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On Classification of Semisimple Algebraic Groups 

lchiro Satake 

In this note we give a survey of the classification theory of semisimple 
algebraic groups over a number field. As is well known, for a given 
field F, the F-isomorphism class of such a group G defined over F is 
determined up to F-isogeny by the "f-diagram" I:p(G) and by the F
isomorphism class of the anisotropic kernel of G (see §2; [Sal], [Tl). On 
the other hand, if G belongs to an inner type of an F-quasisplit group 
G0 with center Z, then the F-equivalence class of an "inner F-form" 
( G, f) of G0 corresponds in a one-to-one way to a cohomology class in 
H 1(F, G0 /Z), which in turn determines an element in H 2 (F, Z), denoted 
by "!F(G,f) (see §1; [Sa2]). 

For F = JR (the field of real numbers), it is well known that the JR
isogeny class of G is uniquely determined only by the f-diagram I:IR ( G) 
( cf. [A], [Sa3], [Tl), while for a p-adic field F, a fundamental result 
of Kneser [Kl] says that the F-equivalence class of an inner F-form 
( G, f) of a simply connected Go is uniquely determined only by the 
co homological invariant "/ F ( G, f). In treating the case of a number field, 
the key step is in the so-called local-global principle, or Hasse principle, 
which also plays an important role in the class field theory. The Hasse 
principle for H 1 (F, Go) (Go simply connected) had been established by 
Kneser and Harder ([K2], [K3], [HI]) except for the case of (E8 ), which 
was recently settled by Chernousov [Cher] (1989). On the other hand, 
for f-diagrams, one can deduce the Hasse principle from a result in [H2] 
(see §4). Combining these results, one obtains a complete picture of the 
classification. We can formulate the main result in the following form. 

MAIN THEOREM. Let F be an algebraic number field of finite 
degree and let Vc'°,1 denote the set of all real places of F. Let Go be an 
F -quasisplit simply connected semisimple algebraic group over F and let 
Z be the center of G0 . Suppose there are given a collection of r -diagrams 
{I:(v) (v E VCXJ,i)} over JR and c E H 2 (F, Z) such that, for each v E VCXJ,l, 
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there exists an inner Fv-form (G(v), J(v)) of Go with 1'R,(G(v), f(v)) = Cv 
and:ER(G(v)) = :E(v)_ Then there exists an innerF-form (G,f) of Go 
(uniquely determined up to F-equivalence) such that 'YF(G,J) = c and 
(G, f) is Fv-equivalent to (G(v), f(v)) (hence :EFJG) = :E(v)) for all 
v E V00 ,1. (See, §5, Th. 7, 8.) 

It should be noted that this result is quite analogous to the classical 
result of Minkowski [Mi] (1891) on the equivalence of quadratic forms 
with coefficients in Q. Here we see that the F-equivalence class of (G, f) 
is uniquely determined by the cohomological invariant 'Y F ( G, f), which 
is an analogue of the "Hasse invariant", and a collection of r -diagrams 
{:E(v) (v E V00 , 1 )} (or more precisely {(G(v), jCv))}) satisfying the above 
consistency condition, which is an analogue of the "signature(s)" of a 
quadratic form. 

The above main theorem is essentially contained in a result of Sansuc 
([San], Cor.4.5), which was generalized quite recently to the case of 
reductive groups by Borovoi ([Bo2], Th.5.11). In §5 of this note, we give a 
direct proof of it based on the Hasse principle. An explicit determination 
of the relevant invariants is given in §6. 

§1. Cohomological invariants ([Se], [Sa2]). 

Let F be a field of characteristic zero and G0 an algebraic group 
defined over F. Let Z denote the center of G0 and set G0 = G0 / Z. Then 
G0 can naturally be identified with the group of inner automorphisms 
of Go, Inn(Go), by the correspondence g <----+ lg (g E Go), g and lg 
denoting the class of g mod Z and the inner automorphism lg : x ~ 
gxg- 1 (x E G0 ), respectively. 

