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Cubic Schrodinger: The Petit Canonical Ensemble 

Henry P. McKean 

§1. Introduction 

This report describes some aspects of the Gibbsian petit canonical 
ensemble for the cubic Schrodinger equation in the space of functions 
of period 1, say. §2-5 (defocussing case) represent joint work with K. 
Vaninsky1). §6 is a brief report on the much more difficult focussing 
case. The original hope, that the petit ensemble might provide a picture 
of the typical solution, is far from being achieved. 

1.1. Preliminaries2) 

The mechanical state is a pair QP of nice functions of period 1, 
moving according to the defocussing flow: 

8Q = _ 82P (Q2 p2)P = 8H3 
8t 8x2 + + 8P 

8P = 82Q _ (Q2 P 2 ) Q= _ 8H3 
at + 8x2 + 8Q 

This is a Hamiltonian system, relative to the classical bracket in function 
space, with Hamiltonian 

It is integrable in the full technical sense of the word, having an infinite 
series of( commuting) constants of motion H 1 = ~ J; (Q2 + P 2 ), H 2 = 

J0
1 Q'P, H 3 , and so on. The flow is integrated with the help of the Dirac 

equation 

Received November 4, 2002. 
l) McKean-Vaninsky [1997] 
2) Manakov et al. [1984] and/or McKean-Vaninsky [1997] 
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for the 2 x 2 monodromy matrix M = (mi; : 1 < i,j:::; 2] with M(x = 
0) = I. Introduce the "discriminant" A(A) = ~ spM(x = 1) and the 

associated "Dirac curve" rot with points p = [A, J A 2(A)- 1]. The 
latter is a double cover of the complex plane where A lives, ramified over 
the roots 

... A:1 :::; X!:1 < A:1 :::; X!:1 < A() :::; At <A! :::; At < ... , A; ~21rn etc. 

of A(A) = ±1 indicated in the figure. These comprise the periodic/anti­
periodic spectrum of the Dirac equation and may be interpreted as a 

a_ I 

0 0 e 
P-1 P-2 

complete list of constants of motion, commuting among themselves and 
with the prior constants, H1, H2, H3, etc. The cycles an : n E Z seen 
in the upper part of the figure are the ''real ovals" of rot covering the 
"gaps" [A~, A;t], these being all open for QP in general position, as is 
mostly assumed below. Q P is encoded into a divisor ~ = [Pn : n E Z] of 
rot having 1 point on each real oval: the numbers A(Pn) = JLn E [A~, A;t] 
are the roots of m12(JL) = 03) and the radical v A2 - 1 (Pn) is declared 
to be~ (mu- m12) (JLn)4>. The map QP--+ ~is 1: 1 or to the product 

3) m12 (A) looks much like - sin(A/2). 
4) det M(1) = 1 so mu m12 = 1 if m12 = 0 and mu + m12 = 2~ always, 

whence this possibility. 
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of all the ovals. The next actor in the play is the "Abel map" of the 
divisor into the (real) Jacobi variety Jac of 9Jt, determined as follows. 
DFK = the "differentials of the first kind" of 9J1 are of the form w = 
<Pn(>..) d>..j J Ll2(>..) - 1 with certain entire functions ¢, and a basis may 
be chosen so that ai(w1) = 2rr or 0 according as i = j or not. 5) ~is now 
mapped to Jac via the "angles" On= L:kEZ J:kk Wn construed mod 2rr,6) 

i.e. 
~ --+ 8 = [On : n E Z] E (1R/2rr Z)00 = Jac, 

and this map likewise is 1 : 1 and onto. Now you have the composite 
map QP --+ divisor --+ Jac, the point of the whole exercise being that 
the (complicated) flow of QP is converted thereby into (simple) straight­
line motion at constant speed in Jac which may be mapped back to the 
original (mechanical) variables with the help of a Riemann-like "theta" 
function. In this way, the flow is "integrated". 

