. Since $b_{2}<m=\alpha p+1$ which implies $b_{2}<q_{2}+\alpha<\alpha p+1$. This is clear because $\left(1, q_{2}\right) \in \Gamma\left(f_{2}\right)$. But $m=e\left(b_{2}\right)$ is equal to the smallest integer greater than b_{2}, which is a contradiction. Therefore we obtain that $m-1 \notin p \mathbf{N}$, and so on by elementary computation, we have the following result:

$$
\begin{equation*}
\chi^{c}\left(A_{m}\left(f_{2}\right)\right)=(-2)^{2}(-1)^{m+q_{2}-1}+\sum_{(r, s) \in \Re_{m}}(-2)^{2}(-1)^{2 m-r-s} \tag{2.16}
\end{equation*}
$$

And

$$
\begin{array}{ll}
\chi^{c}\left(A_{m}\left(f_{1}\right)\right)=\sum_{(r, s) \in \Re_{m}}(-2)^{2}(-1)^{2 m-r-s} & \text { if } m<b_{1} \\
\chi^{c}\left(A_{m}\left(f_{1}\right)\right)=(-2)(-1)^{m+q_{2}}+\sum_{(r, s) \in \Re_{m}}(-2)^{2}(-1)^{2 m-r-s} & \text { if } m=b_{1}
\end{array}
$$

Now it suffices to note by the above equalities that $Z_{f_{1}} \neq Z_{f_{2}}$, which contradicts Theorem 4. This completes the proof. Q.E.D.

Theorem 1 is therefore proved.

Example 10. Let k be an arbitrary integer greater than or equal to
4. We consider quasihomogeneous polynomial functions $f_{k}, g_{k}:\left(\mathbf{R}^{2}, 0\right) \rightarrow$ $(\mathbf{R}, 0)$ defined by

$$
f_{k}(x, y)=x^{5}+x y^{2 k}, \quad g_{k}(x, y)=x^{5}-y^{2 k+2}
$$

Note that the weights of f_{k} and g_{k} are $\left(\frac{1}{5}, \frac{2}{5 k}\right)$ and $\left(\frac{1}{5}, \frac{1}{2 k+2}\right)$ respectively. Since f_{k} and g_{k} have different weights for $k>4$, they are not blow-analytically equivalent by Theorem 1 . However, f_{k} and g_{k} are topologically equivalent. In fact, the above $f_{k}(x, y)=x^{5}+x y^{2 k} \in$ $J_{\mathbf{R}}^{2 k+1}(2,1)$ is C^{0}-sufficient by the Kuiper-Kuo Theorem (see [7, 8]). Therefore, f_{k} is topologically equivalent to $f_{k}-y^{2 k+2}$. On the other hand, g_{k} and $g_{k}+x y^{2 k}$ are blow-analytically equivalent by Theorem 2. Besides $f_{k}-y^{2 k+2}=g_{k}+x y^{2 k}$, hence the conclusion holds. Consequently, $f_{k} \in J_{\mathbf{R}}^{2 k+1}(2,1)$ is not blow-analytically sufficient for $k>4$.

In the case $k=4$, the weights of f_{4} and g_{4} are equal to $\left(\frac{1}{5}, \frac{1}{10}\right)$. Furthermore, f_{4} is blow-analytically equivalent to g_{4}. Indeed, consider the family $H_{t}:\left(\mathbf{R}^{2}, 0\right) \rightarrow(\mathbf{R}, 0) \quad(t \in[0,1])$ defined by $H_{t}(x, y)=$ $(1-t) f_{4}(x, y)+t g_{4}(x, y)$. It is easy to see that for each $t \in[0,1], H_{t}$ has an isolated singularity at $0 \in \mathbf{R}^{2}$. Therefore, it follows from Theorem 2 that $\left\{H_{t}\right\}_{0 \leq t \leq 1}$ is blow-analytically trivial over $[0,1]$. In particular, $H_{0}=f_{4}$ is blow-analytically equivalent to $H_{1}=g_{4}$.

References

[1] J. Denef and F. Loser : Geometry on arc spaces of algebraic varieties, European Congress of Math. (Barcelona, July 10-14, 2000), 1 (2001), 325-348.
[2] T. Fukui, Seeking invariants for blow-analytic equivalence, Composito Math., 105 (1997), 95-107.
[3] T. Fukui, S. Koike and T. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities, (eds. T. Fukuda, T. Fukui, S. Izumiya and S. Koike), Pitman Research. Notes in Mathathemaics Series., 381 (1997), pp. 8-29.
[4] T. Fukui and L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan., 52 (2000), 433446.
[5] S. Koike and A. Parusiński, Motivic-type invariants of blow-analytic equivalence, Ann. Inst. Fourier, Grenoble, 53 (2003), 2061-2104.
[6] T.-C. Kuo, On classification of real singularities, Invent. Math., 82 (1985), 257-261.
[7] T.-C. Kuo, On C^{0}-sufficiency of jets of potential functions, Topology, 8 (1969), 167-171.
[8] N. Kuiper, C^{1}-equivalence of functions near isolated critical points, Symposium on Infinite Dimensional Topology (Baton Rouge, 1967), Ann. of Math. Stud., no.69, Princeton University Press, Princeton, NJ, 98 (1972), 199-218.

Department of Mathematics
Faculty of Science
Saitama University, 255 Shimo-Okubo
Urawa, 338-8570 Japan
E-mail: vould@rimath.saitama-u.ac.jp

[^0]: Received February 6, 2004.
 Revised December 12, 2004.
 This research was supported by the Japan Society for the Promotion of Science.

