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of the Complex Quadric 
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Introduction 

Let (X, g) be a compact Riemannian symmetric space. We say that 
a symmetric 2-form h on X satisfies the zero-energy condition if for all 
closed geodesics 'Y of X the integral 

1 h = 1L h(i'(s),i'(s))ds 

of h over 'Y vanishes, where i'( s) is the tangent vector to the geodesic 'Y 
parametrized by its arc-length and Lis the length of 'Y· A Lie derivative 
of the metric g always satisfies the zero-energy condition. The space 
(X, g) said to be infinitesimally rigid if the only symmetric 2-forms on 
X satisfying the zero-energy condition are the Lie derivatives of the 
metric g. 

Michel introduced the notion of infinitesimal rigidity in the con­
text of the Blaschke conjecture, and proved that the real projective 
spaces JRIP'n, with n ;:::: 2, and the flat tori of dimension ;:::: 2 are infinitesi­
mally rigid (see [17], [18] and [2]). Michel and Tsukamoto demonstrated 
the infinitesimal rigidity of the complex projective space <CIP'n of dimen­
sion n;:::: 2 (see [17], [21], [6] and [7]); in fact, they proved that all the 
projective spaces which are not isometric to a sphere are infinitesimally 
rigid. 

In [7] and [9], we showed that the complex quadric Qn of dimension n 
is infinitesimally rigid when n ;:::: 4. In the monograph [12], we shall give a 
complete proof of the infinitesimal rigidity of the complex quadric Q3 .of 
dimension 3, which relies on the Guillemin rigidity of the Grassmannian 
of 2-planes in JR.n+2 proved in [10] and on results of Tela Nlenvo [20]. 

In this note, we present outlines of some new proofs of the infin­
itesimal rigidity of the complex quadric Qn of dimension n ;:::: 4; the 
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complete proofs shall appear in [12]. In particular, we show that the 
infinitesimal rigidity of the quadric Q3 implies that all the quadrics Qn, 
with n ~ 4, are infinitesimally rigid. The new proof of the infinitesimal 
rigidity of the complex quadric Qn of dimension n ~ 5 presented here is 
quite different from the one found in [7] and follows some of the lines of 
the proof for the infinitesimal rigidity of the complex quadric Q4 given 
in [9]. 

§1. Symmetric spaces 

Let (X, g) be a Riemannian manifold. We denote by T and T* 
k 0 

its tangent and cotangent bundles. By ® T*, S 1T*, f•/ T*, we shall 
mean the k-th tensor product, the l-th symmetric product and the j-th 
exterior product of the vector bundle T*. If a, f3 E T*, we identify the 
symmetric product a · f3 with the element a 0 f3 + f3 0 a of ® 2 T*. If 
E is a vector bundle over X, we denote by Ec its complexification, by 
£the sheaf of sections of E over X and by C 00 (E) the space of global 
sections of E over X. If ~ is a vector field on X and f3 is a section of 
®k T* over X, we denote by Lt;,/3 the Lie derivative of f3 along~- Let 
gU: T* -t T be the isomorphism determined by the metric g. 

Let B = B x be the sub-bundle of A 2 T* 0 A 2 T* consisting of those 
tensors u E A 2 T* 0 A 2 T* satisfying the first Bianchi identity 

for all 6, 6, 6, ~4 E T. Let H denote the sub-bundle ofT* 0 B 
consisting of those tensors v E T* 0 B which satisfy the relation 

for all6, 6, 6, ~4, ~5 E T. 
Let 

2 2 2 
Tr: f\ T* 0 f\ T* -t Q9 T* 

be the trace mappings defined by 

n 

Trh = l:h(tj,tj), 
j=l 

n 

(Tru)(~,77) = l:u(ti,~,ti,71), 
j=l 

for h E S2T;' u E A 2 T* 0 A 2 r; and ~' 77 E Tx' where :t E X and 
{ t1. ... , tn} is an orthonormal basis of Tx. It is easily seen that 

Tr B c S 2T*. 
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We denote by S5T* the sub-bundle of S2T* equal to the kernel of the 
trace mapping Tr: S2T* ---+ JR. 

