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§1. Uniformization Theory as a Hodge Theory at Arithmetic 
Primes 

(A) U niformization as a Catalogue of Rational Points 

We begin our discussion by posing the following fundamental prob­
lem concerning algebraic varieties over the complex numbers (where, 
roughly speaking, an "algebraic variety over the complex numbers" is a 
geometric object defined by polynomial equations with coefficients which 
are complex numbers): 

Problem: Given an algebraic variety Z over C, it is possible to 
give some sort of natural explicit catalogue of the rational points 
Z(C) of Z? 
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To gain a sense of what is meant by the expression "a natural explicit 
catalogue", it is useful to begin by thinking about some basic examples. 
Perhaps the simplest nontrivial examples of algebraic varieties are plane 
curves, i.e., subvarieties of A~ (two-dimensional affine space over C) 
defined by a single polynomial equation 

f(X, Y) = 0 

in two variables. In this case, the set of rational points Z(C) of the 
corresponding variety Z is given by 

Z(C) = {(x,y) E C 2 I f(x,y) = 0}. 

Moreover, we can classify plane curves by the degree of the defining 
equation f(X, Y). We then see that the resulting sets Z(C) may be 
explicitly described as follows: 

(1) The Linear Case (deg(f) = 1): Up to coordinate transformations, 
this is the case given by the equation f(X, Y) =X. In this case, 
we then obtain an explicit catalogue of the rational points by: 

(0, ?) : C ....:::::_. Z(C) 

(i.e., mapping z E C to (0, z) E Z(C)). 

(2) The Quadratic Case (deg(f) = 2): Up to coordinate transforma­
tions (and ruling out degenerate cases), we see that this is essen­
tially the case where the equation f(X, Y) = X· Y- L In this 
case, an explicit catalogue is given by the exponential map: 

exp: C----+ Z(C) =ex 

(In fact, the map may be defined intrinsically, without using co­
ordinate transformations to render the defining equation in the 
"standard form" X · Y = 1). 

(3) The Cubic Case (deg(f) = 3): Up to adding the point(s) at infin­
ity, this is essentially the case where we are dealing with an elliptic 
curve E. In this case, as well, we have a natural exponential map: 

expE : TE ----+ E(C) 

(where TE is the one-dimensional complex vector space given by 
the tangent space to some fixed point - "the origin" - of E). This 
map allows us to think of E as being of the form "C /A" (where 
A~ Z2 is a lattice in C). 
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(4) Higher Degree: If deg(f) ~ 4, or we wish to consider lower degree 
cases with lots of points removed, then we are led naturally to the 
following notion: 

A hyperbolic curve Z is a smooth, proper connected algebraic 
curve of genus g with r points removed, where we assume that 
2g- 2 +r > 0. 

According to the uniformization theorem of Kobe, hyperbolic 

curves may be uniformized by the upper half-plane SJ ~f {z E 

C I Im(z) > 0}, i.e., we have a surjective (holomorphic) covering 
map: 

SJ---+ Z(C) 

which allows us to think of Z(C) as being of the form S)jr, where 
r is some discrete group acting on S). 

(B) "Intrinsic" Hodge Theories 

In the preceding section, we posed the problem of explicitly cata­
loguing the rational points of a variety (over C). By looking at various 
examples, we saw that this problem may also be worded - in perhaps 
more familiar terms - as the problem of finding natural uniformizations 
of varieties. In the present section, we would like to further refine our 
understanding of the problem of finding natural uniformizations/ explicit 
catalogues of rational points by rewording this problem in terms of the 
language of "Hodge theory". 

First, let us discuss what we mean in general by the notion of a 
"Hodge theory". By a Hodge theory, we shall mean an equivalence of 
the following form: 

( ;~~::::; ) ~ (e.g., rational 
points) 

Over C: topology+ 
differential geometry 

Over the v=adics: 
pro-p etale topology + 

Galois action 
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The most familiar example of such an equivalence is the Hodge the­
ory of cohomologies. Over C, this amounts to "classical Hodge theory", 
i.e., the well-known isomorphism between the de Rham cohomology of an 
algebraic variety (which is well-known to be an algebra-geometric invari­
ant of the variety) and the singular cohomology of the variety (which 
is a topological invariant). More recently, the p-adic Hodge theory of 
cohomologies has been developed by Fontaine et al. ( cf., e.g., [Falt2], 
[Falt3]). This theory asserts an equivalence between the (algebraic) de 
Rham cohomology of an algebraic variety over a finite extension K of 
Qp and the p-adic etale cohomology of the variety, equipped with its 
natural Galois action (i.e., action of Gal(K) ). 

This "Hodge theory of cohomologies" is the most basic example of a 
"Hodge theory" as defined above. In the present manuscript, however, 
we would like to consider a different kind of Hodge theory which we 
shall call an intrinsic Hodge theory, or IHT, for short. By an intrinsic 
Hodge theory, we mean a Hodge theory- i.e., an equivalence of the form 
discussed above -in which the invariant which appears on the "algebraic 
geometry" side is the "variety itself" . 

There are several different ways to interpret the phrase "the variety 
itself". In the present manuscript, we shall consider the following two 
interpretations: 

( 1) The Physical Interpretation: In this interpretation, one takes the 
phrase the "variety itself" to mean the "rational points of the 
variety". 

