Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 197–216

On Classification of Semisimple Algebraic Groups

Ichiro Satake

In this note we give a survey of the classification theory of semisimple algebraic groups over a number field. As is well known, for a given field F, the F-isomorphism class of such a group G defined over F is determined up to F-isogeny by the " Γ -diagram" $\Sigma_F(G)$ and by the Fisomorphism class of the anisotropic kernel of G (see §2; [Sa1], [T]). On the other hand, if G belongs to an inner type of an F-quasisplit group G_0 with center Z, then the F-equivalence class of an "inner F-form" (G, f) of G_0 corresponds in a one-to-one way to a cohomology class in $H^1(F, G_0/Z)$, which in turn determines an element in $H^2(F, Z)$, denoted by $\gamma_F(G, f)$ (see §1; [Sa2]).

For $F = \mathbb{R}$ (the field of real numbers), it is well known that the \mathbb{R} isogeny class of G is uniquely determined only by the Γ -diagram $\Sigma_{\mathbb{R}}(G)$ (cf. [A], [Sa3], [T]), while for a p-adic field F, a fundamental result of Kneser [K1] says that the F-equivalence class of an inner F-form (G, f) of a simply connected G_0 is uniquely determined only by the cohomological invariant $\gamma_F(G, f)$. In treating the case of a number field, the key step is in the so-called local-global principle, or Hasse principle, which also plays an important role in the class field theory. The Hasse principle for $H^1(F, G_0)$ (G_0 simply connected) had been established by Kneser and Harder ([K2], [K3], [H1]) except for the case of (\mathbf{E}_8), which was recently settled by Chernousov [Cher] (1989). On the other hand, for Γ -diagrams, one can deduce the Hasse principle from a result in [H2] (see §4). Combining these results, one obtains a complete picture of the classification. We can formulate the main result in the following form.

MAIN THEOREM. Let F be an algebraic number field of finite degree and let $V_{\infty,1}$ denote the set of all real places of F. Let G_0 be an F-quasisplit simply connected semisimple algebraic group over F and let Z be the center of G_0 . Suppose there are given a collection of Γ -diagrams $\{\Sigma^{(v)} \ (v \in V_{\infty,1})\}$ over \mathbb{R} and $c \in H^2(F, Z)$ such that, for each $v \in V_{\infty,1}$,

Received September 21, 1998.

Revised November 26, 1998.

there exists an inner F_v -form $(G^{(v)}, f^{(v)})$ of G_0 with $\gamma_{\mathbb{R}}(G^{(v)}, f^{(v)}) = c_v$ and $\Sigma_{\mathbb{R}}(G^{(v)}) = \Sigma^{(v)}$. Then there exists an inner F-form (G, f) of G_0 (uniquely determined up to F-equivalence) such that $\gamma_F(G, f) = c$ and (G, f) is F_v -equivalent to $(G^{(v)}, f^{(v)})$ (hence $\Sigma_{F_v}(G) = \Sigma^{(v)}$) for all $v \in V_{\infty,1}$. (See, §5, Th. 7, 8.)

It should be noted that this result is quite analogous to the classical result of Minkowski [Mi] (1891) on the equivalence of quadratic forms with coefficients in \mathbb{Q} . Here we see that the *F*-equivalence class of (G, f)is uniquely determined by the cohomological invariant $\gamma_F(G, f)$, which is an analogue of the "Hasse invariant", and a collection of Γ -diagrams $\{\Sigma^{(v)} \ (v \in V_{\infty,1})\}$ (or more precisely $\{(G^{(v)}, f^{(v)})\}$) satisfying the above consistency condition, which is an analogue of the "signature(s)" of a quadratic form.

The above main theorem is essentially contained in a result of Sansuc ([San], Cor.4.5), which was generalized quite recently to the case of reductive groups by Borovoi ([Bo2], Th.5.11). In §5 of this note, we give a direct proof of it based on the Hasse principle. An explicit determination of the relevant invariants is given in §6.

$\S1.$ Cohomological invariants ([Se], [Sa2]).

Let F be a field of characteristic zero and G_0 an algebraic group defined over F. Let Z denote the center of G_0 and set $\overline{G}_0 = G_0/Z$. Then \overline{G}_0 can naturally be identified with the group of inner automorphisms of G_0 , $\operatorname{Inn}(G_0)$, by the correspondence $\overline{g} \longleftrightarrow I_g$ ($g \in G_0$), \overline{g} and I_g denoting the class of $g \mod Z$ and the inner automorphism $I_g: x \mapsto$ gxg^{-1} ($x \in G_0$), respectively.

By an inner F-form of G_0 we mean a pair (G, f) formed of an algebraic group G defined over F and an \overline{F} -isomorphism $f: G \to G_0$ such that for all $\sigma \in \Gamma = \operatorname{Gal}(\overline{F}/F)$ one has $\varphi_{\sigma} = f^{\sigma} \circ f^{-1} \in \operatorname{Inn}(G_0)$, \overline{F} denoting the algebraic closure of F. Two inner F-forms (G, f) and (G', f') are said to be F-equivalent, if there exists an F-isomorphism $\varphi: G \to G'$ such that $f' \circ \varphi \circ f^{-1} \in \operatorname{Inn}(G_0)$. Sometimes, G alone is called an inner F-form of G_0 , or G and G_0 are said to be in the same inner type over F, if there exists an isomorphism $f: G \to G_0$ such that (G, f) is an inner F-form of G_0 in the above sense. In that case, two isomorphisms f, f' of G onto G_0 satisfying this condition are said to be F-equivalent if (G, f) and (G, f') are F-equivalent in the above sense.

Let (G, f) be an inner *F*-form of G_0 . Then in the above notation it is clear that (φ_{σ}) is a (continuous) 1-cocycle of Γ in $\overline{G}_0 \cong \text{Inn}(G_0)$, i.e., it satisfies the condition $\varphi_{\sigma}^{\tau} \varphi_{\tau} = \varphi_{\sigma\tau}$ for all $\sigma, \tau \in \Gamma$. We denote the cohomology class of (φ_{σ}) in $H^1(F, \overline{G}_0)$ by c(G, f), or by $c_F(G, f)$ if F is to be specified. Writing $\varphi_{\sigma} = I_{g_{\sigma}}$ with $g_{\sigma} \in G_0(\overline{F})$, one has

$$c_{\sigma,\tau} = g_{\sigma}^{\tau} g_{\tau} g_{\sigma\tau}^{-1} \in Z,$$

and it is clear that $(c_{\sigma,\tau})$ is a (continuous) 2-cocycle of Γ in Z. The cohomology class of $(c_{\sigma,\tau})$ in $H^2(F,Z)$ is denoted by $\gamma(G,f)$ or $\gamma_F(G,f)$. It is clear that these cohomology classes depend only on the F-equivalence class of the inner F-form (G, f).

