Advanced Studies in Pure Mathematics 42, 2004 Complex Analysis in Several Variables pp. 263–268

Amoebas, convexity and the volume of integer polytopes

Mikael Passare

Abstract.

To any given Laurent polynomial f on \mathbb{C}_{*}^{n} we associate two natural convex functions M_{f} and N_{f} on \mathbb{R}^{n} . We compute the Hessian of M_{f} and obtain an explicit formula for the volume of the Newton polytope Δ_{f} . We also establish asymptotic formulas relating our convex functions to coherent triangulations of Δ_{f} and to the secondary polytope.

§1.

Let $A \subset \mathbb{Z}^n$ be a finite set and consider a general Laurent polynomial $f(z) = \sum_{\alpha \in A} a_\alpha z^\alpha$, with complex coefficients and $z \in \mathbb{C}^n_*$. The Newton polytope Δ_f is defined as the convex hull of A (in $\mathbb{R}^n \supset \mathbb{Z}^n$), or more accurately, as the convex hull of those α for which $a_\alpha \neq 0$. The amoeba \mathbf{A}_f is defined to be the image of the zero set of f under the mapping $\mathrm{Log}: \mathbb{C}^n_* \to \mathbb{R}^n$ given by $(z_1, \ldots, z_n) \mapsto (\log |z_1|, \ldots, \log |z_n|)$. In the sequel we use the notation $|z_j| = t_j$ and $\log |z_j| = x_j$.

We are going to deal with the two functions

$$M_f(x) = \log (\sum_{lpha \in A} |a_lpha| e^{\langle lpha, x
angle})$$

 and

$$N_f(x) = \frac{1}{(2\pi)^n} \int_{[0,2\pi]^n} \log \left| f(e^{x+i\theta}) \right| d\theta_1 \wedge \cdots \wedge d\theta_n.$$

They are both convex functions in \mathbb{R}^n with the property that their gradient mappings map \mathbb{R}^n to the Newton polytope Δ_f . More precisely, the mapping grad M_f is a diffeomorphism $\mathbb{R}^n \to \operatorname{int} \Delta_f$, whereas

Received April 8, 2002.

Revised October 10, 2002.

M. Passare

grad N_f maps \mathbf{R}^n onto the closed polytope Δ_f with each connected component of $\mathbf{R}^n \setminus \mathbf{A}_f$ being sent to one of the integer vectors $\Delta_f \cap \mathbf{Z}^n$, called the order of that connected component. (See [5] for more on this.)

Introducing the corresponding Monge–Ampère measures

Hess $M_f = \text{Jac grad } M_f$ and Hess $N_f = \text{Jac grad } N_f$,

we conclude from general facts on convex functions, see [6], that these are both positive measures with total masses equal to $\operatorname{Vol}\Delta_f$.

Let us order the set A as $\{\alpha^0, \alpha^1, \ldots, \alpha^N\}$, and consider, for any increasing multi-index $J = \{j_0, \ldots, j_n\} \in \{0, 1, \ldots, N\}^{1+n}$, the square matrix A_J having the (1 + n)-vectors $(1, \alpha^{j_k})$ as its columns. Observe that $|\det(A_J)|$ equals n! times the volume of the simplex σ_J with vertices in $\alpha^{j_0}, \ldots, \alpha^{j_n}$. We begin with an explicit computation.

Proposition 1.1 The push-forward of the measure Hess M_f under the mapping Exp: $\mathbf{R}^n \to \mathbf{R}^n_+$ defined by $(x_1, \ldots, x_n) \mapsto (e^{x_1}, \ldots, e^{x_n})$, is given by Lebesgue measure times a rational function h_f/F^{1+n} , with the polynomial h_f explicitly given by

$$h_f(t) = \sum_{|J|=1+n}^{\prime} \det^2(A_J) |a_{\alpha^{j_0}}| t^{\alpha^{j_0}} \cdots |a_{\alpha^{j_n}}| t^{\alpha^{j_n}}.$$

Here the summation is over all increasing multi-indices J, and F is obtained from f by replacing each coefficient a_{α} by $|a_{\alpha}|$.