§2. Petit Ensemble at Levels 1 & 3 

Level 1 is a warm-up for "level 3" to be described below. Intro­
duce the "Ievell actions" In= 4~ an (ch-1 Ll, d>..) 7) and note the trace 

formula H 1 = ~ J ( Q2 + P 2) = L:z In. The petit ensemble8) 

-H;q2 e-H:P2 

e-HldooQdooP= (;rr/O+)oo/2dooQ X (2rr/O+)oo/2 doo p 

=II e-In din X II d0n/2rr : 
z z 

is descriptive of 2 independent copies of white noise; line 2 comes from 
the trace formula plus the formal identification of the volume elements 
d00 Q d00 P & d00 I d00 0 /2rr prompted by the fact that actions & angles 
are canonically conjugate and together form a full coordinate system in 
QP-space. Naturally, line 2 requires proof as does the invariance of the 
ensemble under the flow, for which see McKean-Vaninsky [1997]. 

5) I should say differentials of the third kind as they have simple poles at the 
2 points of !m covering oo, but as they play the role of classical DFK, I keep 
the name. ¢>n(>..) looks much like m12(>..) divided by >..- /-l, i.e. with 1 root 
left out. 

6 ) Ok = [>..;, o], some such choice being necessary for the convergence of the 
sum. 

7) The name will be justified in §4. 
8 ) Here and below, I will be free and easy with possibly infinite norming 

constants. 
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Level 3. The petit ensemble at "level 3": 

is descriptive of 2 independent "circular" Brownian motions9> coupled 
by the third factor; it is invariant under the flow as for level 1. To 
describe it in•actionfangle language requires a revision: DFK at level 3 
is as before (level 1) but with a new basis w~ : n E Z normalized as in 
ai(..X2 wj) = 271" or 0 according as i = j or not. The level 3 actions are 

I~ = ...!.. an(..X2 ch-1 ~ d..X) and you have the trace formula Hs = Ez I~, q.,. 
whence 

in which the third (Jacobian) factor is still to be understood. The level3 
actions are canonically paired to the level3 angles10) 0~ = Erez J:kk w~, 
so 

8I 80' 
det 81' = det 80 

det [wUd..X(l'i)J 
det [wi/d..X(pj)] 

J det rri>J" (J.Li - J.Li) 
X d00 J.L 

ITz J ~2 - 1(1'n) 
divided by 

J IT J.L2 x the same ,;volume element". 
z 

This rather fanciful expression comes from level 2 in case all but N 
gaps are closed and making N j oo with an (unpardonable) disregard 
of normalizing factors. Now the "volume element" seen in line 3 is 

9) CBM is standard Brownian motion, conditioned to end where it began, 
with this common displacement distributed over lR by flat Lebesgue measure. 
The coupling holds down the total mass so that normalization is possible. 
10) These must be construed, not mod27r, but relative to another, pretty 

complicated lattice of periods. 
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nothing but an un-normalized expression of the flat (level 1) volume 
element d00 () /27r on Jac, written out in the language of the divisor; 
also m12(.A) = ! (J-Lo- .A) Tiz(27rn)-1(J-Ln- .A) precisely; and so it is an 
educated guess that, after proper normalization, the Jacobian det 8I j8I' 
ought to be the reciprocal of N = fJacm~2 (0)d00 0j27r. 

This is correct as far as it goes11), but what does N really look like? 
It is a function of actions alone, so the level1 angles are still independent 
of them, with the same flat distribution as before. There are 10 integrals 
of products of 2 entries of M(1), and I know 9 relations among them 
involving the constants of motion D. and D. •, but the value of N is not 
revealed by these. Too bad! Crude estimates of N can be had but do 
not help to describe how the actions couple. I leave the subject in this 
unsatisfactory state. 

§3. Some Tricks 

I record here 3 amusing examples of averaging over Jac with re­
spect to d00 0/27r, but first a general principle. Think of the (still to be 
normalized) expression 

encountered in §3. The top, considered as a function of J-Ln, say, IS 

proportional to mi2 (J-Ln), so you have the "splitting rule at n E Z": 

on the oval an 

x a volume element on the product of all the other ovals. 

This principle is now applied in 3 ways: 

Example 1. m 12 (.A) looks like- sin(.A/2) and D.(.A) like cos(.A/2), 
so you may expect 2D. • - m 12 to be of "degree 1 lower" than m 12 and 
that Lagrange interpolation would apply. This is correct: 

ll) McKean-Vaninsky [1997]. 
12) m 12 (J-Ln) = 0 of course. 
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Now average over Jac, exchange sum and average, and split the volume 
at n E Z to produce 

i.e. 2~· = average m12· 

Example 2. The numerator <Pn of Wn E DFK at level1looks like 
m12 with 1 root factored out, so it, too, should be capable of interpola­
tion: 

</Jn(>..) = L ~(J.Li) mh(>..) . 
iEZ m12(J.Li) ). - J.Li 

But this object has nothing to do with angles, so an average over Jac 
does it no harm, and proceeding as in ex. 1, you find 

i.e. 