(2) The Modular Interpretation: In this interpretation, one takes the 
phrase the "variety itself" to mean the "moduli of the variety". 

Note that (it is a tautology of terminology that) a physical IHT 
essentially amounts to some sort of explicit description of the rational 
points of the variety in terms of topology and geometry /Galois theory. 
Thus, one may summarize the above discussion as follows: 

physical IHT = uniformization of the variety, 

modular IHT = uniformization of the moduli space of 

deformations of the variety. 

Before concluding this section, we make some remarks on the rela­
tionship between the "IHT's" that we wish to discuss here and the more 
well-known "Hodge theories of cohomologies". First of all, although 
in general, IHT's are not the same as Hodge theories of cohomologies, 
typically in proving theorems which realize IHT's, the technical tools 
of the corresponding Hodge theory of cohomologies (e.g., in the p-adic 
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case, the techniques of so-called "p-adic Hodge theory" as in [Falt2]) 
play an important role. Secondly, in the case of Gm = V (X · Y - 1) 
(i.e., Example (2) in §1, (A)), as well as in the case of elliptic curves 
(i.e., Example (3) in §1, (A)), it just so happens that the first cohomol­
ogy module of the curve "is" the curve itself, i.e., in more sophisticated 
language, in these cases the curve in question is a 1-motive. Thus, in 
these cases, it turns out that the notions of IHT and Hodge theory of 
H 1 coincide. In particular, in these cases, the well-known Hodge theory 
of H 1 already provides a uniformization of the curve. Note that this 
differs quite substantially from the case of higher genus (Example (4) in 
§1, (A)). 

(C) Completion at Arithmetic Primes 

So far in our discussion, we have ignored the important issue of what 
sort of ground field should be considered in our discussion of uniformiza­
tionsjexplicit catalogues of rational points/IHT's. In the examples of 
§1, (A), we considered the situation over the complex number field, since 
this is the most elementary and well-known example of a ground field 
over which IHT's may be realized. 

Of course, ideally, one would like to realize IHT's over any field, for 
instance, over a number field (i.e., a finite extension of Q) - a case for 
which the problem of determining the set of rational points explicitly is 
of prime interest. Unfortunately, however, typically, in order to realize 
an IHT (or, indeed, any sort of "Hodge theory"), one must work over a 
base which is complete with respect to some sort of "arithmetic prime". 
The three main examples of this sort of base are the following: 

(i) the complex number field C (this also covers the case of R by 
working with objects over C equipped with an action of complex 
conjugation, i.e., of Gal(C/R)) 

(ii) a P:adic field K (i.e., a finite extension of Qp) 

(iii) power series over Z - typically arising as the completion of 
some sort of moduli space at a Z-valued point corresponding to a 
degenerate object parametrized by the moduli space. 

Indeed, all completions of number fields fall under cases (i) and (ii). 
Thus, if one is ultimately interested in rational points of number fields, 
IHT's over bases as in (i) and (ii) are of natural interest. Also, since the 
coefficients of the powers series appearing in (iii) are integers, case (iii) 
is also of substantial arithmetic interest. 

In the following discussion, the following principle will serve as an 
important guide: 
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Guiding Principle: For every type of arithmetic prime (i.e., cases 
(i), (ii), and (iii) above), one expects that there should be a canon­
ical uniformization theory at that prime. 

In general, however, one does not expect that the canonical uniformiza­
tion theories at different primes should be compatible with one another. 
We will return to this point in more detail later. 

In terms of types of varieties, the main cases in which one has well­
developed physical and modular IHT's are the following: 

(1) abelian varieties. 

(2) hyperbolic curves. 

The physical and modular IHT's in these cases may be roughly summa­
rized in the following charts: 

(1) Abelian Varieties 

c 
exponential map 

of abelian varieties/ 
Siegel upper 

half-plane 
uniformization 

(2) Hyperbolic Curves 

c 
Fuchs ian 

uniformization/ 
uniformizations of 

Teichmiiller 
and Bers 

Tate's theorem/ 
Serre-Tate 

theory 

v-adic 

§2 ( anabelian 
conjecture)/ 

§3 (p-adic 
Teichmiiller 

theory) 

Degenerate Object 

Schottky 
uniformizations 

of Tate/Mumford/ 
Faltings / Chai 

Degenerate Object 

formal algebraic 
Schottky 

uniformization 
of Mumford 

Of these two examples, undoubtedly the example of abelian varieties 
is the more well-known. Over C, the exponential map of an abelian 
variety gives a uniformization of the abelian variety by a complex linear 
space. This generalizes Example (3) of §1, (A). Moreover, by using 
the periods that one obtains from this uniformization, one obtains a 
uniformization of the moduli space of abelian varieties by the Siegel 
upper half-plane. Thus, we see both the physical and modular aspects 
of the IHT of abelian varieties in evidence. 

In the p-adic case, the IHT of an abelian variety essentially amounts 
to the p-adic Hodge theory of H 1 of the abelian variety. Although the 
p-adic Hodge theory of H 1 of an abelian variety has many different as­
pects, most of these may be traced to the fundamental paper of Tate 
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([Tate]) in the late 1960's. In this paper, the main theorem ("Tate's the­
orem" in the chart) states that homomorphisms between formal groups 
(e.g., the formal groups arising from abelian varieties) over p-adic fields 
are essentially equivalent to homomorphisms between the correspond­
ing Tate modules. In some sense, this result is the analogue for abelian 
varieties of the main theorem (Theorem 1) of §2 below, and may be 
regarded as a sort of physical IHT for abelian varieties. On the other 
hand, the modular aspect of the IHT of abelian varieties may be seen 
most easily in Serre-Tate theory, which gives rise to p-adic parameters 
on the moduli space of abelian varieties that are very much analogous 
to the Siegel upper half-plane uniformization in the complex case. 