Proof: The gradient of M_f equals the moment map (cf. [4], p.198)

$$\operatorname{grad} M_f(x) = \frac{\sum_{\alpha \in A} \alpha |a_\alpha| e^{\langle \alpha, x \rangle}}{\sum_{\alpha \in A} |a_\alpha| e^{\langle \alpha, x \rangle}} = \frac{\sum_{\alpha \in A} \alpha |a_\alpha| t^{\alpha}}{\sum_{\alpha \in A} |a_\alpha| t^{\alpha}},$$

which means that $\operatorname{Hess} M_f(x) = \det(\partial^2 M_f(x)/\partial x_j \partial x_k)$ is equal to

$$\frac{\sum_{\alpha \in A} \alpha_{j} \alpha_{k} |a_{\alpha}| t^{\alpha}}{\sum_{\alpha \in A} |a_{\alpha}| t^{\alpha}} - \frac{\left(\sum_{\alpha \in A} \alpha_{j} |a_{\alpha}| t^{\alpha}\right) \left(\sum_{\alpha \in A} \alpha_{k} |a_{\alpha}| t^{\alpha}\right)}{\left(\sum_{\alpha \in A} |a_{\alpha}| t^{\alpha}\right)^{2}} \right|.$$

and if we introduce the abbreviation $c_{\alpha} = |a_{\alpha}| t^{\alpha}$ we may re-write the above $n \times n$ -determinant as the following $(1 + n) \times (1 + n)$ -determinant:

$$\frac{1}{\left(\sum c_{\alpha}\right)^{1+n}} \begin{vmatrix} \sum c_{\alpha} & \sum \alpha_{1} c_{\alpha} & \dots & \sum \alpha_{n} c_{\alpha} \\ \sum \alpha_{1} c_{\alpha} & \sum \alpha_{1} \alpha_{1} c_{\alpha} & \dots & \sum \alpha_{1} \alpha_{n} c_{\alpha} \\ \dots & \dots & \dots & \dots \\ \sum \alpha_{n} c_{\alpha} & \sum \alpha_{n} \alpha_{1} c_{\alpha} & \dots & \sum \alpha_{n} \alpha_{n} c_{\alpha} \end{vmatrix} . \quad (*)$$

Now we consider the $(1 + n) \times (1 + N)$ -matrix

$$B = \begin{pmatrix} \sqrt{c_{\alpha^0}} & \sqrt{c_{\alpha^1}} & \dots & \sqrt{c_{\alpha^N}} \\ \alpha_1^0 \sqrt{c_{\alpha^0}} & \alpha_1^1 \sqrt{c_{\alpha^1}} & \dots & \alpha_1^N \sqrt{c_{\alpha^N}} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \alpha_n^0 \sqrt{c_{\alpha^0}} & \alpha_n^1 \sqrt{c_{\alpha^1}} & \dots & \alpha_n^N \sqrt{c_{\alpha^N}} \end{pmatrix}$$

and make two observations. First, the determinant (*) is equal to $\det(BB^{\mathrm{tr}})/F(t)^{1+n}$. Second, the polynomial h_f is equal to the sum of the squares of all the maximal minors of B. The desired identity Hess $M_f = h_f/F^{1+n}$ therefore follows from the Cauchy-Binet formula, see [3], which says that the determinant of the product BB^{tr} is indeed equal to the sum of the squares of the minors of B.

We remark that h_f is the non-homogeneous toric Jacobian of the extended gradient $(F, t_1\partial_1 F, \ldots, t_n\partial_n F)$, see [2] and Proposition 1.2 in [1], where a similar computation was carried out. Combining our Proposition 1.1 with the fact that the total mass of Hess M_f is equal to $\operatorname{Vol} \Delta_f$, we obtain the following explicit, elementary, and apparently new formula for the volume of the Newton polytope.

Theorem 1.2 The volume of the Newton polytope Δ_f can be computed by means of the closed formula

$$\operatorname{Vol}\Delta_f = \int_{\mathbf{R}^n_+} \frac{h_f(t)}{(F(t))^{1+n}} \frac{dt_1 \wedge \dots \wedge dt_n}{t_1 \cdots t_n}.$$
 (**)

We knew a priori that this integral should converge, since the measure Hess M_f has a finite mass, but the convergence now also follows from the obvious fact that the Newton polytope of h_f is contained in the interior of $(1 + n) \Delta_f$.

Regarding the function N_f , we recall the following result from [5]. Remember that a polyhedral subdivision is a generalized triangulation whose elements are polyhedra (but not necessarily simplices).

Theorem 1.3 The piecewise linear convex function $\max_{\alpha}(c_{\alpha} + \langle \alpha, x \rangle)$, where $c_{\alpha} + \langle \alpha, x \rangle = N_f(x)$ in the component of $\mathbf{R}^n \setminus \mathbf{A}_f$ of order α , defines a polyhedral subdivision of \mathbf{R}^n whose (n-1)-skeleton is contained in \mathbf{A}_f , while its Legendre transform similarly defines a dual polyhedral subdivision \mathbf{T}_f of Δ_f . A vector α is a vertex in \mathbf{T}_f if and only if $\mathbf{R}^n \setminus \mathbf{A}_f$ has a component of order α .