= 

xa3 
j-:f.n 

I 
Xa;= Jac. 

divided by 

m12(>..) 

m12(>..) doo .!!_ 
mi2(J.Ln)(>..- J.Ln) 271" 

average 
mi2(J.Ln)(>..- J.Ln) 

normalized to have mass 271" on an . 

This seems to be a new way of writing DFK. 

13) f:l.• j../f:l.2- 1 = dch- 1 tl.. 
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Example 3 identifies In = 4~ an(ch-1 .6.d>.) with a true mechanical 
action, as promised at start of §3.14) The physical actions are An = 
(27r)- 1an(PdQ) : n E Z. To implement their evaluation, take the flow 
etx with Hamiltonian In which carries Pn once about its private cycle 
an in time 21r, leaving the rest of the divisor fixed, and equate An with 

Now An has nothing to do with angles, so you can average over Jac, ex­
change this average with the time-average, and use the invariance of the 
flat volume under the present flow and the flow of translation produced 
by H2 = J:Q' P to reduce the previous display to JJacP(O) XQ(O) d00 0j21f. 
Here, 

m 12 - m 21 is invariant under the "phase flow" Q" = P and P" = -Q 
produced by H 1 = ! J: ( Q2 + P 2 ), and the average of P(O) under this 
flow is 0, permitting a further reduction to 

An = _2_ 1 d). { P(O) [m12(.X)- 2.6. "(>.)] doo 2° . 47r an V .6.2 - 1 JJac 7r 

The trace formula P(O) = 15)! L: (Mi - >.i) and the interpolation of 
2.6. • - m 12 from example 1 are now inserted under the average, sums 
and avarage are exchanged, and the volume element d00 0/27r is split at 

14) The level 3 actions have also a mechanical interpretation, but I do not go 
into it here. 
15) >.~ : n E Z are the roots of A • (>.) = 0. 
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j E Z, with the result that 

- _!_ J d>.. ~ 4>· L 
- 271" J f:l.2 - 1 ~ •• 

an •EZ 

=In, 
as advertised. 

§4. Thermodynamic Limit 

a; 

multiplied by_!_ jch-1 tl.dJ,Li 
471" 

Now let Q & P have period Land take the large volume limit L j oo. 
What happens to the petit ensemble e-Ha d00Q d00 P? The answer is nice 
and simple. Let 1/J be the ground state of -~ tl. + ~ r 4 in JR2 . Then the 
mechanical variables [Q(x), P(x)] : x E IR tend (in law) to the stationary 
diffusion with infinitessimal operator ~ tl. + (grad ln'I/J) • grad. This is 
even easy to prove. 

§5. Focussing Case 

This is much harder. The Hamiltonian is changed to ~J[(Q')2+(P')2] 
minus ~ J ( Q2 + P 2 ) and the associated petit ensemble has total mass 
+oo. This prompted Lebowitz-Rose-Speer [1989] to introduce the micro­
canonical ensemble obtained by conditioning upon the value N of the 
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constant of motion H 1 = ~ J (Q2 + P 2). 16) Their interest was in the 
thermodynamic limit: with fixed "density" D, "particle number" N = 
DL, and L j oo, they found by numerical simulation, that the tempera­
ture dependent ensemble e-Ha/T d00 Q d00 P favors "solitons" /"radiation" 
at low /high temperatures, i.e. some kind of phase change takes place. 
Chorin [private communication] used a more sophisticated simulation of 
the Brownian motion and found the opposite: no phase change. This 
made me curious and, subsequently17), I claimed to prove that the ther­
modynamical limit does not exist, explaining (as I thought) the discrep­
ancy just described. But alas, all the big boys were wrong: in fact, 
my student B. Rider18) proved that, at any values of temperature and 
density, the whole ensemble collapses onto Q = 0 & P = 0. A pity. 
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