# Amoebas, convexity and the volume of integer polytopes 

Mikael Passare


#### Abstract

. To any given Laurent polynomial $f$ on $\mathbf{C}_{*}^{n}$ we associate two natural convex functions $M_{f}$ and $N_{f}$ on $\mathbf{R}^{n}$. We compute the Hessian of $M_{f}$ and obtain an explicit formula for the volume of the Newton polytope $\Delta_{f}$. We also establish asymptotic formulas relating our convex functions to coherent triangulations of $\Delta_{f}$ and to the secondary polytope.


## §1.

Let $A \subset \mathbf{Z}^{n}$ be a finite set and consider a general Laurent polynomial $f(z)=\sum_{\alpha \in A} a_{\alpha} z^{\alpha}$, with complex coefficients and $z \in \mathbf{C}_{*}^{n}$. The Newton polytope $\Delta_{f}$ is defined as the convex hull of $A$ (in $\mathbf{R}^{n} \supset \mathbf{Z}^{n}$ ), or more accurately, as the convex hull of those $\alpha$ for which $a_{\alpha} \neq 0$. The amoeba $\mathbf{A}_{f}$ is defined to be the image of the zero set of $f$ under the mapping $\log : \mathbf{C}_{*}^{n} \rightarrow \mathbf{R}^{n}$ given by $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$. In the sequel we use the notation $\left|z_{j}\right|=t_{j}$ and $\log \left|z_{j}\right|=x_{j}$.

We are going to deal with the two functions

$$
M_{f}(x)=\log \left(\sum_{\alpha \in A}\left|a_{\alpha}\right| e^{\langle\alpha, x\rangle}\right)
$$

and

$$
N_{f}(x)=\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi]^{n}} \log \left|f\left(e^{x+i \theta}\right)\right| d \theta_{1} \wedge \cdots \wedge d \theta_{n}
$$

They are both convex functions in $\mathbf{R}^{n}$ with the property that their gradient mappings map $\mathbf{R}^{n}$ to the Newton polytope $\Delta_{f}$. More precisely, the mapping grad $M_{f}$ is a diffeomorphism $\mathbf{R}^{n} \rightarrow$ int $\Delta_{f}$, whereas
$\operatorname{grad} N_{f}$ maps $\mathbf{R}^{n}$ onto the closed polytope $\Delta_{f}$ with each connected component of $\mathbf{R}^{n} \backslash \mathbf{A}_{f}$ being sent to one of the integer vectors $\Delta_{f} \cap \mathbf{Z}^{n}$, called the order of that connected component. (See [5] for more on this.)

Introducing the corresponding Monge-Ampère measures
Hess $M_{f}=\mathrm{Jac} \operatorname{grad} M_{f} \quad$ and $\quad \operatorname{Hess} N_{f}=\mathrm{Jac} \operatorname{grad} N_{f}$,
we conclude from general facts on convex functions, see [6], that these are both positive measures with total masses equal to $\operatorname{Vol} \Delta_{f}$.

Let us order the set $A$ as $\left\{\alpha^{0}, \alpha^{1}, \ldots, \alpha^{N}\right\}$, and consider, for any increasing multi-index $J=\left\{j_{0}, \ldots, j_{n}\right\} \in\{0,1, \ldots, N\}^{1+n}$, the square matrix $A_{J}$ having the $(1+n)$-vectors $\left(1, \alpha^{j_{k}}\right)$ as its columns. Observe that $\left|\operatorname{det}\left(A_{J}\right)\right|$ equals $n$ ! times the volume of the simplex $\sigma_{J}$ with vertices in $\alpha^{j_{0}}, \ldots, \alpha^{j_{n}}$. We begin with an explicit computation.