We now introduce various differential operators associated to the 
Riemannian manifold (X, g). First, let V' be the Levi-Civita connection 
of (X, g). The Killing operator 

Do : T ---+ S 2T* 

of (X, g) sends~ E T into Leg. The Killing vector fields of (X, g) are the 
solutions ~ E c= (T) of the equation Do~ = 0. Consider the first-order 
differential operator 

and the Laplacian 

defined by 

n 

j=l 

n 

(Llh)(~,ry) =- ~)V'2 h)(tj,tj,~,ry), 
j=l 

for hE C 00 (S2T*), ~' 17 E Tx, where X E X and {tl, ... ,tn} is 
an orthonormal basis of Tx. The formal adjoint of Do is equal to 
2g# · div: S2T* ---+ T. Since Do is elliptic, if X is compact, we therefore 
have the orthogonal decomposition 

(1.1) c=(s2T*) = DoC00 (T) E9 {hE c=(s2T*) 1 div h = o} 

(see [1]). 
Let R(h) be the Riemann curvature tensor, a.S defined in [5, §4], 

and Ric(h) be the Ricci tensor of a metric h on X, which is are sections 
of B and S2T*, respectively. We set R = R(g) and Ric = Ric(g); we 
have Ric = - Tr R. We also consider the curvature tensor R which is 
the section of 1\2 T* 0 T* 0 T related to R by 

for 6, 6, 6, ~4 E T. Let 

R~: S 2T*---+ B 

be the linear differential operator of order 2 which is the linearization 
along g of the non-linear operator h f-+ R(h), where his a Riemannian 
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metric on X. The invariance of the operator h f--t R( h) leads us to the 
formula 

(1.2) 

for all~ E T. 
We now suppose that (X, g) is an Einstein manifold and we write 

Ric = >..g, with >.. E JR. We consider the morphism of vector bundles 
L: S 2T* ___, S2T* determined by 

for a:, f3 E T* and~' TJ E T, and the Lichnerowicz Laplacian 

.6.: S2T* ___, S2T* 

of [16] defined by 
b..h = b..h + 2>..h + Lh, 

for hE S2T*. If X is compact, in [1] Berger-Ebin define the space E(X) 
of infinitesimal Einstein deformations of the metric g by 

E(X) ={hE c=(s2T*) 1 divh = o, Trh = o, b..h = 2>..h} 

(see also Koiso [14]); by definition, the space E(X) is contained in an 
eigenspace of the Lichnerowicz Laplacian .6., which is a determined ellip­
tic operator, and is therefore finite-dimensional. 

For the remainder of this section, we shall suppose that (X, g) is a 
connected locally symmetric space. We consider the sub-bundle B = Bx 
of B, which is the infinitesimal orbit of the curvature and whose fiber at 
x EX is 

Bx = {(£eR)(x) I~ E Yx with (£eg)(x) = 0}. 

We denote by a: B ___, B / B the canonical projection and we consider 
the second-order differential operator 

introduced in [5] and determined by 

for X E X and h E S2~*' where ~ is an element of Yx satisfying h( X) = 
(£eg)(x). Using (1.2), it is easily seen that this operator is well-defined 
and that 

D1 ·Do= 0. 
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Thus we may consider the complex 

(1.3) 

In [5] and [12], we prove the following result: 

Theorem 1.1. Suppose that (X, g) is a symmetric space of com­
pact type. If the equality 

(1.4) Hn(T*®B)={O} 

holds, the sequence (1.3) is exact. 

If (X, g) has constant curvature, according to [5] we have 

(1.5) .B = {o}; 

in this case, the operator D 1 is equal to the one introduced by Calabi [3]. 
Let Y be a connected totally geodesic submanifold of X; we denote 

by i the natural imbedding of Y into X. Let gy = i* g be the Riemannian 
metric on Y induced by g. Then (Y, gy) is a connected locally symmetric 
space. For x E Y, we consider the mapping i* : Bx -t BY,x; in [7] 
and [12], we show that 

If Y has constant curvature, by (1.5) we know that By = {0}, and so 
we infer that 

(1.6) i* .B = {o}. 