From the exact sequence

$$1 \to Z \to G_0 \to \overline{G}_0 \to 1$$

one obtain an exact sequence

(1)
$$\cdots \to H^1(F,Z) \xrightarrow{\alpha} H^1(F,G_0) \xrightarrow{\beta} H^1(F,\overline{G}_0) \xrightarrow{\delta} H^2(F,Z).$$

By the definition one has $\gamma(G, f) = \delta(c(G, f))$. Note that, since Z is abelian, $H^1(F, Z)$ and $H^2(F, Z)$ have a structure of abelian group, while $H^1(F, G_0)$ and $H^1(F, \overline{G}_0)$ are just a set with a distinguished element 1.

Now, conversely, suppose there is given an element $\xi \in H^1(F, \overline{G}_0)$. Let (φ_{σ}) be a 1-cocycle representing ξ and let $\varphi_{\sigma} = I_{g_{\sigma}}$. Then one can define a new action of Γ on $G_0(\overline{F})$ by

(2)
$$x^{[\sigma]} = g_{\sigma}^{-1} x^{\sigma} g_{\sigma}$$
 for $x \in G_0(\overline{F})$,

which defines an F-form of G_0 , denoted by $(G_0)_{\xi}$. Then, writing f for the identity map $(G_0)_{\xi} \to G_0$, one has an inner F-form $((G_0)_{\xi}, f)$ of G_0 , whose F-equivalence class depends only on the cohomology class ξ , and one has $c((G_0)_{\xi}, f) = \xi$. Thus we see that the set of F-equivalence classes of inner F-forms of G_0 is in one-to-one correspondence with the cohomology set $H^1(F, \overline{G}_0)$. Clearly, one has c(G, f) = 1 if and only if fis F-equivalent to an F-isomorphism.

The following lemma ([Se], Ch.I, 5.7) will be useful later.

Lemma 1. Let (φ_{σ}) and (ψ_{σ}) be 1-cocycles representing $\xi, \eta \in H^1(F,\overline{G}_0)$, respectively, and set $G = (G_0)_{\xi}$ and $\overline{G} = G/(\text{center})$. Then $(\varphi_{\sigma}^{-1}\psi_{\sigma})$ is a 1-cocycle of Γ in $\overline{G}(\overline{F})$ and, denoting its cohomology class by $\xi^{-1}\eta$, one has (for a fixed ξ) a bijective map

$$\eta \in H^1(F, \overline{G}_0) \mapsto \xi^{-1} \eta \in H^1(F, \overline{G}).$$

The proof is straightforward. It is clear that, if (G', f') is an inner *F*-form of G_0 corresponding to η , then $(G', f^{-1}f')$ is an inner *F*-form of

G corresponding to $\xi^{-1}\eta$. If one identifies the center of G with Z by f, then one has

$$\delta(\xi^{-1}\eta) = \delta(\xi)^{-1}\delta(\eta)$$

in $H^2(F, Z)$. Since the sequence (1) (for G) is exact, it follows that

(3)
$$\xi^{-1} \cdot \delta^{-1}(\delta(\xi)) = \operatorname{Im}(H^1(F, G) \to H^1(F, \overline{G})).$$

§2. Γ -diagrams ([Sa3], [T]).

From now on, we assume that G_0 (and hence G, G', etc.) is a (connected) simply connected semisimple algebraic group defined over F. Let T be a maximal torus in G defined over \overline{F} and let X = X(T) denote the character module of T. Then one has

$$X \cong \mathbb{Z}^l, \ l = \dim T = \operatorname{rank} G.$$

Let $\Phi = \Phi(G,T) \subset X$ be a root system of G relative to T and let Δ be a basis of Φ ; we call such a pair (T, Δ) a "coordinate" (defined over \overline{F}) in G. Let (T', Δ') be another coordinate in G. Then, as is well known, there exists $\varphi \in \text{Inn}(G)$ such that one has $\varphi(T) = T', \ \varphi^*(\Delta) = \Delta',$ where $\varphi^* \in {}^t(\varphi|T)^{-1}$; for simplicity, we write

$$\varphi: (T, \Delta) \to (T', \Delta').$$

The inner automorphism φ with this property is uniquely determined up to a right multiplication by I_g with $g \in T$; hence $\varphi \mid T$ and φ^* are uniquely determined.

Now, let $\Gamma = \operatorname{Gal}(\overline{F}/F)$. Then for every $\sigma \in \Gamma$ there exists $\psi_{\sigma} \in \operatorname{Inn}(G)$ such that

$$\psi_{\sigma}: (T, \Delta) \to (T^{\sigma}, \Delta^{\sigma}).$$

We set

(4)
$$\chi^{[\sigma]} = \psi^{*-1}_{\sigma}(\chi^{\sigma}) \quad \text{for all} \quad \chi \in X,$$

which is well defined and gives a new action of Γ on X leaving Δ invariant (as a whole). Moreover, this Galois action, called a $[\Gamma]$ -action (or "*action" in [T]), is defined intrinsically, independently of the choice of coordinates (defined over \overline{F}); it is also inherited to all groups in the same inner type. In fact, let (G', f') be another F-form of G_0 , (T', Δ') a coordinates (defined over \overline{F}) in G', and let

$$\psi'_{\sigma}: (T', \Delta') \to (T'^{\sigma}, {\Delta'}^{\sigma})$$

with $\psi'_{\sigma} \in \operatorname{Inn}(G')$. Then there exists an \overline{F} -isomorphism $\varphi : G \to G'$ such that one has $\varphi \circ f^{-1} \circ f' \in \operatorname{Inn}(G')$ and $\varphi : (T, \Delta) \to (T', \Delta')$. If (G', f') is an inner F-form of G, then from $\varphi^{\sigma} \circ \varphi^{-1} \in \operatorname{Inn}(G')$, one has $\psi'_{\sigma} \circ \varphi = \varphi^{\sigma} \circ \psi_{\sigma}$ on T, whence follows that

(5)
$$\varphi^*(\chi)^{[\sigma]'} = \varphi^*(\chi^{[\sigma]}) \quad \text{for all} \quad \chi \in X, \ \sigma \in \Gamma,$$

i.e., φ^* is a $[\Gamma]$ -isomorphism of X onto X' = X(T') (and the converse is also true).

We call a coordinate (T, Δ) in G F-admissible if the following two conditions are satisfied.

(i) T is defined over F and contains a maximal F-split torus A in G.