Finally, in a neighborhood of a point in the moduli space corre­
sponding to a degenerating abelian variety, one has the theory of Tate 
curves, generalized by Mumford and Faltings/Chai ([FC]). Moreover, it 
turns out that in the case of abelian varieties, the complex, p-adic, and 
degenerating object theories are all compatible with one another. For 
instance, if one specializes the uniformizing parameters that one obtains 
on the moduli space in a neighborhood of a point corresponding to a de­
generating abelian variety to a p-adic (respectively, complex) base, one 
obtains parameters compatible with the Serre-Tate parameters (respec­
tively, the Siegel upper half-plane uniformization). 

Next, we consider the case of hyperbolic curves. Over C, the physi­
cal aspect of the IHT of hyperbolic curves (cf. Example (4) of §1, (A)) 
essentially amounts to the Fuchsian uniformization. Then just as the ex­
ponential map uniformization of an abelian variety "induces" the Siegel 
upper half-plane uniformization of the moduli space of abelian varieties, 
the Fuchsian uniformization of a hyperbolic curve "induces" the Bers 
uniformization of the moduli space of hyperbolic curves (cf. §3, (A) be­
low, as well as the Introduction of [Mzk4]). 

In a neighborhood of a point in the moduli space corresponding 
to a totally degenerate (proper) hyperbolic curve, one has the theory 
of [Mumf]. Note, however, that this theory is not compatible with the 
theory of the Fuchsian uniformization in the following sense: If one spe­
cializes the (Z-coefficient) power series in the base ring to some C-valued 
point in a neighborhood of a point in the moduli space corresponding 
to a totally degenerate curve, the resulting uniformization over C that 
one obtains is the so-called Schottky uniformization of the curve. This 
uniformization is completely different from the Fuchsian uniformization. 

Finally, we come to the p-adic case. It seems that the IHT of p­

adic hyperbolic curves has not been studied extensively until relatively 
recently ([Mzkl-5]). Thus, 
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It is the goal of this manuscript to report on recent developments 
concerning the intrinsic Hodge theory (IHT) of p-adic hyperbolic 
curves. 

The physical aspect, which concerns a theorem (Theorem 1) that 
gives a strong solution to Grothendieck's anabelian conjecture, will be 
the topic of §2. The modular aspect, which concerns a theory- which 
we call p-adic Teichmiiller theory- which may be regarded as either the 
hyperbolic curve analogue of Serre-Tate theory or the p-adic analogue of 
the theory of the Fuchsian and Bers uniformizations, will be discussed in 
§3. We remark here that this p-adic Teichmiiller theory is not compatible 
with the specialization of the theory of [Mumf] to the p-adic case. This 
may disappoint some readers, but is, in fact, natural in view of the 
fact that even over C, the specialization of the theory of [Mumf] to the 
complex numbers is not compatible (as remarked above) with the theory 
of the Fuchsian uniformization. Moreover, it is in line with the general 
Guiding Principle discussed above that to each sort of arithmetic prime 
there should correspond a natural uniformization theory of hyperbolic 
curves. Thus, it seems to the author that it is meaningless to argue 
as to whether it is the specialization of the [Mumf] to the p-adic case 
or the theory of [Mzkl], [Mzk2], [Mzk3], [Mzk4] which is the "true" p­
adic analogue of the Fuchsian uniformization. That is to say, it seems 
more natural to the author to regard the theory of [Mumf] as the "true" 
analogue of the Fuchsian uniformization at the "degenerating object 
prime", and the theory of [Mzkl], [Mzk2], [Mzk3], [Mzk4] as the "true" 
analogue of the Fuchsian uniformization at "the prime p" . 

§2. The Physical Aspect: Embedding by Automorphic Forms 

(A) The Complex Case 

We begin our discussion by considering the complex case. The com­
plex case is important to understand not only for reasons of philosophical 
analogy, but also because it provides the motivation for the proof of the 
main result in the p-adic case. 

In the complex case, the physical IHT aspect of the Fuchsian uni­
formization may be summarized schematically as follows: 

algebraic hyperbolic curve X 

¢==:} S0(2)\PSL2(R)jr (physical/analytic obj.) 

¢==:} 1r1 (X) +action of 1r1 (X) on 5) 

¢==:} topology + arithmetic structure (geometry) 
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C=~C 
Here, the illustration is of an algebraic hyperbolic curve thought of as 

a topological surface equipped with an additional arithmetic structure, 
namely the geometry arising from the Poincare metric on the upper half­
plane Sj. This geometry is depicted as an "action of C" on the topogical 
surface, given by the flows along geodesics defined by the geometry. 