The following lemma is proved in [12] (see also Lemma 1.2 of [7]). 

Lemma 1.1. Assume that (X, g) is a connected locally symmetric 
space. Let Y, Z be totally geodesic submanifolds of X; suppose that Z 
is a submanifold of Y of constant curvature. Let h be a section of S 2T* 
over X. Let x E Z and u be an element of Bx such that (D1h)(x) =au. 
If the restriction of h to the submanifold Y is a Lie derivative of the 
metric on Y induced by g, then the restriction of u to the submanifold 
Z vanishes. 

§2. Criteria for infinitesimal rigidity 

Let (X, g) be a compact locally symmetric space. As we remarked 
in the introduction, if.; is a vector field on X, the symmetric 2-form 
Cr;g on X satisfies the zero-energy condition. From this fact and the 
decomposition (1.1), we obtain: 
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Proposition 2.1. Let X be a compact locally symmetric space. 
Assume that any symmetric 2-form h, which satisfies the zero-energy 
condition and the relation div h = 0, vanishes. Then the space X is 
infinitesimally rigid. 

We now assume that (X, g) is a symmetric space of compact type. 
Then there is a Riemannian symmetric pair ( G, K) of compact type, 
where G is a compact, connected semi-simple Lie group and K is a 
closed subgroup of G such that the space X is isometric to the homo­
geneous space G I K endowed with a G-invariant metric. We identify X 
with GIK. 

Let F be a family of closed connected totally geodesic surfaces of 
X which is invariant under the group G. Then the set N:F consisting of 
those elements of B, which vanish when restricted to the sub manifolds 
belonging to F, is a sub-bundle of B. According to formula (1.6), we 
see that 

B c N:F; 

we shall identify N :FIB with a sub-bundle of BIB. If (3: BIB -+ BIN :F 
is the canonical projection, we consider the differential operator 

Let F' be a family of closed connected totally geodesic submanifolds 
of X. We denote by C(F') the subspace of C00 (S2T*) consisting of all 
symmetric 2-forms h satisfying the following condition: for all submani­
folds Z E F', the restriction of h to Z is a Lie derivative of the metric of 
Z induced by g. If every submanifold of X belonging to F' is infinitesi­
mally rigid, then a symmetric 2-form h on X satisfying the zero-energy 
condition belongs to C(F'); indeed, the restriction of h to a submanifold 
Z E F' also satisfies the zero-energy condition. 

From Lemma 1.1, we obtain: 

Proposition 2.2. Let (X, g) be a symmetric space of compact type. 
Let F be a family of closed connected totally geodesic surfaces of X which 
is invariant under the group G, and let F' be a family of closed con­
nected totally geodesic submanifolds of X. Assume that each surface of 
X belonging to F is contained in a submanifold of X belonging to F'. 
A symmetric 2-form h on X belonging to C(F') satisfies the relation 
D1,:Fh = 0. 

Theorem 2.1. Let (X, g) be a symmetric space of compact type. 
Let F be a family of closed connected totally geodesic surfaces of X which 
is invariant under the group G, and let F' be a family of closed connected 
totally geodesic submanifolds of X. Assume that every submanifold of 
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X belonging to :F' is infinitesimally rigid; assume that each surface of 
X belonging to :F is contained in a submanifold of X belonging to :F'. 
Suppose that the relation (1.4) and the equality 

(2.1) 

hold. Then the symmetric space X is infinitesimally rigid. 

Proof. Let h be a symmetric 2-form h on X satisfying the zero­
energy condition. According to our hypothesis on the family :F', we 
know that h belongs to C(:F'). From Proposition 2.1, we obtain the 
relation D 1,:Fh = 0. According to the equality (2.1), we therefore see 
that D 1h = 0. By the relation (1.4) and Theorem 1.1, the sequence (1.3) 
is exact, and so his a Lie derivative of the metric g. 

We now assume that (X, g) is an irreducible symmetric space of 
compact type; then X is an Einstein manifold and we have Ric = >.g, 
where ).. is a positive real number. The following result appears in [12]. 