(ii) Let X_0 denote the annihilater of A in X. Then the basis Δ is "adapted to X_0 " in the sense that there exists a linear order in X for which all $\alpha_i \in \Delta$ are positive and the following condition is satisfied:

$$\chi, \chi' \in X, \ \chi > 0, \ \chi \equiv \chi' \not\equiv 0 \pmod{X_0} \Rightarrow \chi' > 0.$$

Let (T, Δ) be an F-admissible coordinate in G and set

$$\Phi_0 = \Phi \cap X_0, \ \Delta_0 = \Delta \cap X_0,$$
$$\overline{\Phi} = \pi(\Phi - \Phi_0), \ \overline{\Delta} = \pi(\Delta - \Delta_0),$$

 π denoting the projection $X \to \overline{X} = X/X_0 = X(A)$. Then it is known (e.g. [Sa3]) that Φ_0 is a (closed) subsystem of Φ , of which Δ_0 is a basis, and that $\overline{\Phi}$ is a system of *F*-roots of *G* relative to *A* (which becomes a root system in a wider sense) and $\overline{\Delta}$ is a basis of $\overline{\Phi}$. The closed (semisimple) subgroup of *G* corresponding to Δ_0 , denoted by $G(\Delta_0)$, coincides with the semisimple part of Z(A) (centralizer of *A*) and is called the (semisimple) "anisotropic kernel" of *G* over *F* (relative to (T, Δ)). Moreover it is known that, for $\varphi = I_g$ with $g \in N(T)$ (normalizer of *T*), the coordinate $(T, \varphi^*(\Delta))$ is *F*-admissible if and only if one has $g \in N(A)T$ and that, in particular, for $\varphi = \psi_{\sigma}$ one has $g \in Z(A)T$. It follows that Δ_0 is [Γ]-invariant and the [Γ]-orbit decomposition of $\Delta - \Delta_0$ is given by

(6)
$$\Delta - \Delta_0 = \bigcup_{\gamma_i \in \overline{\Delta}} \pi^{-1}(\gamma_i) \cap \Delta.$$

Note that, if (T', Δ') is another *F*-admissible coordinate in *G* with a maximal *F*-split torus A' and if $\varphi \in \text{Inn}(G)$ and $\varphi : (T, \Delta) \to (T', \Delta')$,

then one has automatically $\varphi(A) = A'$ (see Lem. 2 in §4). Thus Δ_0 part of Δ is also intrinsically determined, independently of the choice of *F*-admissible coordinate (T, Δ) .

As usual, the basis Δ is expressed by a Dynkin diagram. The system $\Sigma = (\Delta, \Delta_0, [\Gamma])$ formed of a Dynkin diagram Δ , a $[\Gamma]$ -action on Δ , and Δ_0 will be called a Γ -diagram (or "Tits index", or "Satake diagram") of G relative to (T, Δ) . We express $\alpha \in \Delta_0$ by a black vertex and $\alpha \in \Delta - \Delta_0$ by a white vertex. As noted above, the Γ -diagram of G is uniquely determined up to "congruence" (in an obvious sense) only by the F-structure of G. Hence we write $\Sigma = \Sigma(G)$ or $\Sigma_F(G)$.

One has the following "isomorphism theorem" due to Tits and independently to the author (cf. [B-T], [T], [Sa1], [Sa3]).

Theorem 1. Let G and G' be two simply connected semisimple algebraic groups over a field F of characteristic zero. Let (T, Δ) and (T', Δ') be F-admissible coordinates in G and G', respectively, and let

$$\Sigma = (\Delta, \Delta_0, [\Gamma])$$
 and $\Sigma' = (\Delta, \Delta'_0, [\Gamma]')$

be the corresponding Γ -diagrams. Then G and G' are F-isomorphic if and only if one has a congruence $\varphi^* : \Sigma \to \Sigma'$ and an F-isomorphism $\varphi_0 : G(\Delta_0) \to G'(\Delta'_0)$ such that $\varphi^* \mid \Delta_0$ coincides with φ^*_0 .

In the notation of the above theorem, suppose one has an F-isomorphism $\varphi : G \to G'$. Then φ^* is a congruence of Σ onto a Γ diagram $(\varphi^*(\Delta), \varphi^*(\Delta_0), \varphi^*[\Gamma]\varphi^{*-1})$ of G', which in turn is congruent to Σ' . Hence, combining these two congruence, one obtains a congruence $\Sigma \to \Sigma'$, which we call a congruence *induced by* φ .

For convenience, we recall here some well-known definitions. G is called "F-split" (or of Chevalley type), if there is an F-split maximal torus T = A in G. For such a T, the coordinate (T, Δ) (with any basis Δ) is F-admissible and the corresponding Γ -diagram Σ has the property that $\Delta_0 = \emptyset$ and the $[\Gamma]$ -action is trivial. Conversely, if $\Sigma = \Sigma_F(G)$ has this property, then G is F-split. G is called "F-quasisplit" (or of Steinberg type) if one has T = Z(A), or equivalently $\Phi_0 = \emptyset$. In this case, (T, Δ) is F-admissible if and only if Δ is Γ -invariant (as a whole); and of course one then has $\Delta_0 = \emptyset$. Conversely, if $\Delta_0 = \emptyset$ in $\Sigma_F(G)$, then G is F-quasisplit. It should also be noted that G is "F-anisotropic" (i.e., F-rank G = 0) if and only if one has $\Delta = \Delta_0$ in $\Sigma_F(G)$.

$\S 3.$ Classification over a local field.

It was shown by Chevalley [Ch1,2] that for any field F (of any characteristic) and for any Dynkin diagram Δ there exists uniquely (up to F-isomorphism) an F-split semisimple algebraic group of adjoint type defined over F (the so-called Chevalley group). When F is algebraically closed, this gives a complete classification of (simply connected) semisimple algebraic group over F. It follows also that for any field F, any Dynkin diagram Δ , and for any action of Γ on Δ , there exists uniquely (up to F-isomorphism) an F-quasisplit simply connected semisimple algebraic group G_0 defined over F with $\Sigma_F(G) = (\Delta, \emptyset, \Gamma)$ (the uniqueness follows from Th.1). Therefore, for the classification theory over F of characteristic zero), it is enough to fix an F-quasisplit simply connected semisimple algebraic group G_0 over F and to determine all inner F-forms of G_0 .

For $F = \mathbb{R}$, one has the following theorem.

Theorem 2. Let G and G' be simply connected semisimple algebraic groups defined over \mathbb{R} . Then G and G' are \mathbb{R} -isomorphic if and only if the Γ -diagrams $\Sigma_{\mathbb{R}}(G)$ and $\Sigma_{\mathbb{R}}(G')$ are congruent.

This follows from Theorem 1 and from the fact that a compact (i.e., \mathbb{R} -anisotropic) \mathbb{R} -form G is uniquely determined (up to \mathbb{R} -isomorphism) only by its (unmarked) Dynkin diagram Δ (Weyl's theorem). A direct method of classifying Γ -diagrams over \mathbb{R} was given by Araki. (See [A] or [Sa3], Appendix by Sugiura. For a more general method of classifying "Tits indices", see [T]. For the classification over \mathbb{R} , cf. also [Mu], [Bo1]). For the determination of the invariant γ over \mathbb{R} , see §6.