Proposition 1.1 The push-forward of the measure Hess $M_{f}$ under the mapping Exp: $\mathbf{R}^{n} \rightarrow \mathbf{R}_{+}^{n}$ defined by $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)$, is given by Lebesgue measure times a rational function $h_{f} / F^{1+n}$, with the polynomial $h_{f}$ explicitly given by

$$
h_{f}(t)=\sum_{|J|=1+n}^{\prime} \operatorname{det}^{2}\left(A_{J}\right)\left|a_{\alpha^{j_{0}}}\right| t^{\alpha^{j}} \cdots\left|a_{\alpha^{j_{n}}}\right| t^{\alpha^{j_{n}}}
$$

Here the summation is over all increasing multi-indices $J$, and $F$ is obtained from $f$ by replacing each coefficient $a_{\alpha}$ by $\left|a_{\alpha}\right|$.
Proof: The gradient of $M_{f}$ equals the moment map (cf. [4], p.198)

$$
\operatorname{grad} M_{f}(x)=\frac{\sum_{\alpha \in A} \alpha\left|a_{\alpha}\right| e^{\langle\alpha, x\rangle}}{\sum_{\alpha \in A}\left|a_{\alpha}\right| e^{\langle\alpha, x\rangle}}=\frac{\sum_{\alpha \in A} \alpha\left|a_{\alpha}\right| t^{\alpha}}{\sum_{\alpha \in A}\left|a_{\alpha}\right| t^{\alpha}}
$$

which means that Hess $M_{f}(x)=\operatorname{det}\left(\partial^{2} M_{f}(x) / \partial x_{j} \partial x_{k}\right)$ is equal to

$$
\left|\frac{\sum_{\alpha \in A} \alpha_{j} \alpha_{k}\left|a_{\alpha}\right| t^{\alpha}}{\sum_{\alpha \in A}\left|a_{\alpha}\right| t^{\alpha}}-\frac{\left(\sum_{\alpha \in A} \alpha_{j}\left|a_{\alpha}\right| t^{\alpha}\right)\left(\sum_{\alpha \in A} \alpha_{k}\left|a_{\alpha}\right| t^{\alpha}\right)}{\left(\sum_{\alpha \in A}\left|a_{\alpha}\right| t^{\alpha}\right)^{2}}\right|
$$

and if we introduce the abbreviation $c_{\alpha}=\left|a_{\alpha}\right| t^{\alpha}$ we may re-write the above $n \times n$-determinant as the following $(1+n) \times(1+n)$-determinant:

$$
\frac{1}{\left(\sum c_{\alpha}\right)^{1+n}}\left|\begin{array}{cccc}
\sum c_{\alpha} & \sum \alpha_{1} c_{\alpha} & \cdots & \sum \alpha_{n} c_{\alpha}  \tag{*}\\
\sum \alpha_{1} c_{\alpha} & \sum \alpha_{1} \alpha_{1} c_{\alpha} & \cdots & \sum \alpha_{1} \alpha_{n} c_{\alpha} \\
\ldots & \ldots & \cdots & \cdots \\
\ldots & \ldots & \cdots & \cdots \\
\sum \alpha_{n} c_{\alpha} & \sum \alpha_{n} \alpha_{1} c_{\alpha} & \cdots & \sum \alpha_{n} \alpha_{n} c_{\alpha}
\end{array}\right|
$$

Now we consider the $(1+n) \times(1+N)$-matrix

$$
B=\left(\begin{array}{cccc}
\sqrt{c_{\alpha^{0}}} & \sqrt{c_{\alpha^{1}}} & \ldots & \sqrt{c_{\alpha^{N}}} \\
\alpha_{1}^{0} \sqrt{c_{\alpha^{0}}} & \alpha_{1}^{1} \sqrt{c_{\alpha^{1}}} & \ldots & \alpha_{1}^{N} \sqrt{c_{\alpha^{N}}} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\alpha_{n}^{0} \sqrt{c_{\alpha^{0}}} & \alpha_{n}^{1} \sqrt{c_{\alpha^{1}}} & \ldots & \alpha_{n}^{N} \sqrt{c_{\alpha^{N}}}
\end{array}\right)
$$

and make two observations. First, the determinant $(*)$ is equal to $\operatorname{det}\left(B B^{\operatorname{tr}}\right) / F(t)^{1+n}$. Second, the polynomial $h_{f}$ is equal to the sum of the squares of all the maximal minors of $B$. The desired identity Hess $M_{f}=h_{f} / F^{1+n}$ therefore follows from the Cauchy-Binet formula, see [3], which says that the determinant of the product $B B^{\text {tr }}$ is indeed equal to the sum of the squares of the minors of $B$.