Theorem 2.2. Let (X, g) be an irreducible symmetric space of 
compact type. Let :F be a family of closed connected totally geodesic 
surfaces of X which is invariant under the group G, and let :F' be a 
family of closed connected totally geodesic submanifolds of X. Let E 
be a G-invariant sub-bundle of S5T*. Assume that each surface of X 
belonging to :F is contained in a submanifold of X belonging to :F', and 
suppose that the relation 

(2.2) 

holds. Let h be a symmetric 2-form on X satisfying the relations 

divh = 0, 

Then we may write 
h = hl + h2, 

where h1 is an element of E(X) and h2 is a section of E; moreover, if 
h also satisfies the zero-energy condition, we may require that h1 and h2 
satisfy the zero-energy condition. 

Proof. Since Tr E = {0} and since the relation (2.2) holds, by 
Lemma 2.1 of [11], with N = N:F, we see that Tr h = 0 and that 

!:ih- 2>.h E C00 (E). 

A variant of Proposition 4.2 of [11], with p, = 2>.., gives us the desired 
result. 
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§3. The complex quadric 

We suppose that X is the complex quadric Qn, with n ~ 2, which 
is the complex hypersurface of complex projective space cpn+l defined 
by the homogeneous equation 

(5 + (f + 0 0 0 + (~+1 = 0, 

where ( = ((0 , (1, ... , (n+I) is the standard complex coordinate system 
of cn+Z. Let g be the Kahler metric on X induced by the Fubini-Study 
metric g on cpn+l of constant holomorphic curvature 4. We denote by 
J the complex structure of X or of CJP>n+l. 

The group SU(n + 2) acts on cn+2 and CJP>n+l by holomorphic 
isometries. Its subgroup G = SO(n + 2) leaves the submanifold X of 
cpn+l invariant; in fact, the group G acts transitively and effectively on 
the Riemannian manifold (X, g) by holomorphic isometries. It is easily 
verified that X is isometric to the homogeneous space 

SO(n + 2)/80(2) x SO(n) 

of the group SO( n+ 2), which is a Hermitian symmetric space of compact 
type; when n ~ 3, this space is irreducible. We also know that (X, g) is 
an Einstein manifold; its Ricci tensor is given by 

(3.1) Ric= 2ng. 

We now recall some results of Smyth [19]. The second fundamental 
form C of the complex hypersurface X of CJP>n+l is a symmetric 2-form 
with values in the normal bundle of X in CJP>n+l. We denote by S the 
bundle of unit vectors of this normal bundle. 

Let x be a point of X and v be an element of Bx. We consider the 
element hv of S 2T; defined by 

hv(~, 17) = g( C(~, 17 ), V ), 

for all~' 17 E Tx. Since {v, Jv} is an orthonormal basis for the fiber of 
the normal bundle of X in CJP>n+l at the point x, we see that 

C(~, 17) = hv(~, 17)v + hJv(~, 17)Jv, 

for all ~, 17 E Tx. If /-L is another element of Bx, we have 

(3.2) /-L =cosO· v +sinO· Jv, 

with() E JR. We consider the symmetric endomorphism Kv of Tx deter­
mined by 
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for all ~, TJ E Tx. Since our manifolds are Kahler, we have 

C(~, JTJ) = JC(~, TJ), 

for all~' TJ E Tx; from this relation, we deduce the equalities 

(3.3) 

It follows that hv and hJv are linearly independent. By (3.3), we see 
that hv belongs to (S2T*)-. Iff-Lis the element (3.2) of Sx, it is easily 
verified that 

(3.4) K'" = cos8 · Kv + sin8 · JKv· 

From the Gauss equation, the expression for the Riemann curvature 
tensor of ClP'n+l (endowed with the metric g) and the relation (3.3), we 
obtain the equality 

R(~, TJ)( = g(TJ, ()~- g(~, ()TJ + g(JTJ, ()J~- g(J~, ()JTJ 

(3.5) - 2g(J~, TJ)J( + g(KvTJ, ()Kv~- g(Kv~, ()KvTJ 

+ g(JKvTJ, ()JKv~- g(JKv~' ()JKvTJ, 

for all~' TJ, ( E Tx. From (3.3), we infer that the trace of the endomor­
phism Kv of Tx vanishes. According to this last remark and formulas 
(3.3) and (3.5), we see that 

Ric(~, TJ) = -2g(Kc~, TJ) + 2(n + 1)g(~, TJ), 

for all~' TJ E Tx. From (3.1), it follows that Kv is an involution. We call 
Kv the real structure of the quadric associated to the unit normal v. 