By an inner F-form of G0 we mean a pair ( G, f) formed of an 
algebraic group G defined over F and an F-isomorphism f : G ---+ G0 

such that for all a Er= Gal(F/F) one has 'Pu= r o J- 1 E Inn(G0 ), 

F denoting the algebraic closure of F. Two inner F-forms (G, J) and 
(G',f') are said to be F-equivalent, if there exists an F-isomorphism 
cp : G ---+ G' such that f' o cp o 1-1 E Inn(G0 ). Sometimes, G alone is 
called an inner F-form of Go, or G and G0 are said to be in the same 
inner type over F, if there exists an isomorphism f : G ---+ G0 such that 
(G, f) is an inner F-form of Go in the above sense. In that case, two 
isomorphisms f, f' of G onto G0 satisfying this condition are said to be 
F-equivalent if (G, f) and (G, /') are F-equivalent in the above sense. 

Let (G, f) be an inner F-form of G0 • Then in the above notation it 
is clear that (cpu) is a (continuous) 1-cocycle of r in G0 ~ Inn(G0 ), i.e., 
it satisfies the condition cp;cp,,. = 'Pu-r for all a, T E r. We denote the 
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cohomology class of ('Po-) in H 1 (F,G0 ) by c(G,f), or by cp(G,f) if F 
is to be specified. Writing i.f!a = 19 ,, with ga E Gn(F), one has 

and it is clear that ( ca,T) is a (continuous) 2-cocycle of r in z. The coho
mology class of (ca,T) in H 2 (F, Z) is denoted by '"Y( G, f) or '"YF( G, f). It 
is clear that these cohomology classes depend only on the F-equivalence 
class of the inner F-form ( G, f). 

From the exact sequence 

1 -+ Z -+ Go -+ Go -+ 1 

one obtain an exact sequence 

By the definition one has '"Y(G,f) = 8(c(G,f)). Note that, since Z is 
abelian, H 1 (F, Z) and H 2 (F, Z) have a structure of abelian group, while 
H 1 ( F, G 0 ) and H 1 ( F, G0 ) are just a set with a distinguished element 1. 

Now, conversely, suppose there is given an element ~ E H 1 (F, G0 ). 

Let ( i.f!a) be a 1-cocycle representing ~ and let i.f!a = 19 ,,. Then one can 
define a new action of r on Go ( F) by 

(2) for x E Go(F), 

which defines an F-form of G0 , denoted by (Gok Then, writing f for 
the identity map (Go)e -+ G0 , one has an inner F-form ((Go)e, f) of 
Go, whose F-equivalence class depends only on the cohomology class~' 
and one has c( ( G0 )e, f) = ~. Thus we see that the set of F-equivalence 
classes of inner F-forms of Go is in one-to-one correspondence with the 
cohomology set H 1 (F, G0 ). Clearly, one has c( G, f) = 1 if and only if f 
is F-equivalent to an F-isomorphism. 

The following lemma ([Se], Ch.I, 5.7) will be useful later. 

Lemma 1. Let ( i.f!a) and ( 1Pa) be 1-cocycles representing ~, rJ E 
H 1 (F,G0 ), respectively, and set G = (Go)e and G = G/(center). Then 
(r.p-;; 1 'l/Ja) is a 1-cocycle of r in G(F) and, denoting its cohomology class 
by ~- 17), one has (for a fixed~) a bijective map 

The proof is straightforward. It is clear that, if ( G', f') is an inner 
F-form of G0 corresponding to rJ, then (G', 1-1 f') is an inner F~form of 
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G corresponding to ~-1ry. If one identifies the center of G with Z by f, 
then one has 

in H 2 (F, Z). Since the sequence (1) (for G) is exact, it follows that 

§2. r-diagrams ([Sa3], [Tl). 

From now on, we assume that Go (and hence G, G', etc.) is a 
(connected) simply connected semisimple algebraic group defined over 
F. Let T be a maximal torus in G defined over F and let X = X(T) 
denote the character module of T. Then one has 

X ~ 'li, l = dimT = rank G. 