For a **p**-adic field F (i.e., a finite extension of \mathbb{Q}_p) the following theorem of M. Kneser is fundamental. (For a uniform proof of it, see [Br-T]).

Theorem 3 ([K1]). Let F be a p-adic field and G a simply connected semisimple algebraic group defined over F. Then $H^1(F,G) = 1$.

In view of the exact sequence (1), this implies the following

Theorem 4 ([K1]). Let F be a p-adic field. Let G_0 be a simply connected semisimple algebraic group defined over F and let Z be the center of G_0 . Then the map $(G, f) \mapsto \gamma(G, f)$ gives rise to a bijective correspondence between the set of F-equivalence classes of inner F-forms (G, f) of G_0 and $H^2(F, Z)$.

In fact, it is enough to show that the map δ in the sequence (1) is bijective. It is known (Lem. 4 in §4) that when F is a **p**-adic field δ is surjective. The injectivity follows from (3) and Theorem 3.

Theorem 4 shows that over a p-adic field F the simply connected semisimple algebraic groups are completely classified by the F-quasisplit group G_0 (i.e., by the $[\Gamma]$ -action on Δ) and the cohomological invariant $\gamma \in H^2(F, Z)$. From the result of classification, one sees that over a **p**-adic field F an absolutely simple "anisotropic" F-form G occurs only for the type $({}^1A_l)$. Consequently, the cohomological invariant $\gamma(G, f)$ reduces essentially to the classical Hasse invariant of central simple algebras (cf. [K1], [Sa3], and §6).

$\S4$. Scalar extensions and Hasse principles.

Let G be a simply connected semisimple algebraic group defined over a field F of characteristic zero. We use the notation introduced in \S 1, 2.

Let F' be an extension of F and let $\Gamma' = \operatorname{Gal}(\overline{F}'/F')$, \overline{F}' being an algebraic closure of F'. Identifying \overline{F} with the algebraic closure of F in \overline{F}' , we denote the restriction of $\sigma' \in \Gamma'$ on \overline{F} by σ'_F .

The scalar extension F'/F gives rise in a natural manner to canonical maps (homomorphisms) between cohomology sets (groups), which make the following diagram commutative:

For instance, for $\xi \in H^1(F,\overline{G})$ we denote by $\xi_{F'}$ the corresponding element in $H^1(F',\overline{G})$. Then, in the notation of §1, for $\xi = c_F(G,f) \in H^1(F,\overline{G}_0)$ one has $\xi_{F'} = c_{F'}(G,f)$.

Let (T, Δ) be an *F*-admissible coordinate in *G* and let

$$\Sigma = \Sigma_F(G) = (\Delta, \Delta_0, [\Gamma])$$

be the corresponding Γ -diagram. Similarly, let (T', Δ') be an F'-admissible coordinate in G with

$$\Sigma' = \Sigma_{F'}(G) = (\Delta', \Delta'_0, [\Gamma']).$$

Then there exists $\varphi \in \text{Inn}(G_0)(\overline{F}')$ such that $\varphi : (T, \Delta) \to (T', \Delta')$; then one has automatically $\varphi(A) \subset A'$, where A and A' are maximal *F*-split resp. *F'*-split tori contained in *T* and *T'* (see Lemma 2 below). Therefore the induced isomorphism φ^* has the following properties:

(7)
$$\varphi^*(\Delta) = \Delta', \ \varphi^*(\Delta_0) \supset \Delta'_0, \text{ and}$$

On Classification of Semisimple Algebraic Groups

$$\varphi^*(\chi^{[\sigma'_F]}) = \varphi^*(\chi)^{[\sigma']} \quad \text{for all} \quad \chi \in X, \ \sigma' \in \Gamma'.$$

Note that the map $\varphi^* : \Sigma \to \Sigma'$ is determined intrinsically, independently of the choice of coordinates (T, Δ) , (T', Δ') . The image by φ^* of a $[\Gamma]$ -orbit in Σ is a union of a finite number of $[\Gamma']$ -orbits in Σ' . In particular, the image of a white $[\Gamma]$ -orbit is always a union of white $[\Gamma']$ -orbits.

Lemma 2. The notation being as above, let (T, Δ) (resp. (T', Δ')) be an F- (resp. F'-)admissible coordinate in G and let $\varphi \in \text{Inn}(G)$ be such that $\varphi : (T, \Delta) \to (T', \Delta')$. Then, for maximal F-split resp. F'-split tori A and A' contained in T and T', one has $\varphi(A) \subset A'$.

Proof. First there exists $\varphi_1 \in \text{Inn}(G)(F')$ such that $\varphi_1(A) \subset A'$. Then there exists $\varphi_2 = I_{g_2}, g_2 \in Z(\varphi_1(A))(\overline{F'})$ such that $\varphi_2\varphi_1(T) = T'$. Then one has $X'_0 \subset \varphi_2^* \varphi_1^*(X_0)$. Let Δ_1 be a basis of Φ adapted to both $(\varphi_2^* \varphi_1^*)^{-1}(X'_0)$ and X_0 ; then $\varphi_2^* \varphi_1^*(\Delta_1)$ is a basis of Φ' adapted to X'_0 . Therefore there exist

$$g_3 \in N(A) \cap N(T)(\overline{F})$$
 and $g_4 \in N(A') \cap N(T')(\overline{F'})$

such that, for $\varphi_3 = I_{g_3}$ and $\varphi_4 = I_{g_4}$, one has $\varphi_3^* \Delta = \Delta_1$ and $\varphi_4^* \varphi_2^* \varphi_1^* \Delta_1 = \Delta'$. Then one has

$$\varphi_4\varphi_2\varphi_1\varphi_3: (T,\Delta) \to (T',\Delta').$$

By the uniqueness of such a map, one has $\varphi = \varphi_4 \varphi_2 \varphi_1 \varphi_3$ on T; hence, in particular, one has $\varphi(A) \subset A'$, q.e.d.

Now let F be a number field (i.e., a finite extension of \mathbb{Q}) and let $V = V^F$ denote the set of all places (i.e., equivalence classes of valuations) of F, and let $V_{\infty,1} = V_{\infty,1}^F$ denote the set of all real places. For $v \in V$ we denote by F_v the completion of F with respect to the place v. In the above notation, we write ξ_v for ξ_{F_v} ; similarly, when $\Sigma = \Sigma_F(G)$ we write $\Sigma_v = \Sigma_{F_v}(G)$.