In order to generalize this picture to the p-adic case, it is necessary 
to recall the conceptual machinery that gives rise to the first "{==}" 
in the chain of equivalences appearing above. If one starts from the 
right-hand side, i.e., the upper half-plane equipped with some action 
of 1r1 (X), then the algebraic structure (i.e., the left-hand side) may be 
recovered by considering automorphic forms on Sj which are invariant 
with the respect to the action of 1r1 (X). These automorphic forms define 
a morphism from Sj to projective space whose image is necessarily (by 
Chow's Theorem!) algebraic and, in fact, equal to the original algebraic 
curve X. That is to say, one has a commutative diagram: 

Upper half-plane Sj -----+ Projective Space 

l II 
Algebraic Curve X '----+ Projective Space 

Put another way, the main point is the following: Although ultimately 
1r1 (X)- invariant differential forms on Sj define algebraic forms on X, such 
forms may be defined directly from the data of the action { 1r1 (X) 0 Sj} 

and, moreover, by the above diagram, allow one to recover the algebraic 
structure of X from the analytic data { 1r1 (X) 0 Sj}. That is, to put the 
matter more succinctly, the key idea is the following: 

Key Idea: Consider analytic reprepresentations of algebraic dif­
ferential forms. 

It turns out that the proof of the main p-adic result (Theorem 1 below) 
of this section consists precisely of implementing this key idea in the 
p-adic case by using the technical machinery of p-adic Hodge theory. 
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The Case of SL2 (Z) 

(B) The Arithmetic Fundamental Group 

In this section, we prepare for the statement of Theorem 1 in the 
following section by introducing various notations and terminology. 

Let K be a field of characteristic zero. Let us denote by K an 

algebraic closure of K. Let rK ~f Gal(K/K). Suppose that XK is a 
variety over K. Then we will denote by 

1r1 (XK) 

the algebraic fundamental group of XK (cf. [SGA1]). This group is a 
compact, profinite topological group, well-defined up to inner automor­
phism (since we did not specify a "base-point"), and which has the fol­
lowing property: The category of finite sets with a continuous 1r1 (XK )­
action is naturally equivalent to the category of finite etale coverings 
of XK. Moreover, if K is, for instance, an algebraically closed subfield 
of C, then 1r1 (XK) may be identified with the pro finite completion ( = 

inverse limit of all finite quotients) of the usual topological fundamental 

group 7ri0 P(Xc) (where Xc ~f XK 0K C). 

Now let XK be a hyperbolic curve over K; write XK ~f X XK K. 
Then one has an exact sequence 

1 -----7 1r 1 ( x K ) -----7 1r 1 ( x K) -----7 r K -----7 1 

of algebraic fundamental groups. We shall refer to 1r1 (XK) as the geo­
metric fundamental group of XK. Note that, by the above discussion 
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of the case where K ~ C, it follows that the structure of n1 (XK) is 
determined entirely by (g, r) (i.e., the "type" of the hyperbolic curve 
XK)· In particular, n1(XK) does not depend on the moduli of XK. Of 
course, this results from the fact that K is of characteristic zero. In pos­
itive characteristic, on the other hand, preliminary evidence ([Tama2]) 
suggests that the fundamental group of a hyperbolic curve over an alge­
braically closed field (far from being independent of the moduli of the 
curve!) may in fact completely determine the moduli of the curve. 

We shall refer to n1(XK) (equipped with its augmentation to rK) 
as the arithmetic fundamental group of XK. Although it is made up of 
two "parts" -i.e., 11"1 (XK) and f K -which do not depend on the moduli 
of XK, it is not unreasonable to expect that the extension class defined 
by the above exact sequence, i.e., the structure of 11"1 (X K) as a group 
equipped with augmentation to f K, may in fact depend quite strongly 
on the moduli of XK. Indeed, according to the anabelian philosophy 
of Grothendieck ( cf. [LS]), for "sufficiently arithmetic" K, one expects 
that the structure of the arithmetic fundamental group n1 (XK) should 
be enough to determine the moduli of XK. Although many important 
versions of Grothendieck's anabelian conjectures remain unsolved (most 
notably the so-called Section Conjecture (cf., e.g., [LS], p. 289, 2)), in 
the remainder of this section, we shall discuss various versions that have 
been resolved in the affirmative. For instance, such a version of these 
conjectures which will be discussed in (B) below (Theorem 1) states 
roughly that ( nonconstant) morphisms from a smooth K -variety to X K 

should be in bijective correspondence with (open) homomorphisms (over 
r K) between the corresponding arithmetic fundamental groups. Thus, 
there is an obvious analogy between this (form of Grothendieck's) con­
jecture and the Tate conjecture on abelian varieties, which states roughly 
that morphisms between abelian varieties are equivalent to morphisms 
between their arithmetic fundamental groups. 

Note that this anabelian philosophy is a special case of the notion of 
"intrinsic Hodge theory" discussed above: indeed, on the algebraic geom­

etry side, one has "the curve itself", whereas on the topology plus arith­
metic side, one has the arithmetic fundamental group, i.e., the purely 
(etale) topologicaln1(XK), equipped with the structure of extension 
given by the above exact sequence. 