Let <P = <P(G, T) C X be a root system of G relative to T and let Do be 
a basis of <P; we call such a pair (T, Do) a "coordinate" (defined over F) 
in G. Let (T', Do') be another coordinate in G. Then, as is well known, 
there exists <p E Inn( G) such that one has <p(T) = T', <p* (Do) = Do', 
where <p* E t(<plT)-1; for simplicity, we write 

<p: (T,D.)--+ (T',D-'). 

The inner automorphism <p with this property is uniquely determined 
up to a right multiplication by 19 with g E T; hence <p I T and <p* are 
uniquely determined. 

Now, let r = Gal(F / F). Then for every u E r there exists 7Pa E 

Inn( G) such that 

We set 

(4) for all XE X, 

which is well defined and gives a new action of r on X leaving Do invariant 
(as a whole). Moreover, this Galois action, called a [r]-action (or "*
action" in [Tl), is defined intrinsically, independently of the choice of 
coordinates ( defined over F); it is also inherited to all groups in the 
same inner type. In fact, let (G', /') be another F-form of G0 , (T', Do') 
a coordinates ( defined over F) in G', and let 

't/J: : (T', Do') --+ (T'a, D.'a) 
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with 'lj;: E Inn(G'). Then there exists an F-isomorphism r.p : G ------, G' 
such that one has r.p o 1-1 o J' E Inn(G') and r.p: (T, D.)------, (T', D.'). If 
(G', f') is an inner F-form of G, then from r.pa o r.p- 1 E Inn(G'), one has 
'lj;: o r.p = r.pa o 1Pa on T, whence follows that 

(5) for all XE X, a E f, 

i.e., r.p* is a [f]-isomorphism of X onto X' = X(T') (and the converse is 
also true). 

We call a coordinate (T, D.) in G F-admissible if the following two 
conditions are satisfied. 

(i) T is defined over F and contains a maximal F-split torus A in 
G. 

(ii) Let Xo denote the annihilater of A in X. Then the basis D. is 
"adapted to X 0 " in the sense that there exists a linear order in X for 
which all O:i E D. are positive and the following condition is satisfied: 

X, x' E X, X > 0, X = x' =/=. 0 (mod Xo) • x' > 0. 

Let (T, D.) be an F-admissible coordinate in G and set 

<I>o = <I> n Xo, D.o = D. n Xo, 

¥ = n(<I> - <I>o), D. = n(D. - D.o), 

7r denoting the projection X------, X = X/X0 = X(A). Then it is known 
(e.g. [Sa3]) that <I>0 is a (closed) subsystem of <I>, of which D.0 is a basis, 
and that¥ is a system of F-roots of G relative to A (which becomes a 
root system in a wider sense) and D. is a basis of¥. The closed (semisim
ple) subgroup of G corresponding to D.0 , denoted by G(D.0 ), coincides 
with the semisimple part of Z(A) (centralizer of A) and is called the 
(semisimple) "anisotropic kernel" of Gover F (relative to (T, D.)). More
over it is known that, for r.p = Ig with g E N(T) (normalizer of T), the 
coordinate (T, r.p*(D.)) is F-admissible if and only if one has g E N(A)T 
and that, in particular, for r.p = 1Pa one has g E Z(A)T. It follows that 
D.0 is [f]-invariant and the [f]-orbit decomposition of D. - D.0 is given 
by 

(6) D. - D.o = LJ n-1 hi) n D.. 
"f;E~ 

Note that, if (T', D.') is another F-admissible coordinate in G with a 
maximal F-split torus A' and if r.p E Inn( G) and r.p : (T, D.) ------, (T', D.'), 
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then one has automatically cp(A) = A' (see Lem. 2 in §4). Thus D.0-

part of D. is also intrinsically determined, independently of the choice of 
F-admissible coordinate (T, D.). 

As usual, the basis D. is expressed by a Dynkin diagram. The system 
E = (D., D.0 , [r]) formed of a Dynkin diagram D., a [r]-action on D., and 
D.0 will be called a I'-diagram (or "Tits index", or "Satake diagram") 
of G relative to (T, D.). We express a E D.0 by a black vertex and 
a E D. - D.0 by a white vertex. As noted above, the I'-diagram of G is 
uniquely determined up to "congruence" (in an obvious sense) only by 
the F-structure of G. Hence we write E = E(G) or Ep(G). 