For our purpose it is important to consider the canonical map

(8)
$$\theta: H^1(F,G) \to \prod_{v \in V} H^1(F_v,G).$$

Since, by Theorem 3, $H^1(F_v, G)$ is trivial except for $v \in V_{\infty,1}$, the map θ can also be written as

(8')
$$\theta: H^1(F,G) \to \prod_{v \in V_{\infty,1}} H^1(F_v,G).$$

Then the "Hasse principle" for H^1 , established by Kneser [K2], [K3], Harder [H1], and Chernousov [Cher], can be stated as follows.

Theorem 5. Let G be a simply connected semisimple algebraic group defined over a number field F. Then the canonical map θ in (8') is bijective.

For the proof, see [P-R] (Th. 6.6); the proof for the surjectivity of θ (due to Kneser) is relatively easy. (It seems that no uniform proof for the injectivity of θ is yet known.) For the Galois cohomology of the center Z, one has the following

Lemma 3. (i) The canonical map

(9)
$$H^1(F,Z) \to \prod_{v \in V_{\infty,1}} H^1(F_v,Z)$$

is surjective.

(ii) The canonical map

(10)
$$H^2(F,Z) \to \prod_{v \in V} H^2(F_v,Z)$$

is injective.

(Cf. [P-R], Prop. 7.8, Cor. 2 and Lemma 6.19.)

Lemma 4. If F is a **p**-adic field or a number field, then the map $\delta : H^1(F,\overline{G}) \to H^2(F,Z)$ in the sequence (1) is surjective. (Cf. [P-R], Th. 6.20.)

In order to formulate another type of Hasse principle concerning the Γ -diagrams, let G be a connected semisimple algebraic group defined over F. (Note that here the simply connectedness is irrelevant.) Let (T, Δ) be an F-admissible coordinate in G and let $B = B(\Delta)$ be the corresponding Borel subgroup of G. For a subset Δ_1 of Δ we denote by $G(\Delta_1)$ the corresponding (connected) semisimple closed subgroup of Gand set $P(\Delta_1) = G(\Delta_1)B$. Then it is known that $P(\Delta_1)$ is a parabolic subgroup of G and all parabolic subgroup of G is conjugate to a subgroup of this form. We denote by $\mathcal{P}(\Delta_1)$ the conjugacy class of $P(\Delta_1)$, which can be identified with $G/P(\Delta_1)$; thus $\mathcal{P}(\Delta_1)$ has a natural structure of a projective variety.

Now, for $\sigma \in \Gamma$ one has $B^{\sigma} = B(\Delta^{\sigma}) = \psi_{\sigma} B \psi_{\sigma}^{-1}$ and hence

(11)
$$P(\Delta_1)^{\sigma} = G(\Delta_1^{\sigma})B^{\sigma} = \psi_{\sigma}P(\Delta_1^{[\sigma]})\psi_{\sigma}^{-1}.$$

It follows that $\mathcal{P}(\Delta_1)$ is Γ -invariant if and only if Δ_1 is $[\Gamma]$ -invariant. Thus, in this case, $\mathcal{P}(\Delta_1)$ is a variety defined over F.

We call a parabolic subgroup P of G F-parabolic if it is defined over F. From (11) it can be seen that, if Δ_1 is $[\Gamma]$ -invariant and contains Δ_0 , then $P(\Delta_1)$ is F-parabolic. It is known that all F-parabolic subgroup of G is conjugate (with respect to an element in G(F)) to a $P(\Delta_1)$ with Δ_1 having this property. Thus one obtains

Lemma 5 ([T]). The notation being as above, suppose that Δ_1 is $[\Gamma]$ -invariant. Then the variety $\mathcal{P}(\Delta_1)$ is defined over F. It contains an F-rational point if and only if Δ_1 contains Δ_0 .

Now, one has the following Hasse principle due to Harder ([H2], Satz 4.3.3).

Theorem 6. Let G be a connected semisimple algebraic group defined over a number field F. Let Δ_1 be a subset of Δ invariant under $[\Gamma]$ and let $\mathcal{P}(\Delta_1)$ denote the variety (defined over F) of parabolic subgroup of G conjugate to $\mathcal{P}(\Delta_1)$. Then $\mathcal{P}(\Delta_1)$ has an F-rational point if and only if it has an F_v -rational point for all $v \in V^F$.

By the above observation, one can rephrase this theorem in the following form.

Theorem 6'. Let G be a connected semisimple algebraic group defined over a number field F and let $\Sigma = (\Delta, \Delta_0, [\Gamma])$ and $\Sigma_v = (\Delta, \Delta_0^{(v)}, [\Gamma^{(v)}])$ ($v \in V^F$) be the Γ - resp. $\Gamma^{(v)}$ -diagrams of G over F and F_v . Then Δ_0 is the smallest $[\Gamma]$ -invariant subset of Δ containing all $\Delta_0^{(v)}$ ($v \in V^F$).

Otherwise expressed, one has the following Hasse principle for the Γ -diagrams: a [Γ]-orbit in a Γ -diagram Σ is white if and only if it decomposes in Σ_v into a union of white [$\Gamma^{(v)}$]-orbit for all $v \in V^F$.

$\S 5.$ Classification over a number field.

In this section, let F be a number field. We fix a simply connected semisimple algebraic group G_0 defined over F. (In this section, the assumption for G_0 to be F-quasisplit is irrelevant.) The main results on the classification of inner F-forms of G_0 can be formulated as follows.

Theorem 7. Let (G, f) and (G', f') be two inner F-forms of a simply connected semisimple algebraic group G_0 over a number field

F. Then (G, f) and (G', f') are F-equivalent (i.e., there exists an Fisomorphism $\varphi: G \to G'$ such that $\varphi \circ f^{-1} \circ f' \in \text{Inn}(G')$) if and only if the following two conditions are satisfied.

- (i) One has $\gamma(G, f) = \gamma(G', f')$.
- (ii) (G, f) and (G', f') are F_v -equivalent for all $v \in V_{\infty,1}$.

Proof. The "only if" part is obvious. To prove the "if" part assume that the conditions (i),(ii) are satisfied. Then, by (i) the 1-cohomology classes $\xi = c(G, f)$ and $\xi' = c(G', f')$ are in the same fiber of the map $\delta : H^1(F, \overline{G}_0) \to H^2(F, Z)$. Therefore, by the formula (3) there exists $\eta \in H^1(F, G)$ such that $\beta(\eta) = \xi^{-1}\xi'$. By the condition (ii) one has $\xi_v = \xi'_v$ for all $v \in V_{\infty,1}$, which implies that $\beta(\eta_v) = \xi_v^{-1}\xi'_v = 1$. Hence, for each $v \in V_{\infty,1}$, by the exactness of the sequence (1) (over F_v), one has $\alpha(\zeta^{(v)}) = \eta_v$ for some $\zeta^{(v)} \in H^1(F_v, Z)$. By Lemma 3, (i), there exists $\zeta \in H^1(F, Z)$ such that $\zeta_v = \zeta^{(v)}$ for all $v \in V_{\infty,1}$; then one has $\alpha(\zeta)_v = \alpha(\zeta_v) = \eta_v$. Hence by Theorem 5 (injectivity of θ) one has $\alpha(\zeta) = \eta$, whence $\beta(\eta) = 1$ and so $\xi = \xi'$, q.e.d.