In fact, it is interesting to note - especially relative to the discus­
sion at the beginning of §1, (C) -that Grothendieck's anabelian philos­
ophy arose as an approach to diophantine geometry. It is primarily for 
this reason that it was originally thought that the most natural sort of 
"arithmetic" base field Kover which one should expect Grothendieck's 
anabelian conjectures to hold was a number field. Another reason for the 
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idea that the base field in these conjectures should be a number field was 
the analogy with Tate's conjecture on homomorphisms between abelian 
varieties (cf., e.g., [Faltl]). Indeed, in discussions of Grothendieck's an­
abelian philosophy, it was common to refer to statements such as that of 
Theorem 1 below as the "anabelian Tate conjecture", or the "Tate con­
jecture for hyperbolic curves". In fact, however, there is an important 
difference between Theorem 1 and the "Tate conjecture" of, say, [Faltl]: 
Namely, whereas Theorem 1 below holds over local fields (i.e., finite ex­
tensions of Qp), the Tate conjecture for abelian varieties is false over 
local fields. Moreover, until the proof of Theorem 1, it was generally 
thought that, just like its abelian cousin, the "anabelian Tate conjec­
ture" was essentially global in nature. That is to say, it appears that 
the point of view of the author, i.e., that Theorem 1 should be regarded 
as a p-adic version of the "physical aspect" of the Fuchsian uniformiza­
tion of a hyperbolic curve, does not exist in the literature (prior to the 
work of the author). 

Finally, we remark, relative to the issue of locating an analogue of 
Theorem 1 in the theory of abelian varieties, that it seems that it is 
more natural to think of "Tate's theorem" ( cf. the discussion in § 1, (C)) 
as the proper analogue of Theorem 1 for abelian varieties. Indeed, not 
only does Tate's theorem hold over local fields, but it plays an important 
technical role in the proof of Theorem 1 below ( cf. [Mzk5]). 

(C) The Main Theorem 

Building on earlier work of H. Nakamura and A. Tamagawa (see, es­
pecially, [Tarnal]), the author applied the p-adic Hodge theory of [Falt2] 
and [BK] to prove the following result (cf. Theorem A of [Mzk5]): 

Theorem 1. Let p be a prime number. Let K be a subfield of a 
finitely generated field extension of Qp. Let XK be a hyperbolic curve 
over K. Then for any smooth variety SK over K, the natural map 

is bijective. Here, the superscripted "dam" denotes dominant ( {'} non­
constant) K -morphisms, while Hom~~n denotes open, continuous ho­
momorphisms compatible with the augmentations to r K, and considered 
up to composition with an inner automorphism arising from 1r1 (XK). 

Note that this result constitutes an analogue of the "physical as­
pect" of the Fuchsian uniformization, i.e., it exhibits the scheme XK 
(in the sense of the functor defined by considering (nonconstant) K-
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morphisms from arbitrary smooth S K to X K) as equivalent to the "phys­
ical/analytic object" 

Hom~';n( -, 7rl(XK)) 

defined by the topological1r1 (XK) together with some additional canon­
ical arithmetic structure (i.e., 1r1(XK)). This sort of equivalence is de­
picted in the following illustration, which is meant to remind the reader 
of the first illustration in §2, (A): 

GaloislK( 

In fact, various slightly stronger versions of Theorem 1 hold. For 
instance, instead of the whole geometric fundamental group 1r1 (XK ), it 

suffices to consider its maximal pro-p quotient 1r1 (XK )(P). Indeed, this 
is natural relative to the general philosophy discussed in §1, (B) - i.e., 
one typically expects that the right-hand side of the equivalence of a p­
adic Hodge theory should only involve the pro-p etale topology. Another 
strengthening allows one to prove the following result ( cf. Theorem B 
of [Mzk5]), which generalizes a result of Pop ([Pop]): 

Theorem 2. Let p be a prime number. Let K be a subfield of a 
finitely generated field extension of Qp. Let L and M be function fields 
of arbitrary dimension over K. Then the natural map 

HomK(Spec(L), Spec(M)) --+ Hom~';n(rL, rM) 

is bijective. Here, Hom~~en (r L, r M) is the set of open, continuous group 
homomorphisms r L --+ r M over r K, considered up to composition with 
an inner homomorphism arising from Ker(r M --+ r K). 

As discussed in §2, (A), the proof of Theorem 1 consists of imple­
menting the ideas discussed in §2, (A), in the p-adic case by using p-adic 
Hodge theory. 

More precisely, suppose that one is given two hyperbolic curves XK, 
YK over K. For simplicity, let us assume that both XK and YK are 
both proper and non-hyperelliptic, and that. K is a finite extension of 
Qp. Suppose, moreover, that we are given an isomorphism 
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of the respective arithmetic fundamental groups which is compatible 
with the projections to r K. Then Theorem 1 states that a necessarily 
arises geometrically, i.e., from a K-isomorphism XK ~ YK. In the 
following, we would like to give a rough sketch of the ideas used to prove 
this result. 