We remark that $h_{f}$ is the non-homogeneous toric Jacobian of the extended gradient $\left(F, t_{1} \partial_{1} F, \ldots, t_{n} \partial_{n} F\right)$, see [2] and Proposition 1.2 in [1], where a similar computation was carried out. Combining our Proposition 1.1 with the fact that the total mass of Hess $M_{f}$ is equal to $\operatorname{Vol} \Delta_{f}$, we obtain the following explicit, elementary, and apparently new formula for the volume of the Newton polytope.

Theorem 1.2 The volume of the Newton polytope $\Delta_{f}$ can be computed by means of the closed formula

$$
\begin{equation*}
\operatorname{Vol} \Delta_{f}=\int_{\mathbf{R}_{+}^{n}} \frac{h_{f}(t)}{(F(t))^{1+n}} \frac{d t_{1} \wedge \cdots \wedge d t_{n}}{t_{1} \cdots t_{n}} \tag{**}
\end{equation*}
$$

We knew a priori that this integral should converge, since the measure Hess $M_{f}$ has a finite mass, but the convergence now also follows from the obvious fact that the Newton polytope of $h_{f}$ is contained in the interior of $(1+n) \Delta_{f}$.

Regarding the function $N_{f}$, we recall the following result from [5]. Remember that a polyhedral subdivision is a generalized triangulation whose elements are polyhedra (but not necessarily simplices).

Theorem 1.3 The piecewise linear convex function $\max _{\alpha}\left(c_{\alpha}+\langle\alpha, x\rangle\right)$, where $c_{\alpha}+\langle\alpha, x\rangle=N_{f}(x)$ in the component of $\mathbf{R}^{n} \backslash \mathbf{A}_{f}$ of order $\alpha$, defines a polyhedral subdivision of $\mathbf{R}^{n}$ whose $(n-1)$-skeleton is contained in $\mathbf{A}_{f}$, while its Legendre transform similarly defines a dual polyhedral subdivision $\mathbf{T}_{f}$ of $\Delta_{f}$. A vector $\alpha$ is a vertex in $\mathbf{T}_{f}$ if and only if $\mathbf{R}^{n} \backslash \mathbf{A}_{f}$ has a component of order $\alpha$.

In this section we shall study the asymptotic behaviour of Theorems 1.2 and 1.3 as the coefficients $a_{\alpha}$ tend to infinity. More precisely, we will set $a_{\alpha}=\lambda^{s_{\alpha}}$ for some fixed vector $\left(s_{\alpha}\right) \in \mathbf{R}^{A}$ and $\mathbf{R} \ni \lambda \rightarrow \infty$. We recall from [4] that the so-called secondary polytope $\Sigma_{A} \subset \mathbf{Z}^{A}$ has the property that its vertices are in bijective correspondence with the coherent triangulations of $\Delta_{f}$, and that a triangulation is coherent if it can be defined by a convex (or concave) piecewise linear function (as in Theorem 1.3).

For any vertex $v$ of $\Sigma_{A}$, the normal cone $N_{v}$, which consists of all vectors $\left(s_{\alpha}\right) \in \mathbf{R}^{A}$ such that $(s, v)=\max _{w \in \Sigma_{A}}(s, w)$, has a non-empty interior. Any vector $\left(s_{\alpha}\right)$ from int $N_{v}$, that is, such that $(s, v)>(s, w)$ for all $w \in \Sigma_{A}$ with $v \neq w$, can be used to produce the associated coherent triangulation $\mathbf{T}_{v}$ of $\Delta_{f}$ in the following way. Let $g_{s}$ be the piecewise linear concave function on $\Delta_{f}$ whose graph equals the upper boundary of the convex hull of the union of half lines $\left\{(\alpha, y) ; \alpha \in A, y \leq s_{\alpha}\right\}$. Then $\mathbf{T}_{v}$ is obtained by projecting the linear pieces of the graph of $g_{s}$ down to $\Delta_{f}$. Notice that $-g_{s}$ is the Legendre transform of the piecwise linear convex function $\max _{\alpha}\left(s_{\alpha}+\langle\alpha, x\rangle\right)$ on $\mathbf{R}^{n}$.