One has the following "isomorphism theorem" due to Tits and in
dependently to the author ( cf. [B-T], [Tl, [Sal], [Sa3]). 

Theorem 1. Let G and G' be two simply connected semisimple 
algebraic groups over a field F of characteristic zero. Let (T, D.) and 
(T', D.') be F -admissible coordinates in G and G', respectively, and let 

E = (D., D.0 , [r]) and E' = (D., D.~, [r]') 

be the corresponding r -diagrams. Then G and G' are F -isomorphic if 
and only if one has a congruence cp* : E -----+ E' and an F -isomorphism 
'PO : G ( D.o) -----+ G' ( D.~) such that cp* I D.o coincides with 'Po· 

In the notation of the above theorem, suppose one has an F-iso
morphism cp : G -----+ G'. Then cp* is a congruence of E onto a r
diagram ( cp* (D.), cp* ( D.0 ), cp* [I']cp*- 1 ) of G', which in turn is congruent to 
E'. Hence, combining these two congruence, one obtains a congruence 
E-----+ E', which we call a congruence induced by cp. 

For convenience, we recall here some well-known definitions. G is 
called "F-split" (or of Chevalley type), if there is an F-split maximal 
torus T = A in G. For such a T, the coordinate (T, D.) (with any basis 
D.) is F-admissible and the corresponding I'-diagram E has the property 
that D.0 = 0 and the [r]-action is trivial. Conversely, if E = Ep(G) 
has this property, then G is F-split. G is called "F-quasisplit" (or of 
Steinberg type) if one has T = Z(A), or equivalently cI>0 = 0. In this 
case, (T, D.) is F-admissible if and only if D. is I'-invariant (as a whole); 
and of course one then has D.0 = 0. Conversely, if D.0 = 0 in E F ( G), 
then G is F-quasisplit. It should also be noted that G is "F-anisotropic" 
(i.e., F-rank G = 0) if and only if one has D. = D.0 in Ep(G). 

§3. Classification over a local field. 

It was shown by Chevalley [Chl,2] that for any field F (of any char
acteristic) and for any Dynkin diagram D. there exists uniquely ( up to 
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F-isomorphism) an F-split semisimple algebraic group of adjoint type 
defined over F ( the so-called Chevalley group). When F is algebraically 
closed, this gives a complete classification of (simply connected) semisim
ple algebraic group over F. It follows also that for any field F, any 
Dynkin diagram .D., and for any action of r on .D., there exists uniquely 
(up to F-isomorphism) an F-quasisplit simply connected semisimple al
gebraic group G0 defined over F with EF(G) = (b.,0,r) (the unique
ness follows from Th.l). Therefore, for the classification theory over F 
of characteristic zero), it is enough to fix an F-quasisplit simply con
nected semisimple algebraic group G0 over F and to determine all inner 
F-forms of Go. 

For F = JR, one has the following theorem. 

Theorem 2. Let G and G' be simply connected semisimple alge
braic groups defined over JR. Then G and G' are JR-isomorphic if and 
only if the r -diagrams ER ( G) and ER ( G') are congruent. 

This follows from Theorem 1 and from the fact that a compact (i.e., 
JR-anisotropic) JR-form G is uniquely determined (up to JR-isomorphism) 
only by its (unmarked) Dynkin diagram .D. (Weyl's theorem). A direct 
method of classifying I'-diagrams over JR was given by Araki. (See [A] or 
[Sa3], Appendix by Sugiura. For a more general method of classifying 
"Tits indices", see [T]. For the classification over JR, cf. also [Mu], [Boll). 
For the determination of the invariant 'Y over JR, see §6. 

For a p-adic field F (i.e., a finite extension of Qp) the following 
theorem of M. Kneser is fundamental. (For a uniform proof of it, see 
[Br-Tl). 