It is clear that the condition (ii) in Theorem 7 can also be stated in the following form:

(ii') For $v \in V_{\infty,1}^F$ let $\Sigma_v = \Sigma_{F_v}(G), \Sigma'_v = \Sigma_{F_v}(G')$. Then for each v one has a congruence $\Sigma_v \to \Sigma'_v$ induced by an F_v -isomorphism $\varphi^{(v)} : G \to G'$ such that $\varphi^{(v)} \circ f^{-1} \circ f' \in \operatorname{Inn}(G')$.

An "existence theorem" for inner F-forms is given as follows:

Theorem 8. Let G_0 be a simply connected semisimple algebraic group defined over a number field F. Suppose there are given $\gamma \in$ $H^2(F,Z)$ and, for each $v \in V_{\infty,1}$, an inner F_v -forms $(G^{(v)}, f^{(v)})$ of G_0 such that the following consistency condition (C) is satisfied:

(C) One has $\gamma_v = \gamma_{F_v}(G^{(v)}, f^{(v)})$ for all $v \in V_{\infty,1}$. Then there exists uniquely (up to an F-equivalence) an inner F-form (G, f) of G_0 such that $\gamma(G, f) = \gamma$ and that (G, f) is F_v -equivalent to $(G^{(v)}, f^{(v)})$ for all $v \in V_{\infty,1}$.

Proof. By Lemma 4 the map $\delta : H^1(F, \overline{G}_0) \to H^2(F, Z)$ in the sequence (1) is surjective. Hence there exists an inner F-form (G, f) of G_0 such that $\gamma_F(G, f) = \delta(c_F(G, f)) = \gamma$. Then by the condition (C) one has $\gamma_{F_v}(G, f) = \gamma_{F_v}(G^{(v)}, f^{(v)})$ for all $v \in V_{\infty,1}$; this means that, if one puts $\xi = c_F(G, f), \ \xi^{(v)} = c_{F_v}(G^{(v)}, f^{(v)})$, then ξ_v and $\xi^{(v)}$ are in the same fiber of the map δ in the sequence (1) over F_v . Hence by the formula (3) one has $\beta(\eta^{(v)}) = \xi_v^{-1}\xi^{(v)}$ for some $\eta^{(v)} \in H^1(F_v, G)$. By Theorem 5 (surjectivity of θ) there exists $\eta \in H^1(F, G)$ such that one

has $\eta_v = \eta^{(v)}$ for all $v \in V_{\infty,1}$. Then, putting

$$\xi' = \xi \beta(\eta) \in H^1(F, G_0), \quad \xi' = c_F(G', f'),$$

one has

$$\gamma_F(G', f') = \delta(\xi') = \delta(\xi) = \gamma, c_{F_v}(G', f') = \xi'_v = \xi_v \beta(\eta_v) = \xi^{(v)}.$$

Thus (G', f') is an inner *F*-form of G_0 satisfying all the requirements. The uniqueness follows from Theorem 7, q.e.d.

Remark 1. As will be shown in §6, one has $H^2(F_v, Z) = 1$ for all $v \in V_{\infty,1}$, if G_0 is absolutely simple, *F*-quasisplit and of one the types (A_l) (*l* even), (E_6) , (E_8) , (F_4) , (G_2) . Hence in these cases, the above consistency condition (C) is automatically satisfied.

Remark 2. If F is totally imaginary, one has (analogously to Th.4) that the map $\delta : H^1(F, \overline{G}_0) \to H^2(F, Z)$ is bijective. (For a similar result in the function field case, see [H3].)

Remark 3. The list of all possible Γ -diagrams ("Tits indices") $\Sigma(G)$ over a number field F was given in [T]. From our point of view, the same result can also be obtained by Theorems 6' and 8, using the classification over local fields. For groups of exceptional type, a method of explicit construction of F-forms was also given by Tits (see e.g. [Sc]).

$\S 6.$ Determination of the invariant.

In this section, G_0 is an *F*-quasisplit simply connected absolutely simple algebraic group over a number field *F*. We give an explicit determination of $H^2(F, Z)$. At the end, we also give a list of $\gamma(G)$ for all \mathbb{R} -forms *G* of G_0 . (Note that except for the case where G_0 is of type (D_l) (*l* even) the invariant $\gamma(G, f)$ is actually independent of *f*; hence we omit *f*.) For convenience, we treat the case of groups of type (D_l) (*l* even) separately.

I) The case where G_0 is *F*-split (except the case $({}^1D_l)$, *l* even).

We denote by μ_n the group of *n*-th roots of unity in \overline{F} viewed as a group on which Γ is acting. Then, in the case of *F*-split G_0 (not of type $({}^1\mathbf{D}_l)$, *l* even), one has

(12)
$$Z \cong \mu_n,$$

where n is given as follows:

 $G_0 = {}^{1}A_l, \quad B_l, \quad C_l, \quad {}^{1}D_l \ (l \text{ odd}), \quad {}^{1}E_6, \quad E_7, \quad E_8, \quad F_4, \quad G_2$ $n = l+1, \quad 2, \quad 2, \quad 4, \quad 3, \quad 2, \quad 1, \quad 1, \quad 1$

It follows that

(13)
$$H^1(F,Z) \cong F^*/(F^*)^n, \ H^2(F,Z) \cong Br(F)_n,$$

where Br(F) is the Brauer group of F and $Br(F)_n$ denotes the subgroup of Br(F) consisting of those elements ξ with $\xi^n = 1$ (see [P-R], p.73, Lem. 2.6). Therefore over the local fields F_v ($v \in V^F$) one has

(13a)
$$H^{2}(F_{v}, Z) \cong Br(F_{v})_{n} \cong \begin{cases} (1/n)\mathbb{Z}/\mathbb{Z} & (v \notin V_{\infty}) \\ (1/2)\mathbb{Z}/\mathbb{Z} & (v \in V_{\infty,1}, n \text{ even}) \\ 1 & (\text{otherwise}). \end{cases}$$

For the case n even, the invariant $\gamma_{\mathbb{R}}(G)$ for all inner \mathbb{R} -forms G of G_0 is given in the list at the end of the section. For classical groups, the determination of this invariant is well known. For the case $G_0 = E_7$, this can be done, e.g., by using the results in [Mu], [Sa2].