First, observe that a induces an isomorphism 

Jr(p)(X-)ab ~ Jr(p)(Y-)ab 
1 K - 1 K 

between the abelianizations of the maximal pro-p quotients of the re­
spective geometric fundamental groups. Then it follows from p-adic 
Hodge theory that if one tensors this isomorphism with CP (i.e, the 

p-adic completion of K), and then takes rK-invariants, one obtains 
(naturally) on both sides the respective spaces of global differentials, 

Dx ~f H 0 (XK,wxK) and Dy ~f H 0 (YK,WYK). Thus, one obtains an 
isomorphism 

Dx~Dy 

induced by a. Let Px ~f P(Dx ), Py ~f P(Dy) be the corresponding 
projective spaces. Thus, one obtains an isomorphism Px ~ Py. On the 
other hand, since we assumed that XK and YK are non-hyper-elliptic, 
it follows from elementary algebraic geometry that we have canonical 
embeddings XK ~ Px, YK ~ Py. In other words, we have a diagram: 

? 
-----7 

Thus, the problem of constructing an isomorphism X K ~ Y K as desired 
is reduced to showing that the isomorphism Px ~ Py that we have 
already constructed maps XK into YK. This is proven precisely by 
considering certain p-adic analytic representations of the differentials of 
D x and Dy as differentials on a certain p-adic space ( = the spectrum 
of a certain large p-adic field) in a fashion reminiscent of the way in 
which analytic representations (i.e., automorphic forms) of differential 
forms appeared in the above discussion of the complex case. We refer 
to [Mzk5], [NTM], for more details. 

§3. The Modular Aspect: Canonical Frobenius Actions 

(A) The Complex Case 

In this section, we discuss the ideas in the complex case that form 
the philosophical background underlying the theory of [Mzkl], [Mzk2], 
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[Mzk3], [Mzk4]. Just as in §2, the keyphrase was "embedding by auto­
morphic forms" , in the present discussion, the key phrase is "canonical 
Frobenius actions". 

First, let us observe that the Fuchsian uniformization of the Rie­
mann surface X associated to a hyperbolic algebraic curve X gives rise 
to an action of 71"1 (X) on SJ, hence defines a canonical representation 

Px: 1T"1(X)---+ PSLz(R) ~f SLz(R)/{±1} = AutHolomorphic(SJ). 

Note that Px may also be regarded as a representation into PGL2 (C) = 

GL2 (C)/Cx, hence as defining an action of 7r1 (X) on Pi:. Taking the 
quotient of SJ x Pi: by the action of 7r1 (X) on both factors then gives 
rise to a projective bundle with connection on X. It is immediate that 
this projective bundle and connection may be algebraized, so we thus 
obtain a projective bundle and connection (P --+ X, '\7 p) on X. This 
pair (P, '\7 p) has certain properties which make it an indigenous bundle 
(terminology due to Gunning). 

In general, the notion of an "indigenous bundle on X" may be 
thought of as the datum of a projective structure on X, i.e., a subsheaf of 
the sheaf of holomorphic functions on X such that locally any two sec­
tions of this subsheaf are related by a linear fractional transformation 
(with constant coefficients). Thus, the Fuchsian uniformization defines 
a special canonical indigenous bundle, or canonical projective structure, 
on X. 

In fact, it is not difficult to see that the notion of an indigenous 
bundle is entirely algebraic. Thus, one has a natural moduli stack 

of hyperbolic curves of type (g, r) equipped with an indigenous bundle, 
which forms a torsor (under the affine group given by the sheaf of dif­
ferentials nMg,r on Mg,r) -called the Schwarz torsor- over the moduli 
stackMg,r of hyperbolic curves of type (g,r). Moreover, Sg,r is not only 
algebraic, it is defined over Z[!J. Thus, if, for instance, X is a hyper­
bolic curve over C, the space of indigenous bundles (or equivalently, of 
projective structures) on X is a complex affine linear space of dimension 
3g- 3 + r. In particular, (in general) X admits many more indigenous 
bundles than the canonical one arising from the Fuchsian uniformization. 

The canonical indigenous bundle defines a canonical real analytic 
section 

s: M 9 ,r(C) ---+ S9 ,r(C) 

of the Schwarz torsor at the infinite prime. Moreover, not only does 
s "contain" all the information that one needs to define the Fuchsian 
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uniformization of an individual hyperbolic curve (indeed, this much is 
obvious from the definition of s!), it also essentially "is" (interpreted 
properly) the Bers uniformization of the universal covering space (i.e., 
"Teichmiiller space") of M 9 ,r(C). More precisely, 

(1) Bs is equal to the Weil-Petersson metric (a natural real analytic 
Kahler metric) on M 9 ,r(C). 

(2) In general, real analytic Kahler metrics may be integrated locally 
to form canonical (holomorphic) coordinates on the given complex 
manifold. If one applies this general theory to the Weil-Petersson 
metric, one obtains the Bers coordinates (i.e., the coordinates aris­
ing from the Bers uniformization). That is to say, ( cf. ( 1) above), 
the Bers uniformization may thought of as being precisely the 
"z-part" or "anti-holomorphic parf' of the canonical real analytic 
sections. 

( cf. the discussions in the Introductions of [Mzk1], [Mzk4] for more de­
tails). In short, the study of this canonical section s may be regarded 
as the realization of the Fuchsian uniformization as a modular IHT. 

Alternatively, from the point of view of classical Teichmiiller theory, 
one may regard the uniformization theory of the moduli of hyperbolic 
curves as the theory of (so-called) quasi-fuchsian deformations of the rep­
resentation PX· Briefly summarized, this point of view runs as follows: 
Inside S 9 ,r(C), then is an open subset consisting of projective structures 
defined by certain quasi-fuchsian groups. We denote this open subset by 

That is to say, this subset parametrizes representations 1r1 (X) -+ 

PGL2 (C) that arise from Bers' simultaneous uniformizations of pairs 
of hyperbolic Riemann surfaces of type (g, r). 