Theorem 3 ([Kl]). Let F be a p-adic field and G a simply con
nected semisimple algebraic group defined over F. Then H 1(F, G) = 1. 

In view of the exact sequence (1), this implies the following 

Theorem 4 ([Kl]). Let F be a p-adic field. Let G0 be a simply 
connected semisimple algebraic group defined over F and let Z be the 
center of G0 . Then the map (G,J) 1------t 'Y(G, f) gives rise to a bijective 
correspondence between the set of F-equivalence classes of inner F -forms 
(G,f) of Go and H 2 (F,Z). 

In fact, it is enough to show that the map 8 in the sequence (1) is 
bijective. It is known (Lem. 4 in §4) that when F is a p-adic field 8 is 
surjective. The injectivity follows from (3) and Theorem 3. 

Theorem 4 shows that over a p-adic field F the simply connected 
semisimple algebraic groups are completely classified by the F-quasisplit 
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group Go (i.e., by the (r]-action on~) and the cohomological invariant 
'Y E H 2 (F, Z). From the result of classification, one sees that over a 
p-adic field Fan absolutely simple "anisotropic" F-form G occurs only 
for the type (1 A1). Consequently, the cohomological invariant 'Y(G, f) 
reduces essentially to the classical Hasse invariant of central simple al
gebras (cf. (Kl], (Sa3], and §6). 

§4. Scalar extensions and Hasse principles. 

Let G be a simply connected semisimple algebraic group defined 
over a field F of characteristic zero. We use the notation introduced in 
§§1, 2. _, _, 

Let F' be an extension of F and let r' = Gal(F / F'), F being an 
algebraic closure of F'. Identifying F with the algebraic closure of F in _, -
F , we denote the restriction of a' E r' on F by a~. 

The scalar extension F' / F gives rise in a natural manner to canon
ical maps (homomorphisms) between cohomology sets (groups), which 
make the following diagram commutative: 

! ! ! ! 

For instance, for ( E H 1 ( F, G) we denote by (F, the corresponding 
element in H 1 (F', G). Then, in the notation of §1, for ( = cp(G, f) E 

H 1(F,G0 ) one has (p, = cp,(G,J). 
Let (T, ~) be an F-admissible coordinate in G and let 

~ = ~F(G) = (~, ~o, (r]) 

be the corresponding r-diagram. Similarly, let (T', ~') be an F'-admis
sible coordinate in G with 

~' = ~p,(G) = (~', ~'o, (r']). 
. -I 

Then there exists r.p E Inn(Go)(F) such that r.p : (T,~) ---+ (T',~'); 
then one has automatically r.p(A) C A', where A and A' are maximal 
F-split resp. F'-split tori contained in T and T' (see Lemma 2 below). 
Therefore the induced isomorphism r.p* has the following properties: 

(7) r.p*(~) = ~', r.p*(~o):::) ~'o, and 



On Classification of Semisimple Algebraic Groups 205 

for all XE X, a' Er'. 

Note that the map cp* : :E - :E' is determined intrinsically, indepen
dently of the choice of coordinates (T, b.), (T', b.'). The image by cp* 
of a [r]-orbit in :E is a union of a finite number of [r']-orbits in :E'. 
In particular, the image of a white [r]-orbit is always a union of white 
[r']-orbits. 

Lemma 2. The notation being as above, let (T, b.) (resp. (T', b.')) 
be an F - ( resp. F' -) admissible coordinate in G and let cp E Inn( G) be 
such that cp : (T, b.) - (T', b.'). Then, for maximal F -split resp. F' -split 
tori A and A' contained in T and T', one has cp(A) CA'. 