II) The case where G_0 in not *F*-split (except the case $({}^{2}D_l)$, l even). There are three cases

$$G_0 = {}^{2}A_l, \; {}^{2}D_l \; (l \text{ odd} \ge 3), \; {}^{2}E_6.$$

In these cases, there is a quadratic extension F'/F such that G_0 is split over F'. Then one has

(14)
$$Z \cong R_{F'/F}^{(1)}(\mu_n) = \{ \zeta = (\zeta_1, \zeta_2) \in R_{F'/F}(\mu_n) \mid \zeta_1 \zeta_2 = 1 \}.$$

and an exact sequence

(15)
$$1 \to F^*/(F^*)^n N_{F'/F}(F'^*) \to H^2(F,Z) \to$$

$$\rightarrow \operatorname{Ker}(Br(F')_n \xrightarrow{N} Br(F)_n) \rightarrow 1,$$

where N stands for $N_{F'/F}$ (see [P-R], p.332, (6.31)).

When n is odd (i.e., $G_0 = {}^2\mathbf{A}_l$ (l even), ${}^2\mathbf{E}_6$), one has

(15')
$$H^{2}(F,Z) \cong \operatorname{Ker}(Br(F')_{n} \xrightarrow{N} Br(F)_{n}),$$
$$H^{2}(F',Z) \cong Br(F')_{n}.$$

Therefore, if $v \in V(F)$ dose not decompose in F'/F (i.e., if v has a unique extension to F', denoted again by $v, F' \otimes F_v = F'_v$), one has $N : Br(F'_v)_n \cong Br(F_v)_n$ and hence

(15'a)
$$H^2(F_v, Z) = 1.$$

If v decomposes in F'/F (i.e., if v has two extensions w, w' in F', $F' \otimes F_v = F'_w \oplus F'_{w'}$), then one has

(15'b)
$$H^2(F_v, Z) \cong Br(F_v)_n.$$

In either case, one has $H^2(F_v, Z) = 1$ for $v \in V_{\infty,1}$.

When n is even (i.e., $G_0 = {}^2A_l$ (l odd), 2D_l (l odd)), one has an exact sequence

(15")
$$1 \to F^*/N_{F'/F}(F'^*) \to H^2(F,Z) \to$$

$$\rightarrow \operatorname{Ker}(Br(F')_n \xrightarrow{N} Br(F)_n) \rightarrow 1,$$

and

$$H^2(F',Z) \cong Br(F')_n.$$

Therefore, if v does not decompose in F'/F, then one has

(15"*a*)
$$H^2(F_v, Z) \cong F_v^* / N_{F_v'/F_v}(F'_v^*) \cong Br(F_v)_2.$$

If v decomposes in F'/F, then one has

(15"b)
$$H^2(F_v, Z) \cong Br(F_v)_n.$$

Thus in view of Lemma 3, (ii) one has actually (instead of (15''))

(16)
$$H^2(F_v, Z) \cong (F^*/N_{F'/F}(F'^*)) \times \operatorname{Ker}(Br(F')_n \xrightarrow{N} Br(F)_n).$$

For the case *n* even, the invariant $\gamma_{\mathbb{R}}(G)$ for all inner \mathbb{R} -forms of G_0 is given in the list below.

III) The case where G_0 is of type (D_l) (*l* even)

Let F' be the smallest Galois extension of F such that G_0 is split over F' and let [F':F] = m; we write $G_0 = {}^m D_l$. Then there are the following four case:

$$G_0 = {}^1\mathrm{D}_l, \; {}^2\mathrm{D}_l \; (l \; \mathrm{even} \ge 4), \; {}^3\mathrm{D}_4, \; {}^6\mathrm{D}_4.$$

When $G_0 = {}^1D_l$, one has

(17)
$$Z = \mu_2 \times \mu_2,$$

(18)
$$H^2(F,Z) \cong Br(F)_2 \times Br(F)_2,$$

(18a)
$$H^2(F_v, Z) \cong Br(F_v)_2 \times Br(F_v)_2.$$

When $G_0 = {}^2D_l$, one has

(19)
$$Z = R_{F'/F}(\mu_2),$$

(20)
$$H^2(F,Z) \cong Br(F')_2, \quad H^2(F',Z) \cong Br(F')_2 \times Br(F')_2.$$

(20a)
$$H^2(F_v, Z) \cong Br(F'_v)_2$$
 for v not decomp. in F'/F ,

(20b)
$$H^2(F_v, Z) \cong Br(F_v)_2 \times Br(F_v)_2$$
 for v decomp. in F'/F .

When $G_0 = {}^3D_4$, one has

(21)
$$Z = R_{F'/F}^{(1)}(\mu_2),$$

(22)
$$H^{2}(F,Z) \cong \operatorname{Ker}(Br(F')_{2} \longrightarrow Br(F)_{2}),$$
$$H^{2}(F',Z) \cong Br(F')_{2} \times Br(F')_{2}.$$

(22a) $H^2(F_v, Z) = 1$ for v not decomp. in F'/F,

(22b)
$$H^2(F_v, Z) \cong Br(F_v)_2 \times Br(F_v)_2$$
 for v decomp. in F'/F .

When $G_0 = {}^6D_4$, we take an intermediate field F_1 such that $F \subset F_1 \subset F'$ and $[F_1:F] = 3$. Then one has

(23)
$$Z = R_{F_1/F}^{(1)}(\mu_2),$$

(24)
$$H^{2}(F,Z) \cong \operatorname{Ker}(Br(F_{1})_{2} \longrightarrow Br(F)_{2}),$$
$$H^{2}(F_{1},Z) \cong Br(F')_{2}, \quad H^{2}(F',Z) \cong Br(F')_{2} \times Br(F')_{2}.$$

If v does not decompose in F_1/F , then one has

(24a)
$$H^2(F_v, Z) = 1.$$

If v decomposes in F_1/F but does not decompose completely in F'/F, then one has

(24b)
$$H^2(F_v, Z) \cong Br(F'_v)_2.$$

If v decomposes completely in F'/F, one has

(24c)
$$H^2(F_v, Z) \cong Br(F_v)_2 \times Br(F_v)_2.$$

In all cases, one has $H^2(F_v, Z) = 1$ for $v \in V_{\infty,1}$ except for the case where v decomposes completely in F'/F. Hence for the determination of $\gamma_{\mathbb{R}}(G)$ it is enough to consider only inner \mathbb{R} -forms of $G_0 = {}^1\mathbb{D}_l$ (leven), which is given in the list below.

In the following list, one has $l = \operatorname{rank} G$, $r = \mathbb{R}$ -rank G (which equals the number of white $[\Gamma]$ -orbits in $\Sigma_{\mathbb{R}}(G)$), and the type of G over \mathbb{R} is expressed by Cartan's symbol. An element in $Br(\mathbb{R})$ is expressed by the corresponding Hasse invariant 0, $1/2 \in (1/2)\mathbb{Z}/\mathbb{Z}$. As remarked above, for all G_0 not included in this list, one has $H^2(\mathbb{R}, Z) = 1$. (For a complete list of Γ -diagrams over local fields, see [A], [Sa3], or [T].)

