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The Essentials of Monstrous Moonshine 

John MCKay 

This is a fast introduction to Monstrous Moonshine. 

All our functions expanded at T = ioo have the form: 

We further assume that a0 = 0 (standard form) for convenience, and 
that ak E Q (to ensure trivial Galois action). For replicable functions 
there is a reasonable conjecture that the ak are algebraic integers - this, 
too, we assume. We find that the coefficients of classical modular func
tions known to Jacobi, Fricke, and Klein, are related to the characters 
of M, the Monster simple sporadic group, in that, to each conjugacy 
class of cyclic subgroups (g), of M, there is such a function, jg with 
coefficient of qk = Trace ( H k (g)) for some representation, H k, (the kth 

Head representation) of M. 
In November 1978 I wrote to John Thompson that 196884 = 1 + 

196883, relating the coefficient of q in the elliptic modular function, j ( T), 
to the degree of the smallest faithful complex representation of M. Little 
was then known to me of the degrees of irreducible characters of M but I 
did have access to those of E8 (C) and related an initial sequence of them 
to the q-coefficients of the cube root of j. This was quickly disposed .of 
by Vi,ctor Kac [Kac], see also [Lep]. 

There are 194 conjugacy classes of M, 172 classes of cyclic subgroups, 
and 171 distinct functions jg. This, and more, is to be found in Conway
Norton [CN]. All these functions are genus zero in that this is the genus 

of the compactified Riemann surface G;\Ji where G f is the discrete 
invariance group of f, acting on the upper half-plane, 1-l. 
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By axiomatizing the properties of these functions, we arrive at the 
notion of a replicable function, as one which behaves well under a gen
eralized Heeke operator. These are now under scrutiny. My hope is that 
their properties will yield an intrinsic description of M. 

We study replicable functions, which generalize a degenerate family 
called by me the "modular fictions", namely f ( T) = 1/ q + cq. Cummins 
[CuN] has proved these are the unique replicable finite Laurent series, 
(Vk 2: k0 , ak = 0). A further useful property to impose is that the 
replication power map (defined later): f--> f(n), is periodic, namely 
Vn 2: 1, j(gcd(n,k)) = j(n). When this is so, the modular fictions reduce 
to three cases, 1/q, 1/q + q, 1/q- q, corresponding to exp, cos, and 
sin respectively. An amusing consequence of their replicability is that 
sin(2kt) is not a polynomial in sin(t), whereas cos(2kt) is a polynomial in 
cos(t). This follows from a study of the modular equation [Sil], [Mar] for 
f, with formal coefficients [McK]. The modular fictions play no further 
part in what follows. 

Replicable functions are generalizations of the prototype, j ( T), the 
elliptic modular function which is characterized by its form and the 
property under the action of Heeke operators [Serre]: 

( . ) "' . aT + b ( . ) Vn 2: 1, nTn J(T) = L.....- J(-d-) = Pn,j J(T) , 
ad=n 

O::;b<d 

where Tn denotes the standard Heeke operator, and Pn,j = Pn is the 
Faber [Fab], [Cur] polynomial of degree n. The notation is to remind 
one that the coefficients of the Faber polynomial come from its argument. 

One characterization of these polynomials is that 

We find 

1 
Pn,t(f)---;;: E qC[[q]]. 

q 

Pl,t(f) = J, 
P2,t(f) = ! 2 - 2a1, 

P3,t(f) = f 3 - 3ad- 3a2, 

P4,t(f) = ! 4 - 4ad2 - 4a2f + 2ai- 4a3. 

More generally: 

Pn,t(f) = det(JI- An) 
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This is related to expressing the power sums in terms of elementary 
symmetric functions. Truncating f and replacing q by 1/x, we derive: 
F(x) = xm +a0 xm- 1 + · · · +am_1 , m;?: n, and we may identify the { ek} 
with the elementary symmetric functions of the roots of F(x). Note that 
the power sum Sn E Z[ao, ... , an-1]· 

Expanding Pn,J(f(T)) in powers of q, the Grunsky [GJ coefficients, 
hm,n, are defined by 

Pn,J(f(T)) = q~ +n L hm,nqm. 
m2:1 

We generalize j to a family of replicable functions (of standard form), 
J(k), k ;?: 1, for which 

L J(a)(aT: b)= Pn,j(f(T)). 
ad=n 

O:Sb<d 

This yields a new Heeke operator, Tn with hm,n as the coefficient of qm 

in Tn(f). It is Grunsky's law of symmetry that hm,n = hn,m· 
We now have an inductive definition of the important "replication 

power map" taking f to f(n), since f(n)(nT) = Pn,J(f)- '£' where 

'£' omits the single term with a = n. This imposes the condition that 
the right side is a series in qn. We take the principal branch to define 
f(n) ( T). The replication power map f to f(n), f replicable, restricts on 
Monstrous Moonshine functions to the map induced on them by taking 
gEM to gn. Norton [N], in an important paper, defines the generating 
functions for the Faber polynomials and the hm,n, unaware of the work 
of Faber [Fab] and Grunsky [GJ preceding him. He gives a definition of 
replicability equivalent to the above, [ACMS], namely (paraphrased): 

Definition. A function is replicable if gcd( m, n) = gcd( r, s) and 
lcm( m, n) = lcm( r, s) implies hm,n = hr,s. 
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[This suggests seeking an interpretation of the {hm,n} in terms of 
double coset representatives.] 

