Either $71: 35$ or $L_{2}(71)$ is a maximal subgroup of the Monster

Hiroyoshi Yamaki

§1. Introduction

Let \mathbb{M} be the Monster simple group. Then

$$
|\mathbb{M}|=2^{46} \cdot 3^{20} .5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19.23 .29 .31 .41 .47 .59 .71
$$

By [2] $71: 35$ is the normalizer of a Sylow 71-subgroup and $59: 29$ is the normalizer of a Sylow 59 -subgroup of \mathbb{M}.

The purpose of this note is to prove:
Theorem 1. Either 71:35 or $L_{2}(71)$ is a maximal subgroup of M.

Theorem 2. Either 59:29 or $L_{2}(59)$ is a maximal subgroup of M.

Remark. $71: 35$ is a maximal subgroup of $L_{2}(71)$ and $59: 29$ is a maximal subgroup of $L_{2}(59)$. However we do not know whether $L_{2}(71)$ or $L_{2}(59)$ is involved in \mathbb{M} or not (See [6]). Since $\left|L_{2}(71)\right|=72.71 .35$ and $\left|L_{2}(59)\right|=60.59 .29$, these are surprisingly small groups in comparison with \mathbb{M}.

Theorems 1 and 2 are closely related to the prime graphs of finite groups. Let G be a finite group and $\Gamma(G)$ the prime graph of $G . \Gamma(G)$ is the graph such that the vertex set is the set of prime divisors of $|G|$, and two distinct vertices p and r are joined by an edge if and only if there exists an element of order $p r$ in G. Let $n(\Gamma(G))$ be the number of connected components of $\Gamma(G)$. It has been proved that $n(\Gamma(G)) \leq 6$ in [7], [4], [5].

[^0]
§2. The proof of Theorems

We will give a proof of Theorem 1. Theorem 2 can be proved by the same way just replacing 71 by 59 .

Lemma 1. The 71-signalizer of \mathbb{M} is trivial.
Proof. The list of maximal p-local subgroups of \mathbb{M} in [2] is complete if one adds $7^{2}: S L(2,7)$ which is missing (See [6]). The result follows immediately.
Q.E.D.

Lemma 2. $\quad L_{2}(71)$ is the only possible finite simple group involved in \mathbb{M} whose order is divisible by 71.

Proof. Lemma 2 can be proved using the classification of the prime graph components of finite simple groups in [7], [5], [4] since $\{71\}$ is a connected component of the prime graph of a simple group involved in \mathbb{M} whose order is divisible by 71 .
Q.E.D.

Next important lemma was essentially proved by Gruenberg and Kegel (See [7]) before the classification of finite simple groups. Applying the classification of finite simple groups we have:

Lemma 3. Let G be a finite group with $n(\Gamma(G)) \geq 2$. Then one of the following holds.

1. G is a Frobenius group or a 2-Frobenius group.
2. G has a chain of normal subgroups $G \triangleright L \triangleright N \triangleright 1$ such that N and G / L are nilpotent π-groups and L / N is a non abelian simple group where π is the connected component of $\Gamma(G)$ containing 2.

Proof. See [1].
Q.E.D.

As is well known $\Gamma(\mathbb{M})$ has four connected components (See [3], $[7])$ and $\{71\}$ is a connected component of $\Gamma(\mathbb{M})$. Let G be a maximal subgroup of \mathbb{M} whose order is divisible by 71 . It follows that $n(\Gamma(G)) \geq 2$ and $\{71\}$ is a connected component of $\Gamma(G)$. We can apply Lemma 3.

Suppose that G is a Frobenius group. Then the Frobenius kernel is of order 71 and G is contained in $71: 35$.

Suppose that G is a 2 -Frobenius group. Then G has a chain of normal subgroups: $G \triangleright H \triangleright K \triangleright 1$ such that H is a Frobenius group with kernel K and G / K is also a Frobenius group with kernel H / K. It follows that $|K|=71$. Since $71: 35$ is the normalizer of a Sylow 71-subgroup in $\mathbb{M}, G / K$ cannot be a Frobenius group, a contradiction.

Suppose that G has a chain of normal subgroups $G \triangleright L \triangleright N \triangleright 1$ such that N and G / L are nilpotent π-groups and L / N is a non-abelian simple group where π is the connected component of $\Gamma(G)$ containing 2 . Since
π does not contain $71,(L: N)$ is divisible by 71 . Lemma 1 yields $N=1$. It follows from Lemma 2 that L is $L_{2}(71)$ and $G=L$ or $G=P G L(2,71)$. Since \mathbb{M} does not contain $71: 70$, we have $G=L=L_{2}(71)$. The proof of Theorem 1 is complete.

Remark. The argument breaks down for the prime divisors of $|\mathbb{M}|$ less than 59 (See [2], [6]).

We have actually proved:
Theorem 3. Let G be a maximal subgroup of \mathbb{M} whose order is divisible by 71. Then G is isomorphic to $71: 35$ or $L_{2}(71)$.

Theorem 4. Let G be a maximal subgroup of \mathbb{M} whose order is divisible by 59. Then G is isomorphic to $59: 29$ or $L_{2}(59)$.

References

[1] N. Chigira, N. Iiyori and H. Yamaki, Non-abelian Sylow subgroups of finite groups of even order, Invent. Math., 139 (2000), 525-539.
[2] J. Conway, R.T. Curtis, S. Norton, R. Parker and R. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
[3] N. Iiyori and H. Yamaki, A conjecture of Frobenius, Sugaku Expositions, Amer. Math. Soc., 9 (1996), 69-85.
[4] N. Iiyori and H. Yamaki, Prime graph components of the simple groups of Lie type over the fields of even characteristic, J. Algebra, 155 (1993), 335-343, Corrigenda, 181 (1996) 659.
[5] A. S. Kondrat'ev, Prime graph components of finite simple groups, Math. USSR Sbornik, 67 (1990), 235-247.
[6] S. Norton, Anatomy of the Monster : I, The Atlas of finite groups: Ten years on, Ed. by R. Curtis and R. Wilson, London Math. Soc. Lecture Note Series, 249, 198-214, Cambridge Univ. Press, Cambridge 1998.
[7] J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.

Department of Mathematics
Faculty of Science, Kumamoto University Kumamoto 860-8555 Japan
e-mail: yamaki@gpo.kumamoto-u.ac.jp

[^0]: Supported in part by Grant-in-Aid for Scientific Research (No.12640030), Japan Society for the Promotion of Science.

 Received December 17, 1999.
 Revised June 17, 2000.