G_0/\mathbb{R}	G/\mathbb{R}	Γ -diagram of G/\mathbb{R}	$\gamma_{\mathbb{R}}(G)$
	AI	0-00-0	0
$^{1}A_{l}$	$\begin{array}{c} \text{AII} \\ (l \text{ odd}) \end{array}$	●-0-●-00-●	$\frac{1}{2}$
B_l	BI	$0 - 0 - \cdots - 0 \xrightarrow{\bullet} \cdots \xrightarrow{\bullet} \Rightarrow \underbrace{\bullet}_{l-r}$	$egin{array}{l} 0 \mbox{ if } l-r \equiv 0,3 \ (4) \ 1 \ 1 \ 2 \mbox{ if } l-r \equiv 1,2 \ (4) \end{array}$
C _l	CI	0-00 ⇐ 0	0
	CII	$\bullet - \circ \bullet - \circ - \circ \bullet $	$\frac{1}{2}$
$^{1}\mathrm{D}_{l}$	$ \begin{pmatrix} \mathrm{DI} \\ l \mathrm{odd} \\ l-r \mathrm{even} \end{pmatrix} $	0-0 00 - 0	$0 \text{ if } l - r \equiv 0 \ (4) \\ \frac{1}{2} \text{ if } l - r \equiv 2 \ (4)$
	$\left(\begin{matrix} \mathrm{DI} \\ l \text{ even} \\ l-r \text{ even} \end{matrix}\right)$	same	$0 \text{ if } l - r \equiv 0 \ (4) \\ (\frac{1}{2}, \frac{1}{2}) \text{ if } l - r \equiv 2 \ (4)$
	$\begin{array}{c} { m DIII} \ (l { m even}) \end{array}$	•••••	$(\frac{1}{2}, 0)$ or $(0, \frac{1}{2})$
E7	EV	0-0-0-0-0	0
	EVI	0-0- 0-0-	$\frac{1}{2}$
	EVII	00-0	0
	compact	••••	$\frac{1}{2}$
$^{2}A_{l}$	$\begin{array}{c} {\rm AIII} \\ (l {\rm odd}) \end{array}$	$\begin{array}{c} \bigcirc -\bigcirc - \\ \bigcirc $	0 if $l - 2r \equiv 3$ (4) $\frac{1}{2}$ if $l - 2r \equiv 1$ (4)
$^{2}\mathrm{D}_{l}$.	$\mathrm{DI}\ (l-r ext{ odd})$	$0 - 0 - \cdots - 0 - \cdots - 0$ $l - r(\geq 3) \text{ or } 0$	0
	$\begin{array}{c} \text{DIII} \\ (l \text{ odd}) \end{array}$	•	$\frac{1}{2}$

References

- [A] S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. of Math., Osaka City Univ., 13 (1962), 1-34.
- [B-T] A. Borel and J. Tits, Groupes réductifs, Publ. Math., 27, IHES, 1965.
- [Bo1] M.V. Borovoi, Galois cohomology of real reductive groups and real forms of simple Lie algebras, Funct. Anal. i evo Prilozhenia, 22 (1988), 63–64.
- [Bo2] _____, "Abelian Galois Cohomology of Reductive Groups", Mem. A.M.S., 132, No. 626, 1998.
- [Br-T] F. Bruhat and J. Tits, Groupes algébriques simples sur un corps local: cohomologie galoisienne, decompositions d'Iwasawa et de Cartan, C. R. Acad. Sci., 263 23A (1966), 867–869.
- [Cher] V.I. Chernousov, On the Hasse principle for groups of type E₈, Dokl. Akad. Nauk SSSR, **306** (1989), 1059–1063; = Soviet Math. Dokl., **39** (1989), 592–596.
- [Ch1] C. Chevalley, Sur certains groupes simples, Tohoku Math. J., 7 (1955), 14–66.
- [Ch2] _____, "Classification des Groupes de Lie Algébriques", Vol. 1, 2, Sém. C. Chevalley, 1956-58, E.N.S., Paris, 1958.
- [K1] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern I, Math. Z., 88 (1965), 40-47; II, ibid., 89 (1965), 250-272.
- [K2] _____, Hasse principle for H¹ of simply connected groups, in "Algebraic Groups and Discontinuous Subgroups", Proc. Symp. Pure Math., 9, A.M.S., 1966, pp.159–163.
- [K3] _____, "Lectures on Galois Cohomology of Classical Groups", TIFR, Bombay, 1969.
- [H1] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen I, Math. Z., 90 (1965), 404–428; II, ibid., 92 (1966), 396–415.
- [H2] _____, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, Jahresber. Deutschen Math. Vereinig., 70 (1968), 182–216.
- [H3] _____, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen, III, J. für reine u. angew. Math., 274/275 (1975), 125– 138.
- [Mi] H. Minkowski, Über die Bedingungen, unter welchen zwei quadratische Formen mit rationalen koeffizienten ineinander rational transformiert werden können, Crelle J. für reine u. angew. Math., 106 (1891), 5-26; = Ges. Abh., I, pp. 219-239.
- [Mu] S. Murakami, Sur la classification des algébres de Lie réelles et simples, Osaka J. Math., 2 (1965), 291–307.
- [P-R] V. Platonov and A. Rapinchuk, "Algebraic Groups and Number Theory", (Russian ed., 1991) English transl. by R. Rowen, Acad. Press, 1994.

- [San] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. für reine u. angew. Math., 327 (1981), 12–80.
- [Sa1] I. Satake, On the theory of reductive algebraic groups over a perfect fields, J. Math. Soc. Japan, 15 (1963), 210–235.
- [Sa2] _____, On a certain invariants of the groups of type E_6 and E_7 , J. Math. Soc. Japan, **20** (1968), 322–335.
- [Sa3] _____, "Classification Theory of Semi-Simple Algebraic Groups (with an Appendix by M. Sugiura)", Marcel Dekker, New York, 1971.
- [Sc] R.D. Schafer, "An Introduction to Nonassociative Algebras", Acad. Press, 1966; Dover, New York, 1995.
- [Se] J.-P. Serre, "Cohomologie Galoisienne", Lect. Notes in Math., 5, Springer Verlag, 1964; 5th ed., 1994.
- [T] J. Tits, Classification of algebraic semisimple groups, in "Algebraic Groups and Discontinuous Subgroups", Proc. Symp. Pure Math., 9, A.M.S., 1966, pp. 33–62.

Department of Mathematics Chuo University 1-13-27 Kasuga, Bunkyoku Tokyo 112-8551