§2.

In this section we shall study the asymptotic behaviour of Theorems 1.2 and 1.3 as the coefficients a_{α} tend to infinity. More precisely, we will set $a_{\alpha} = \lambda^{s_{\alpha}}$ for some fixed vector $(s_{\alpha}) \in \mathbf{R}^{A}$ and $\mathbf{R} \ni \lambda \to \infty$. We recall from [4] that the so-called secondary polytope $\Sigma_{A} \subset \mathbf{Z}^{A}$ has the property that its vertices are in bijective correspondence with the coherent triangulations of Δ_{f} , and that a triangulation is coherent if it can be defined by a convex (or concave) piecewise linear function (as in Theorem 1.3).

For any vertex v of Σ_A , the normal cone N_v , which consists of all vectors $(s_\alpha) \in \mathbf{R}^A$ such that $(s, v) = \max_{w \in \Sigma_A}(s, w)$, has a non-empty interior. Any vector (s_α) from int N_v , that is, such that (s, v) > (s, w) for all $w \in \Sigma_A$ with $v \neq w$, can be used to produce the associated coherent triangulation \mathbf{T}_v of Δ_f in the following way. Let g_s be the piecewise linear concave function on Δ_f whose graph equals the upper boundary of the convex hull of the union of half lines $\{(\alpha, y); \alpha \in A, y \leq s_\alpha\}$. Then \mathbf{T}_v is obtained by projecting the linear pieces of the graph of g_s down to Δ_f . Notice that $-g_s$ is the Legendre transform of the piecwise linear convex function $\max_{\alpha}(s_\alpha + \langle \alpha, x \rangle)$ on \mathbf{R}^n .

The polynomial h_f , and hence the whole volume formula in Theorem 1.2, contains one term for each subsimplex σ_J with vertices in A. Asymptotically, it is only the terms corresponding to the disjoint simplices of a coherent triangulation that survive, as shown by the following theorem.

Theorem 2.1 Let v be a vertex of the secondary polytope Σ_A , and take a vector $(s_{\alpha}) \in \mathbf{R}^A$ in the interior of the normal cone N_v . Set the coefficients a_{α} of f equal to $\lambda^{s_{\alpha}}$. Then the term $I_J(\lambda)$ in (**)corresponding to the multi-index J satisfies

$$\lim_{\lambda \to \infty} I_J(\lambda) = \begin{cases} \operatorname{Vol} \sigma_J, & \text{if } \sigma_J \in \mathbf{T}_v, \\ 0, & \text{otherwise}. \end{cases}$$

Proof: Recalling the formula for h_f , we see that

$$I_J(\lambda) = \int_{\mathbf{R}^n_+} \frac{\det^2(A_J) \,\lambda^{s_{\alpha^{j_0}}} t^{\alpha^{j_0}} \cdots \lambda^{s_{\alpha^{j_n}}} t^{\alpha^{j_n}}}{(\lambda^{s_{\alpha^0}} t^{\alpha^0} + \lambda^{s_{\alpha^1}} t^{\alpha^1} + \dots \lambda^{s_{\alpha^N}} t^{\alpha^N})^{1+n}} \frac{dt_1 \wedge \cdots \wedge dt_n}{t_1 \cdots t_n}.$$

266

If we perform the monomial substituion $u_k = \lambda^{s_{\alpha^{j_k}}} t^{\alpha^{j_k}} / \lambda^{s_{\alpha^{j_0}}} t^{\alpha^{j_0}}$, for $k = 1, \ldots, n$, we arrive at

$$I_J(\lambda) = \int_{\mathbf{R}^n_+} \frac{|\det(A_J)| \, du_1 \wedge \dots \wedge du_n}{(1+u_1+\dots+u_n+\delta(\lambda))^{1+n}},$$

where $\delta(\lambda)$ is a finite sum of fractional monomials $\lambda^{r_0} u_1^{r_1} \cdots u_n^{r_n}$, with $r \in \mathbf{Q}^{1+n}$ and $r_0 \neq 0$. Now, it is not hard to verify that the simplex σ_J belongs to the triangulation \mathbf{T}_v precisely if all the exponents r_0 are negative. In this case the term $\delta(\lambda)$ tends to zero, and since the integral of $du_1 \wedge \cdots \wedge du_n / (1+u_1+\cdots+u_n)^{1+n}$ over the positive orthant is equal to 1/n!, we conclude that $I_J(\lambda) \to |\det(A_J)|/n!$ as claimed. Otherwise, the denominator in the integrand goes to infinity, and the integral $I_J(\lambda)$ tends to zero.