We denote by T;) and Tv- the eigenspaces of Kv corresponding to 
the eigenvalues +1 and -1, respectively. Then by (3.3), we infer that J 
induces isomorphisms of T;) onto T; and of T; onto T;), and that 

(3.6) 

is an orthogonal decomposition. If ¢ is an element of the group G, we 
have 

for all~' TJ E T. Thus, if J-L is the tangent vector ¢*v belonging to Sq,(x), 
we see that 

for all ~, TJ E Tx, and hence that 

(3.7) 
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on Tx. Therefore ¢> induces isomorphisms 

We now decompose the homogeneous bundle S2T* of symmetric 
2-forms on X into G-invariant sub-bundles following [8]. The complex 
structure of X induces a decomposition 

of the bundle S2T*, where (S2T*)+ is the sub-bundle of Hermitian forms 
and (S2T*)- is the sub-bundle of skew-Hermitian forms. We consider 
the sub-bundle L of (S2T*)- introduced in [8], whose fiber at x E X is 
equal to 

Lx = {h!L I fJ E Sx}; 

according to (3.4), this fiber Lx is generated by the elements hv and 
hJv and so the sub-bundle L of (S2T*)- is of rank 2. We denote by 
(S2T*)-.l the orthogonal complement of Lin (S2T*)-. 

For hE (S2T*)-;t, we define an element Kv(h) of S2T; by 

Kv(h)(~, 17) = h(Kv~' Kv17), 

for all~' 17 E Tx. Using (3.3) and (3.5), we see that Kv(h) belongs to 
(S2T*)+ and does not depend on the choice of the unit normal v. We 
thus obtain a canonical involution of (S 2T*)+ over all of X, which gives 
us the orthogonal decomposition 

into the direct sum of the eigenbundles (S2T*)++ and (S2T*)+- corre­
sponding to the eigenvalues + 1 and -1, respectively, of this involution. 
We easily see that 

(S2T*)-;t+ ={hE (S2T*)t I h(~, J17) = 0, for all~' 17 E T,;}, 

(S2T*);;- = { h E (S2T*)t I h(~, 17) = 0, for all~' 17 E T,j-}. 

The metric g is a section of (S2T*)++ and generates a line bun­
dle {g }, whose orthogonal complement in (S2T*)++ is the sub-bundle 
( S2T* )ci+ consisting of the traceless symmetric tensors of ( S2T*) ++. 
We thus obtain the G-invariant orthogonal decomposition 

using the relation (3. 7), we easily see that this decomposition is 
G-invariant. 
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Let x 0 be a fixed point of X and let K be the subgroup of G equal 
to the isotropy group of the point xo. Let g denote the complexification 
of the Lie algebra so(n + 2) of G. The fibers at x0 of the sub-bundles of 
S2T* appearing in the decomposition (3.8) and their complexifications 
are K-modules. 

We write 

E2 = Lrc, 

In [12], we prove the following result: 

Lemma 3.1. Let X be the complex quadric Qn, with n 2: 3. 

(i) We have 

for j = 1, 2, 3. 

(ii) If n-# 4, we have 

dimHomK(fJ, (S2 T*)t,"~0 ) = 1. 

(iii) If n = 4, we have 

dimHomK(fJ, (S2 T*)t,"~0 ) = 2. 

From Lemma 3.1 and the decomposition (3.8), we deduce that 

(3.9) dim HomK (g, S5Tc,xa) = 1 

when n -# 4, and that 

(3.10) 

when n = 4. 
In [12], it is shown that the following proposition is a consequence 

of Lemma 3.1 and the equalities (3.9) and (3.10). 