Proof. First there exists 'Pl E Inn(G)(F') such that cp1(A) C A'. 
Then there exists cp2 = 192 , g2 E Z( cp1 (A)) (F') such that cp2cp1 (T) = T'. 
Then one has Xb C cp2cpi(Xo)- Let b.1 be a basis of <I> adapted to both 
(cp2cpi)-1(Xb) and Xo; then cp2cpi(b.1) is a basis of <I>' adapted to Xb. 
Therefore there exist 

g3 E N(A) n N(T)(F) and g4 E N(A') n N(T')(F1
) 

such that, for cp3 = 193 and cp4 = 194 , one has cp3b. = b.1 and cp4cp2cpi b.1 
=b.'. Then one has 

By the uniqueness of such a map, one has cp = cp4cp2cp1 cp3 on T; hence, 
in particular, one has cp(A) CA', q.e.d. 

Now let F be a number field (i.e., a finite extension of(Q) and let V = 
VF denote the set of all places (i.e., equivalence classes of valuations) 
of F, and let V00 , 1 = V!,1 denote the set of all real places. For v E V 
we denote by Fv the completion of F with respect to the place v. In 
the above notation, we write ~v for ~Fv; similarly, when :E = :Ep(G) we 
write :Ev= :EpJG). 

For our purpose it is important to consider the canonical map 

(8) 0: H 1(F, G) - II H 1 (Fv, G). 
vEV 

Since, by Theorem 3, H 1 (Fv, G) is trivial except for v E V00,1, the map 
0 can also be written as 

(8') 0: H 1 (F,G) - II H 1 (Fv,G). 
vEVoo,1 
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Then the "Hasse principle" for H 1 , established by Kneser [K2], [K3], 
Harder [Hl], and Chernousov [Cher], can be stated as follows. 

Theorem 5. Let G be a simply connected semisimple algebraic 
group defined over a number field F. Then the canonical map 0 in (8') 
is bijective. 

For the proof, see [P-R] (Th. 6.6); the proof for the surjectivity of 
0 ( due to Kneser) is relatively easy. (It seems that no uniform proof 
for the injectivity of 0 is yet known.) For the Galois cohomology of the 
center Z, one has the following 

Lemma 3. (i) The canonical map 

(9) H 1(F, Z) - II Jfl(Fv, Z) 
vEVoo,1 

is surjective. 
(ii) The canonical map 

(10) H 2 (F, Z) - II H 2 (Fv, Z) 
vEV 

is injective. 
(Cf. [P-R], Prop. 7.8, Cor. 2 and Lemma 6.19.) 

Lemma 4. If F is a p-adic field or a number field, then the map 
15: H 1(F, G) - H 2 (F, Z) in the sequence (1) is surjective. 

(Cf. [P-R], Th. 6.20.) 

In order to formulate another type of Hasse principle concerning the 
r-diagrams, let G be a connected semisimple algebraic group defined 
over F. (Note that here the simply connectedness is irrelevant.) Let 
(T, ~) be an F-admissible coordinate in G and let B = B(~) be the 
corresponding Borel subgroup of G. For a subset ~ 1 of~ we denote by 
G(~1 ) the corresponding (connected) semisimple closed subgroup of G 
and set P(~1 ) = G(~1)B. Then it is known that P(~1 ) is a parabolic 
subgroup of G and all parabolic subgroup of G is conjugate to a subgroup 
of this form. We denote by P(~1 ) the conjugacy class of P(~1 ), which 
can be identified with G/ P(~1 ); thus P(~1 ) has a natural structure of 
a projective variety. 

Now, for a Er one has Bu= B(~u) = '¢uB'lf;;;1 and hence 

(11) 
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It follows that P(~1 ) is r-invariant if and only if ~ 1 is [r]-invariant. 
Thus, in this case, P(~1 ) is a variety defined over F. 

We call a parabolic subgroup P of G F -parabolic if it is defined over 
F. From (11) it can be seen that, if ~ 1 is [r]-invariant and contains ~ 0 , 

then P(~1 ) is F-parabolic. It is known that all F-parabolic subgroup 
of G is conjugate (with respect to an element in G(F)) to a P(~1 ) with 
~ 1 having this property. Thus one obtains 

Lemma 5 ([Tl). The notation being as above, suppose that ~ 1 is 
[r]-invariant. Then the variety P(~1 ) is defined over F. It contains an 
F -rational point if and only if ~ 1 contains ~o-

Now, one has the following Hasse principle due to Harder ([H2], Satz 
4.3.3). 