On each of the fibers of S9 ,r(C) -+ M 9 ,r(C) (which are complex 
affine spaces of dimension 3g - 3 + r), this open subset is a bounded 
contractible subset of the complex affine space which forms the fiber. 
From the point of view of Arakelov theory, it is natural to regard such 
a bounded contractible subset as an integral stucture (at the infinite 
prime) on the complex affine space. Thus, we shall also write 

S~~;= ~f RepQF (1r1 (X), PGLz(C)) 

for RepQF(1r1(X),PGLz(C)). 
Next, let us observe that there is a natural action of complex con­

jugation - which we would like to think of as an action of the Frobe­
nius Fr 00 at the infinite prime - on Rep QF ( 1r1 (X), PG L 2 (C)) induced 
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by the action of complex conjugation on the various components of the 
(equivalence classes of) matrices which form PG L2 (C). Relative to this 
action of Fr00 , it is not difficult to see that the image of the canoni­
cal real analytic sections: M 9 ,r(C) -+ S9 ,r(C) considered above, i.e., 
the subset of the set of quasi-fuchsian groups consisting of the Fuch­
sian groups, is precisely equal to the set of Fr00 -invariants of SJ~too = 
RepQF (1r1 (X), PGL2(C)). That is to say, we have a natural commuta­
tive diagram: 

'S intoo, n Fr 
g,r oo 

RepQF(1r1 (X), PGL2(C)) 

u 
Fr00-invariants = Image(s) 

open 
'--------+ Sg,r(C) 

1 
-----+ Mg,r(C) 

The Integral Portion 
of the Schwarz Torsor 

The Canonical 
.. . Real Analytic 

Section 

is a reflection about the 
canonical section 

.... TheModuli 

Stack of Curves 

Moreover, relative to this point of view, the Bers uniformization is 
the uniformization of M9 ,r(C) by a fiber of SJ~;= given by the formula: 

Bers uniformization = pr M o (Froo !Fiber) 
g,r 
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i.e., the composite morphism 

Fiber (of sintoo--+ M (C))"-------+ sint"" ~ sint"" ------7 (M )c g,r g,r g,r g,r g,r . 

In other words, from this point of view: 

Key Point: "The Bers uniformization :i§. a Frobenius action!" 

Formulated from this point of view, the ideas of classical Teichmiiller 
theory carry over fairly transparently to the p-adic case. This will be 
the theme of our discussion of p-adic Teichmiiller theory in the section's 
to follow. 

(B) Teichmiiller Theory in Characteristic p 

Let p be an odd prime. Then the p-adic theory of Shimura curves 
(cf., e.g., [Ihara]) suggests that a natural condition to expect of canonical 
indigenous bundles in characteristic p is that they should have square 
nilpotent p-curvature. The "p-curvature" is a natural invariant of bun­
dles with connection in characteristic p, which, philosophically, may be 
thought of as a measure of the extent to which the connection V' is 
compatible with (i.e., "commutes with") Frobenius, i.e.: 

p-curvature = "[Frobenius, V']". 

In the case, of P 1-bundles, the p-curvature may be thought of as a 2 x 2-
matrix of differentials (conjugated by Frobenius) whose trace is zero. 
Thus, to say that the p-curvature is "square nilpotent" means simply 
that the square (in the sense of ordinary matrix multiplication) of this 
2 X 2-matrix is zero. 

Let N9 ,r ~ (S9 ,r)Fp denote the closed algebraic substack of indige­
nous bundles with square nilpotent p-curvature. Then one has the fol­
lowing key result ([Mzkl, Chapter II, Theorem 2.3]): 

Theorem 3. The natural map N9,r --+ (M 9,r)Fp is a finite, fiat, 
local complete intersection morphism of degree p3g-J+r. Thus, up to 
"isogeny" (i.e., up to the fact that this degree is not equal to one), N9 ,r 

defines a canonical section of the Schwarz torsor (S9 ,r)Fp --+ (M 9,r)FP 

in characteristic p, i.e., it gives rise to a diagram 
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reminiscent of the diagram appearing in §3, (A). 

It is this stack N 9 ,r of nilcurves- i.e., hyperbolic curves in charac­
teristic p equipped with an indigenous bundle with square nilpotent p­

curvature- which is the central object of study in the p-adic Teichmiiller 
theory of [Mzkl], [Mzk2], [Mzk3], [Mzk4]. 

Many facts are now known about the finer structure of Ng,r· One 
interesting consequence of this structure theory of Ng,r is that it gives 
rise to a new proof of the connectedness of (M 9 ,r )F p (for p large relative 
tog). This fact is interesting- relative to the claim that this theory is a 
p-adic version of Teichmi.iller theory- in that one of the first applications 
of classical complex Teichmi.iller theory is to prove the connectedness of 
Mg,r· Also, it is interesting to note that F. Oort has succeeded in 
giving a proof of the connnectedness of the moduli stack of principally 
polarized abelian varieties by applying the structure theory of certain 
natural substacks of this moduli stack in characteristic p. 