The proof of the next result is essentially parallel to that of Theorem 9 in [7] and will be omitted.

Theorem 2.2 Let v be a vertex of the secondary polytope Σ_A , and take a vector (s_{α}) as in Theorem 2.1. Set the coefficients a_{α} of f equal to $\lambda^{s_{\alpha}}$ and denote the new polynomial by f^{λ} . For large values of the parameter λ the polyhedral subdivision $\mathbf{T}_{f^{\lambda}}$ from Theorem 1.3 will then coincide with the coherent triangulation \mathbf{T}_{v} .

We end with a closer look at a one-dimensional case.

Example 2.3 Consider a one-variable polynomial of the form $f(t) = 1 + a_1t + \cdots + a_{n-1}t^{n-1} + t^n$. For each $m = 0, 1, \ldots, 2n-2$ the so-called Ostrogradski method for finding the rational part of a primitive function can be realized with the explicit formula

$$\int \frac{t^m dt}{f(t)^2} = -\frac{P_m(t)}{f(t)} + \int \frac{Q_m(t) dt}{f(t)},$$

where the P_m and Q_m are polynomials of degrees n-1 and n-2 respectively. To be specific, one has $P_m(t) = \sum_{k=0}^{n-1} A_{m,k} t^k$ and $Q_m(t) = P'_m(t) + \sum_{\ell=0}^{n-2} B_{m,\ell} t^\ell$, with the $(2n-1) \times (2n-1)$ -matrix $(B_{m,\ell}, A_{m,k})$ being the inverse of the standard Sylvester matrix (see [4], p.405) whose determinant equals the discriminant D_n of f. Now, if we collect terms in h_f and write $t^{-1}h_f(t) = \sum_{m=0}^{2n-2} C_m t^m$, then it holds that $\sum_m A_{m,k} C_m = (n-k)a_k$ and $\sum_m B_{m,\ell} C_m = -(\ell+1)(n-\ell-1)a_{\ell+1}$. (Here $a_0 = a_n = 1$.) This implies in particular that if we replace the individual terms

$$\int_0^\infty \frac{(j_1 - j_0)^2 a_{j_0} a_{j_1} t^{j_0 + j_1 - 1} dt}{f(t)^2}$$

in formula (**) by their principal parts

$$-rac{(j_1-j_0)^2\,a_{j_0}a_{j_1}\,P_{j_0+j_1-1}(t)}{f(t)}\Bigg|_0^\infty=(j_1-j_0)^2\,a_{j_0}a_{j_1}\,A_{j_0+j_1-1,0}$$

then they still sum to $\operatorname{Vol}\Delta_f = n$. In other words, the individual terms of (**), which are not themselves rational functions of the coefficients a_j , can be replaced by rational expressions so that the volume formula still holds true. Since these expressions all have the discriminant D_n as their denominator, this means we have in a canonical way associated polynomials (the numerators) with all subsimplices $[j_0, j_1]$ so that their sum is equal to nD_n . In fact, the linear form on the vector space $\langle 1, t, \ldots, t^{2n-2} \rangle$ given by

$$t^m \mapsto P_m(0) \quad (=A_{m,0})$$

coincides with the toric residue associated to the mapping (f, tf').

References

- Eduardo Cattani, Alicia Dickenstein and Bernd Sturmfels, Residues and resultants, J. Math. Sci. Univ. Tokyo 5 (1998), 119-148.
- [2] David Cox, Toric residues, Ark. Mat. 34 (1996), 73-96.
- [3] Felix Gantmacher, The theory of matrices, AMS Chelsea Publishing, Providence, 1998, x+374pp.
- [4] Israel Gelfand, Mikhail Kapranov and Andrei Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994, x+523pp.
- [5] Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère measures and triangulations of the Newton polytope, Preprint, Stockholm University 2000, 14pp.
- [6] Jeffrey Rauch and Alan Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345-364.
- [7] Hans Rullgård, *Polynomial amoebas and convexity*, Licenciate thesis, Stockholm University, 2001, 47pp.

Matematiska institutionen Stockholms universitet SE-10691 Stockholm Sweden passare@matematik.su.se

268