Proposition 3.1. Let X be the complex quadric Qn, with n 2: 3. 
Ifn-# 4, we have 

E(X) = {0}. 

If n = 4, we have 
E(X) c C00 ((S2T*)+-). 

When n -# 4, the vanishing of the space E(X) was first proved by 
Koiso (see [14] and [15]). 
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§4. Totally geodesic submanifolds of the quadric 

In this section, we suppose that X is the complex quadric Qn, with 
n 2: 3. We first introduce various families of closed connected totally 
geodesic sub manifolds of X. Let x be a point of X and v be an element 
of Sx. 

If { ~, ry} is an orthonormal set of vectors of T;f, according to formula 
(2.5) we see that the set Expx F is a closed connected totally geodesic 
surface of X, whenever F is the subspace of Tx generated by one of 
following families of vectors: 

(AI) {~, Jry}; 
(Az) {~ + Jry, J~- ry}; 
(A3) {~, J0; 
(A4) {~,ry}. 

Let { ~, ry} be an orthonormal set of vectors of T;f. According to [4], 
if F is generated by the family (Az) (resp. the family (A3)) of vec­
tors, the surface Expx F is isometric to the complex projective line CJID1 

with its metric of constant holomorphic curvature 4 (resp. curvature 2). 
Moreover, ifF is generated by the family (AI), the surface Expx F is 
isometric to a flat torus. In [12], we verify that, if F is generated by 
the family (A4), the surface Expx F is isometric to a sphere of constant 
curvature 2. 

For 1 ::::; j ::::; 4, we denote by f:1,v the set of all closed totally geodesic 
surfaces of X which can be written in the form Expx F, where F is a 
subspace of Tx generated by a family of vectors of type (A1). 

If c: is a number equal to ±1 and if~' ry, ( are unit vectors of T;f 
satisfying 

3 
g(~, ry) = g(~, () = 3g(ry, () = E5' 

and if F is the subspace of Tx generated by the vectors 

{~ + J(, 'T/ + cJ(~- ry)- J(}, 

according to (2.5) we also see that the set Expx F is a closed connected 
totally geodesic surface of X. Moreover, according to [4] this surface is 
isometric to a sphere of constant curvature 2/5. We denote by f:5,v the 
set of all such closed totally geodesic surfaces of X. 

If { 6, 6, 6, ~4} is an orthonormal set of vectors of T;f and if F is 
the subspace of Tx generated by the vectors 

according to (2.5) we see that the set Expx F is a closed connected 
totally geodesic surface of X. Moreover, according to [4] this surface 
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is isometric to the real projective plane JR:lP'2 of constant curvature 1. 
Clearly such submanifolds of X only occur when n ?: 4. We denote by 
f:6 ,v the set of all such closed totally geodesic surfaces of X. 

If { 6, 6, 6, ~4} is an orthonormal set of vectors of r;; and if F is 
the subspace of Tx generated by the vectors 

according to (2.5) we see that the set Expx F is a closed connected totally 
geodesic submanifold of X. Moreover, this sub manifold is isometric to 
the complex projective plane ClP'2 of constant holomorphic curvature 4. 
Clearly such submanifolds of X only occur when n ?: 4. We denote by 
f:7 ,v the set of all such closed totally geodesic submanifolds of X. 

When n ?: 4, clearly a surface belonging to the family f:2 ,v or to the 
family f:6 ,v is contained in a closed totally geodesic submanifold of X 
belonging to the family f:7,v. In fact, the surfaces of the family f:2,v 
(resp. the family f:6,v) correspond to complex lines (resp. to linearly 
imbedded real projective planes) of the submanifolds of X belonging to 
the family f:7 ,v viewed as complex projective planes. 

Let W be a subspace of r;; of dimension k ?: 2; by (3.6), we may 
consider the subspace F = W EB JW of Tx of dimension 2k, which is 
stable under J. The set Expx F is a closed connected totally geodesic 
complex submanifold of X; in [12], we show that it isometric to the 
quadric Qk of dimension k. Let F' be the G-invariant family of all 
closed connected totally geodesic submanifolds of X which are isometric 
to the quadric Q3 of dimension 3. 