Theorem 6. Let G be a connected semisimple algebraic group de
fined over a number field F. Let ~ 1 be a subset of~ invariant under [r] 
and let P(~1 ) denote the variety ( defined over F) of parabolic subgroup 
of G conjugate to P(~1). Then P(~1) has an F-rational point if and 
only if it has an Fv-rational point for all v E VF. 

By the above observation, one can rephrase this theorem in the 
following form. 

Theorem 61 • Let G be a connected semisimple algebraic group 
defined over a number field F and let E = (~, ~o, [r]) and Ev = 
(~, ~~v), [r(v)]) (v E VF) be the r- resp. r(v)_diagrams of G over F 
and Fv. Then ~o is the smallest [r]-invariant subset of ~ containing 
all ~~v) (v E VF). 

Otherwise expressed, one has the following Hasse principle for the 
r -diagrams: a [r]-orbit in a r-diagram E is white if and only if it de
composes in Ev into a union of white [r(v)]-orbit for all v E VF. 

§5. Classification over a number field. 

In this section, let F be a number field. We fix a simply connected 
semisimple algebraic group G0 defined over F. (In this section, the 
assumption for G0 to be F-quasisplit is irrelevant.) The main results on 
the classification of inner F-forms of G0 can be formulated as follows. 

Theorem 7. Let (G,f) and (G',f') be two inner F-forms of a 
simply connected semisimple algebraic group G0 over a number field 
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F. Then (G,f) and (G',f') are F-equivalent (i.e., there exists an F
isomorphism r.p : G - G' such that r.p o 1-1 of' E Inn( G')) if and only if 
the following two conditions are satisfied. 

(i) One has ,(G, f) = ,(G', f'). 
(ii) (G, f) and (G', f') are Fv-equivalent for all v E V00,1. 

Proof. The "only if" part is obvious. To prove the "if" part assume 
that the conditions (i),(ii) are satisfied. Then, by (i) the 1-cohomology 
classes e = c( G, f) and f = c( G', f') are in the same fiber of the map 
8 : H 1(F, Go) - H 2 (F, Z). Therefore, by the formula (3) there exists 
T/ E H 1 (F, G) such that f3(TJ) = e-1f. By the condition (ii) one has 
ev = e~ for all v E V00,1, which implies that f3(TJv) = e;;-1e~ = 1. Hence, 
for each v E V00 , 1 , by the exactness of the sequence (1) (over Fv), one 
has a((Cv)) = T/v for some (Cv) E H 1 (Fv, Z). By Lemma 3, (i), there 
exists ( E H 1(F, Z) such that (v == ((v) for all v E V00,1; then one has 
a(()v = a((v) = T/v• Hence by Theorem 5 (injectivity of 0) one has 
a(()= TJ, whence f3(TJ) = 1 and so e = e', q.e.d. 

It is clear that the condition (ii) in Theorem 7 can also be stated in 
the following form: 

(ii') For v E V!,', 1 let Ev= Ep,,(G),E~ = Ep,,(G'). Then for each 
v one has a congruence Ev - E~ induced by an Fv-isomorphism r.p(v) : 
G ---t G' such that r.p(v) o 1-1 of' E Inn(G'). 

An "existence theorem" for inner F-forms is given as follows: 

Theorem 8. Let Go be a simply connected semisimple algebraic 
group defined over a number field F. Suppose there are given , E 
H 2 (F, Z) and, for each v E V00,1, an inner Fv-forms (G(v), f(v)) of 
Go such that the following consistency condition ( C) is satisfied: 

(C) One has 'Yv = 'YF,, (G(v)' jCv)) for all VE Voo,l• 

Then there exists uniquely ( up to an F-equivalence) an inner F -form 
(G,J) of Go such that ,(G,f) =, and that (G,f) is Fv-equivalent to 
(G(v), f(v)) for all VE Voo,1· 