The polynomial $h_{f}$, and hence the whole volume formula in Theorem 1.2, contains one term for each subsimplex $\sigma_{J}$ with vertices in $A$. Asymptotically, it is only the terms corresponding to the disjoint simplices of a coherent triangulation that survive, as shown by the following theorem.

Theorem 2.1 Let $v$ be a vertex of the secondary polytope $\Sigma_{A}$, and take a vector $\left(s_{\alpha}\right) \in \mathbf{R}^{A}$ in the interior of the normal cone $N_{v}$. Set the coefficients $a_{\alpha}$ of $f$ equal to $\lambda^{s_{\alpha}}$. Then the term $I_{J}(\lambda)$ in ( $\left.* *\right)$ corresponding to the multi-index $J$ satisfies

$$
\lim _{\lambda \rightarrow \infty} I_{J}(\lambda)= \begin{cases}\operatorname{Vol} \sigma_{J}, & \text { if } \sigma_{J} \in \mathbf{T}_{v} \\ 0, & \text { otherwise }\end{cases}
$$

Proof: Recalling the formula for $h_{f}$, we see that

$$
I_{J}(\lambda)=\int_{\mathbf{R}_{+}^{n}} \frac{\operatorname{det}^{2}\left(A_{J}\right) \lambda^{s_{\alpha}{ }_{0}} t^{\alpha^{j_{0}}} \cdots \lambda^{s_{\alpha} j_{n}} t^{\alpha^{j_{n}}}}{\left(\lambda^{s} \alpha^{0} t^{\alpha^{0}}+\lambda^{s_{\alpha^{1}}} t^{\alpha^{1}}+\ldots \lambda^{s_{\alpha} N} t^{\alpha^{N}}\right)^{1+n}} \frac{d t_{1} \wedge \cdots \wedge d t_{n}}{t_{1} \cdots t_{n}}
$$

If we perform the monomial substituion $u_{k}=\lambda^{s_{\alpha} j_{k}} t^{\alpha^{j_{k}}} / \lambda^{s_{\alpha} j_{0}} t^{\alpha^{j_{0}}}$, for $k=1, \ldots, n$, we arrive at

$$
I_{J}(\lambda)=\int_{\mathbf{R}_{+}^{n}} \frac{\left|\operatorname{det}\left(A_{J}\right)\right| d u_{1} \wedge \cdots \wedge d u_{n}}{\left(1+u_{1}+\cdots+u_{n}+\delta(\lambda)\right)^{1+n}}
$$

where $\delta(\lambda)$ is a finite sum of fractional monomials $\lambda^{r_{0}} u_{1}^{r_{1}} \cdots u_{n}^{r_{n}}$, with $r \in \mathbf{Q}^{1+n}$ and $r_{0} \neq 0$. Now, it is not hard to verify that the simplex $\sigma_{J}$ belongs to the triangulation $\mathbf{T}_{v}$ precisely if all the exponents $r_{0}$ are negative. In this case the term $\delta(\lambda)$ tends to zero, and since the integral of $d u_{1} \wedge \cdots \wedge d u_{n} /\left(1+u_{1}+\cdots+u_{n}\right)^{1+n}$ over the positive orthant is equal to $1 / n!$, we conclude that $I_{J}(\lambda) \rightarrow\left|\operatorname{det}\left(A_{J}\right)\right| / n!$ as claimed. Otherwise, the denominator in the integrand goes to infinity, and the integral $I_{J}(\lambda)$ tends to zero.

The proof of the next result is essentially parallel to that of Theorem 9 in [7] and will be omitted.

Theorem 2.2 Let $v$ be a vertex of the secondary polytope $\Sigma_{A}$, and take a vector $\left(s_{\alpha}\right)$ as in Theorem 2.1. Set the coefficients $a_{\alpha}$ of $f$ equal to $\lambda^{s_{\alpha}}$ and denote the new polynomial by $f^{\lambda}$. For large values of the parameter $\lambda$ the polyhedral subdivision $\mathbf{T}_{f^{\lambda}}$ from Theorem 1.3 will then coincide with the coherent triangulation $\mathbf{T}_{v}$.