(C) p-adic Teichmiiller Theory 

So far, we have been discussing the characteristic p theory. Ulti­
mately, however, we would like to know if the various characteristic p 
objects discussed in §3, (B), lift canonically to objects which are flat 
over Zp· Unfortunately, it seems that it is unlikely that N9 ,r itself lifts 
canonically to some sort of natural Zp-flat object. If, however, we con­
sider the open substack- called the ordinary locus- (N;,~d)Fp ~ N9 ,r 
which is the etale locus of the morphism Ng,r --+ (Mg,r )F p' then (since 
the etale site is invariant under nilpotent thickenings) we get a canonical 
lifting, i.e., an etale morphism 

of p-adic formal stacks. Over N;,~d, one has the sought-after canonical 
p-adic splitting of the Schwarz torsor, i.e., the p-adic analogue of the 
canonical real analytic splitting s : M 9 ,r(C) --+ S9 ,r(C) discussed in §3, 
(A) (cf. Theorem 0.1 of the Introduction of [Mzkl]; [Mzk4, Chapter X, 
§3]): 

Theorem 4. There is a canonical section N;,~d --+ S 9 ,r of the 

Schwarz torsor over N;,~d which is the unique section having the follow­

ing property: 3 a lifting of Frobenius <l>N : N;,~d --+ N;,~d such that the 

indigenous bundle on the tautological hyperbolic curve over N;,~d defined 

by the section N;,~d --+ S 9 ,r is invariant with respect to the Frobenius 
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action defined by 'PN. Moreover, this canonical section and canonical 
Probenius lifting give rise to a diagram 

(Sg,r)zp 

u 

'PN"" (N~,~d)zp 

·II· 
Repcrys ( 1r1 (XQp ), PGL2 (Zp)) 

p-adic et 
----7 (M 9 ,r )zP 

reminiscent of the diagram appearing in §3, (A). Here, "·II·" means 
"roughly may be identified with", and "RepCrys(n1(XQP),PGL2(Zp))" 
is a certain natural space of crystalline respresentations of the arithmetic 
fundamental group of the tautological hyperbolic curve into PGL2(Zp)· 
Finally, the resulting action of 'PN on "RepCrys(1r1 (XQP), PGL2(Zp))" 
is the natural Frobenius action on this space of crystalline representa­
tions ( cf. [Mzk4, Chapter X, especially §3], for more details). 

of the Schwarz Torsor 

The Canonical 
~ ·· ..... p-Adic Section 

The Frobenius Action 
is a sort of p-adic flow 

The Moduli 
...._ _ _., Stack of Curves 

Next, we observe that the Frobenius lifting 'PN: N~,~d --+ N~,~d (i.e., 
morphism whose reduction modulo p is the Frobenius morphism) has 
the special property that .l · d'PN induces an isomorphism 

p 

'f!jvf!Nord ~ f!Nord 
g,r g,r 
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Such a Frobenius lifting is called ordinary. It turns out that any ordi­
nary Frobenius lifting (i.e., not just <PN) defines (by integration) a set 
of canonical multiplicative coordinates in a formal neighborhood of any 
point a valued in an algebraically closed field k of characteristic p, as 
well as a canonical lifting of a to a point valued in W ( k) (Witt vectors 
with coefficients in k). 

Moreover, there is a certain analogy between this general theory of 
ordinary Frobenius liftings and the theory of real analytic Kahler metrics 
(which also define canonical coordinates by integration). Relative to this 
analogy, the canonical Frobenius lifting <PN on N';j,~d may be regarded 
as corresponding to the Weil-Petersson metric on complex Teichmiiller 
space (a metric whose canonical coordinates are the coordinates arising 
from the Bers uniformization of Teichmiiller space - cf. the discussion 
of §3, (A)), i.e., 

<I? N +----+ Weil-Petersson metric, 

'J <I? N' +----+ Bers coordinates. 

Thus, <PN is, in a very real sense, a p-adic analogue of the Bers uni­
formization in the complex case. Moreover, there is, in fact, a canonical 
ordinary Frobenius lifting on the "ordinary locus" of the tautological 
curve over N';j,~d whose relative canonical coordinate is analogous to the 
canonical coordinates arising from the Kobe uniformization of a hyper­
bolic curve (i.e., from the canonical real analytic Kahler metric obtained 
by descending the Poincare metric on 5) via the Kobe uniformization 
SJ ~X). 

Next, we observe that Serre-Tate theory for ordinary (principally 
polarized) abelian varieties may also be formulated as arising from a 
certain canonical ordinary Frobenius lifting. Thus, the Serre-Tate pa­
rameters (respectively, Serre-Tate canonical lifting) may be identified 
with the canonical multiplicative parameters (respectively, canonical lift­
ing to the Witt vectors) of this ordinary Frobenius lifting. That is to 
say, in a very concrete and rigorous sense, Theorem 4 may be regarded 
as the analogue of Serre- Tate theory for hyperbolic curves. Nevertheless, 
we remark that it is not the case that the condition that a nilcurve be 
ordinary (i.e., define a point of (N~,~d)Fv ~ Ng,r) either implies or is 
implied by the condition that its Jacobian be ordinary. 

Although this fact may disappoint some readers, it is in fact very 
natural when viewed relative to the general analogy between ordinary 
Frobenius liftings and real analytic Kahler metrics discussed above. In­
deed, relative to this analogy, we see that it corresponds to the fact that, 
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when one equips M 9 with the Weil-Petersson metric and A9 (the moduli 
stack of principally polarized abelian varieties) with its natural metric 
arising from the Siegel upper half-plane uniformization, the Torelli map 
M 9 ---+ A 9 is not isometric. 
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