Let Z be a surface belonging to the family f:j,v, with 1 _.::; j _.::; 5. 
We may write Z = Expx F, where F is an appropriate subspace of Tx. 
Clearly, this space F is contained in a subspace of Tx which can be writ­
ten in the form WEB JW, where W is a subspace of r;; of dimension 3. 
Therefore Z is contained in a submanifold of X belonging to F'. 

For 1 _.::; j _.::; 7, we consider the G-invariant families 

j:j = U Fj,v 
vESx 
xEX 

of closed connected totally geodesic submanifolds of X. When n ?: 4, we 
know that a surface belonging to the family F2 is contained in a closed 
totally geodesic submanifold of X belonging to the family F7 . We write 

Fl = j:l u j:3 u f:4, F2 = j:l u j:2 u f:6, 

F3 = j:l u j:2 u j:4 u f:5. 
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We have seen that a surface belonging to the family f:J, with 1 ~ j ~ 5, 
is contained in a closed totally geodesic submanifold of X belonging to 
the family F'. 

In [4], Dieng classifies all closed connected totally geodesic surfaces 
of X and proves the following: 

Proposition 4.1. If n ;?: 3, then the family of all closed connected 
totally geodesic surfaces of X is equal to F1 U F2 U F3. 

In fact, the family f:1 is equal to the set of all maximal flat totally 
geodesic tori of X. 

We now describe some of the relationships between the families of 
closed totally geodesic surfaces of X introduced above, the G-invariant 
sub-bundles of S2T* and the infinitesimal orbit of the curvature B. If 
F is a G-invariant family of closed connected totally geodesic surfaces 
of X, we denote by N :F the sub-bundle of B consisting of those elements 
of B which vanish when restricted to the submanifolds of F. 

For j = 1, 2, 3, we set 

N1 = N;::j. 

According to formula (1.6), we see that 

BCNj, 

for j = 1, 2, 3. 
The following lemma, proved in [12], will not be required here. 

Lemma 4.1. For n ;?: 3, we have 

In [12], we prove Proposition 4.2; on the other hand, Proposition 4.3 
is given by Proposition 5.1 of [8]. 

Proposition 4.2. For n ;?: 5, we have 

Proposition 4.3. For n = 4, we have 

In [6], Dieng shows that an element of N 3 vanishes when restricted 
to a surface of X belonging to the family F3 . and proves the following 
result: 
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Proposition 4.4. For n ;::: 3, we have 

Na=B. 

When n ;::: 3, Dieng [4] shows that 

H n (T* ® N3 ) = {0}, 

and then deduces the relation (1.4) for the complex quadric X from 
Proposition 4.4; thus, we have the following result: 

Proposition 4.5. For n;::: 3, we have 

H n (T* 0 B) = {O}. 

From Proposition 4.5 and Theorem 1.1, we deduce the exactness of 
the sequence (1.3) for the complex quadric X= Qn, with n;::: 3. 

§5. Infinitesimal rigidity of the quadric 

The sub-bundle Lc of S2Tc is a homogeneous bundle over X; thus 
C00 (Lc) is a G-module. Let 'Y be an element of the set G of equivalence 
classes of irreducible G-modules over C, and let VI' be an irreducible 
G-module which is a representative of 'Y· In [12], we show that the 
isotypic component c:;;o(Lrc) of the G-module c=(Lc) corresponding 
to 'Y is a G-submodule of c=(Lc) isomorphic to k copies of V", where k 
is equal either to 0 or 2. When k = 2, we also describe an explicit basis 
for the subspace WI' of dimension 2 generated by the highest weight 
vectors of the G-module c:;;o(Lrc); we then consider the action of the 
differential operator div: S2Tc -+ Tc on the elements of W" and prove 
that the induced mapping div: W" -+ c=(Tc) is injective. Since the 
restriction div: Lc -+ Tc is a homogeneous differential operator, from 
these facts we deduce the following result: 

Proposition 5.1. Let X be the complex quadric Qn, with n;::: 3. 
A section h of L over X, which satisfies the relation div h = 0, vanishes 
identically. 