Norton also proves his basis theorem: 

Theorem. The twelve coefficients ak, 

k E { 1, 2, 3, 4, 5, 7, 8, 9, 11, 17, 19, 23 }, 

determine a replicable function. 

This remarkable result is useful for computing with replicable func
tions. 

Newton's relations, which derive from the form off, between the ak 
and the Faber polynomials, together with Norton's defining properties 
of the { hm,n}, show that replicable functions correspond to K -points on 
a variety. Norton has proved that K lies in a composite of quadratic 
extensions of CQI. 

The Newton relations are equivalent to the generating function iden
tity: 

q(f(q)- f(p)) = exp(- L Pn,t(f(p))qn), 
n::O:l 

with p = exp(2nia) etc., where we abuse notation using f(p) and f(q) 
instead of f(a), f( T). 

There is an outstanding conjecture of Norton [CuG], [CuN]: 

Conjecture 1.2. A function f = q-1 + Li::O:l aiqi with rational 
integer coefficients is replicable if and only if either f is a modular fiction 
or it is the Hauptmodul for a group G C PGL2(CQ1)>0 satisfying 
1. G has genus zero, 
2. G contains a finite index f 0 (N), 
3. G contains z f---+ z + k if and only if k E Z. 

Our model is Dedekind's (1877) [Ded] construction of j(T) in terms 
of its Schwarz differential equation. 

We define the Schwarz derivative {f, T} to be 2(!" If')' - (!"I f') 2, 
where differentiation is with respect to T. When f is a modular form, 
{J, T} increases the weight by 4 and preserves the invariance properties, 

thus when f is a Hauptmodul, we have {!, T} + R(f) f'2 = 0 with R(f) = 

N (f) I [ D (f) ]2 , the differential resolvent, and f' = df I dT of weight 2. 
When expressed in partial fractions, we see R(f) gives ramification data 
and also the critical points of f (namely those values of f for which 
f'(T) = 0). 
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From Dedekind (with normalization 

1728j(r) = 1/q + 744 + 196884q + · · ·) 
1111111 

we find R(j) = u=h2 + ~p - ~("f-~f, with ramification multiplicity 

2 at j(exp(7ri/2)) = 1, and 3 at j(exp(7ri/3)) = 0. 
To each f, there is a corresponding conformal invariance group, GJ 

acting on 'H. From R(f) we can find the critical points in 'H, and the 
ramification gives the angles between bounding circular arcs intersecting 
at a critical point. A fundamental domain can be constructed and, once 
edges are identified, a presentation found for the group generated by 
hyperbolic reflections in the bounding circular arcs in 'H. The Schwarz 
derivative takes us from f to GJ. 

Over 600 Hauptmoduls, J, as above, are now known, some of which 
appear in [FMN]. For each, R(f) has been computed. The Galois group 
of D is of "dihedral type", in that it has a unique cyclic subgroup of 
index 2. This provides an ordering of the critical points for Ohyama's 
construction of dynamical systems [Ohy1]. With a little more work, we 
should obtain a dynamical system of differential equations for each f, as 
shown by Ohyama [Ohy1] and exemplified by the Halphen system. This 
system was first studied in 1881 [Hal], and is a reduction of the self-dual 
Yang-Mills equations. For us, it is derived from the r(4)-Hauptmodul, 

namely f = ( ry( T) j ry( 4r)) 8 . This has a triangular fundamental domain 
with angles (0, 0, 0) at cusps (0, 1, oo ). It is remarkable that we have 
{!, r} + E4 (2r) = 0, where E4 (r) is the Eisenstein series of weight 4: 

E4(r) = 1 + 240 L a3(n)qn. 
n~1 

In a further paper [Ohy2] the function f = (ry(r)/ry(9r)) 3 appears and 
we find it satisfies the Schwarz equation above with E4 (2r) replaced by 
E4(3r). 

Any function of the form ( *) satisfies 

df 1 ( t ) -d + 2 exp -v Hv = 0, 
q q 

where vt = ( q, q2 , q3 , ••• ) , and H is the semi-infinite matrix of Grunsky 
coefficients. 

To each Hauptmodul there are two differential objects: 

( 1) A Schwarz equation, and 
(2) a dynamical system. 
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There is also a pseudo-differential operator (roughly-treating the 
functions as Laplace transforms) which has not yet been studied. 

A purpose of this approach is to learn more about analytic aspects 
associated with the Monster in the hope of better understanding the 
relation between the simple Lie groups and the sporadic simple groups. 

Witten's ideas suggest there may be a finite-dimensional spin man
ifold with M acting on its loop space. A discussion of this is found in 
the book [Hir]. 
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