We end with a closer look at a one-dimensional case.
Example 2.3 Consider a one-variable polynomial of the form $f(t)=$ $1+a_{1} t+\cdots+a_{n-1} t^{n-1}+t^{n}$. For each $m=0,1, \ldots, 2 n-2$ the so-called Ostrogradski method for finding the rational part of a primitive function can be realized with the explicit formula

$$
\int \frac{t^{m} d t}{f(t)^{2}}=-\frac{P_{m}(t)}{f(t)}+\int \frac{Q_{m}(t) d t}{f(t)}
$$

where the $P_{m}$ and $Q_{m}$ are polynomials of degrees $n-1$ and $n-2$ respectively. To be specific, one has $P_{m}(t)=\sum_{k=0}^{n-1} A_{m, k} t^{k}$ and $Q_{m}(t)=$ $P_{m}^{\prime}(t)+\sum_{\ell=0}^{n-2} B_{m, \ell} t^{\ell}$, with the $(2 n-1) \times(2 n-1)$-matrix $\left(B_{m, \ell}, A_{m, k}\right)$ being the inverse of the standard Sylvester matrix (see [4], p.405) whose determinant equals the discriminant $D_{n}$ of $f$. Now, if we collect terms in $h_{f}$ and write $t^{-1} h_{f}(t)=\sum_{m=0}^{2 n-2} C_{m} t^{m}$, then it holds that $\sum_{m} A_{m, k} C_{m}=$ $(n-k) a_{k}$ and $\sum_{m} B_{m, \ell} C_{m}=-(\ell+1)(n-\ell-1) a_{\ell+1}$. (Here $a_{0}=a_{n}=1$.) This implies in particular that if we replace the individual terms

$$
\int_{0}^{\infty} \frac{\left(j_{1}-j_{0}\right)^{2} a_{j_{0}} a_{j_{1}} t^{j_{0}+j_{1}-1} d t}{f(t)^{2}}
$$

in formula $(* *)$ by their principal parts

$$
-\left.\frac{\left(j_{1}-j_{0}\right)^{2} a_{j_{0}} a_{j_{1}} P_{j_{0}+j_{1}-1}(t)}{f(t)}\right|_{0} ^{\infty}=\left(j_{1}-j_{0}\right)^{2} a_{j_{0}} a_{j_{1}} A_{j_{0}+j_{1}-1,0}
$$

then they still sum to $\operatorname{Vol} \Delta_{f}=n$. In other words, the individual terms of $(* *)$, which are not themselves rational functions of the coefficients $a_{j}$, can be replaced by rational expressions so that the volume formula still holds true. Since these expressions all have the discriminant $D_{n}$ as their denominator, this means we have in a canonical way associated polynomials (the numerators) with all subsimplices $\left[j_{0}, j_{1}\right]$ so that their sum is equal to $n D_{n}$. In fact, the linear form on the vector space $\left\langle 1, t, \ldots, t^{2 n-2}\right\rangle$ given by

$$
t^{m} \mapsto P_{m}(0) \quad\left(=A_{m, 0}\right)
$$

coincides with the toric residue associated to the mapping $\left(f, t f^{\prime}\right)$.

## References

[1] Eduardo Cattani, Alicia Dickenstein and Bernd Sturmfels, Residues and resultants, J. Math. Sci. Univ. Tokyo 5 (1998), 119-148.
[2] David Cox, Toric residues, Ark. Mat. 34 (1996), 73-96.
[3] Felix Gantmacher, The theory of matrices, AMS Chelsea Publishing, Providence, 1998, x+374pp.
[4] Israel Gelfand, Mikhail Kapranov and Andrei Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994, x+523pp.
[5] Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère measures and triangulations of the Newton polytope, Preprint, Stockholm University $2000,14 \mathrm{pp}$.
[6] Jeffrey Rauch and Alan Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345-364.
[7] Hans Rullgård, Polynomial amoebas and convexity, Licenciate thesis, Stockholm University, 2001, 47pp.

## Matematiska institutionen

Stockholms universitet
SE-10691 Stockholm
Sweden
passare@matematik.su.se