The essential aspects of the proof of following proposition were first 
given by Dieng in [4]. 

Proposition 5.2. The infinitesimal rigidity of the quadric Q3 im­
plies that all the quadrics Qn, with n;::: 3, are infinitesimally rigid. 

Proof. We consider the G-invariant family F 3 of closed connected 
totally geodesic surfaces of X and the family :F' of closed connected 
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totally geodesic submanifolds of X isometric to the quadric Q3 of §4. 
We have seen that each surface belonging to the family F3 is contained in 
a totally geodesic submanifold of X belonging to the family :F'. Assume 
that we know that the quadric Q3 is infinitesimally rigid; then every 
submanifold of X belonging to :F' is infinitesimally rigid; moreover, by 
Propositions 4.4 and 4.5, the families :F = :F3 and :F' satisfy the hypothe­
ses of Theorem 2.1. From this last theorem, we deduce the infinitesimal 
rigidity of X. 

We consider the families f:1 , f:2, f:6 and f:7 of closed connected 
totally geodesic submanifolds of X. We set 

:F" = j:l u j:6 u j:7. 

We consider the G-invariant family 

of totally geodesic surfaces of X and the sub-bundle N2 = N;:2 of B, 
introduced in §4, and the corresponding differential operator 

We recall that a submanifold of X belonging to f:1 (resp. to f:6 ) is a sur­
face isometric to the flat 2-torus (resp. to the real projective plane JR.JP>2 ), 

while a submanifold of X belonging to f:7 is isometric to the complex 
projective space CCJP>2 . Each surface belonging to f:2 is contained in a 
submanifold of X belonging to the family f:7 ; therefore each surface 
of X belonging to :F is contained in a submanifold of X belonging to the 
family :F". In the introduction, we mentioned that a flat 2-tori, the real 
projective plane JR.JID2 and the complex projective space CCJP>2 are infinites­
imally rigid symmetric spaces. Thus every submanifold of X belonging 
to :F" is infinitesimally rigid. Hence a symmetric 2-form h on X satisfy­
ing the zero-energy condition belongs to .C(:F"); by Proposition 2.2, the 
2-form h verifies the relation 

Proposition 5.3. Let h be a symmetric 2-form on quadric X = 
Qn, with n :2: 4, satisfying the zero-energy condition and the relation 
div h = 0. Then when n :2: 5, the symmetric form h is a section of 
the vector bundle L; when n = 4, it is a section of the vector bundle 
L E9 (S2T*)+-. 
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Proof. We know that h belongs to C(:F"). We suppose that n;::: 5 
(resp. that n = 4). According to Proposition 4.2 (resp. to Proposi­
tion 4.3), we see that the hypotheses of Theorem 2.2 hold, withE= L 
(resp. with E = L Ef) (S2T*)+-). By Proposition 3.1, we know that 
E(X) = {0} (resp. that E(X) c c=((S2T*)+~)). Then Theorem 2.2 
tells us that his a section of L (resp. of L EfJ (S2T*)+-). 

The following result is proved in [9] (see also [12]): 

Proposition 5.4. Let X be the quadric Q4 . A section h of the 
vector bundle L Ef) (S2T*)+- satisfying the relations 

divh = 0, 

vanishes identically. 

We now prove the infinitesimal rigidity of the quadric X = Qn, 
with n ;::: 4, using Propositions 5.1, 5.3 and 5.4. In the case n = 4, 
this proof appears in [9]. Let h be a symmetric 2-form on the quadric 
X = Qn, with n ;::: 4, satisfying the zero-energy condition and the 
relation div h = 0. When n ;::: 5, Proposition 5.3 tells us that h is a 
section of L; by Proposition 5.1, we see that h vanishes identically. When 
n = 4, Proposition 5.3 tells us that his a section of L Ef) (S2T*)+-, and, 
as we saw above, Proposition 2.2 gives us the relation D 1,y::h = 0; by 
Proposition 5.4, we see that h vanishes. Then Proposition 2.1 gives us 
the infinitesimal rigidity of X. 
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