Proof. By Lemma 4 the map 8 : H 1 (F, G0 ) ---t H 2 (F, Z) in the 
sequence (1) is surjective. Hence there exists an inner F-form ( G, J) of 
Go such that 1p(G,f) = 8(cp(G,J)) = ,. Then by the condition (C) 
one has ,p,,(G,f) = 1 p,,(G(v),f(v)) for all v E V00,1; this means that, 
if one puts e = cp(G, f), e(v) = CF,, (G(v)' f(v)), then ev and eCv) are in 
the same fiber of the map 8 in the sequence (1) over Fv. Hence by the 
formula (3) one has f3(TJ(v)) = e;;-1e(v) for some TJ(v) E H 1 (Fv, G). By 
Theorem 5 (surjectivity of 0) there exists T/ E H 1 (F, G) such that one 
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has 'f/v = r,(v) for all v E V00,1. Then, putting 

one has 

f,,' = f;,(J(r,) E H 1 (F, Go), f,,' = cp(G', J'), 

,F(G',J') = 8(e) = 8(e) = ,, 

Cp,,(G',J') = e~ = evf3(r,v) = e(v)_ 

Thus ( G', f') is an inner F-form of G0 satisfying all the requirements. 
The uniqueness follows from Theorem 7, q.e.d. 

Remark 1. As will be shown in §6, one has H 2 (Fv, Z) = 1 for all 
v E V00 , 1 , if G0 is absolutely simple, F-quasisplit and of one the types 
(A1) (l even), (E6), (E8 ), (F 4 ), (G2). Hence in these cases, the above 
consistency condition ( C) is automatically satisfied. 

Remark 2. If Fis totally imaginary, one has (analogously to Th.4) 
that the map 8: H 1(F, G0 ) -t H 2 (F, Z) is bijective. (For a similar result 
in the function field case, see [H3].) 

Remark 3. The list of all possible r-diagrams ("Tits indices") 
~(G) over a number field F was given in [T]. From our point of view, 
the same result can also be obtained by Theorems 6' and 8, using the 
classification over local fields. For groups of exceptional type, a method 
of explicit construction of F-forms was also given by Tits (see e.g. [Sc}). 

§6. Determination of the invariant. 

In this section, G0 is an F-quasisplit simply connected absolutely 
simple algebraic group over a number field F. We give an explicit de
termination of H 2 (F, Z). At the end, we also give a list of ,(G) for all 
JR-forms G of G0 . (Note that except for the case where G0 is of type 
(D1) (l even) the invariant ,(G, f) is actually independent off; hence 
we omit f.) For convenience, we treat the case of groups of type (D1) (l 
even) separately. 

I) The case where G0 is F-split (except the case (1D1), l even). 
We denote by µn the group of n-th roots of unity in F viewed as a 

group on which r is acting. Then, in the case of F-split G0 (not of type 
(1D1), l even), one has 

(12) 

where n is given as follows: 
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Go 1A1, B1, C1, 1D1 (l odd), iE6, E1, Es, F4, G2 

n l + 1, 2, 2, 4, 3, 2, 1, 1, 1 

It follows that 

(13) H 1 (F, Z) ~ F* /(F*)n, H 2 (F, Z) ~ Br(F)n, 

where Br(F) is the Brauer group of F and Br(F)n denotes the subgroup 
of Br(F) consisting of those elements ~ with ~n = 1 (see [P-R], p.73, 
Lem. 2.6). Therefore over the local fields Fv (v E VF) one has 

(13a) H 2 (Fv, Z) ~ Br(Fv)n ~ (1/2)Z/Z (v E V=,l, n even) {
(1/n)Z/Z (v tf_ V=) 

1 (otherwise). 

For the case n even, the invariant '°YlR ( G) for all inner JR.-forms G of 
Go is given in the list at the end of the section. For classical groups, 
the determination of this invariant is well known. For the case G0 = E1, 
this can be done, e.g., by using the results in [Mu], [Sa2]. 

II) The case where G0 in not F-split (except the case (2D1), l even). 
There are three cases 

In these cases, there is a quadratic extension F' / F such that G0 is split 
over F'. Then one has 

and an exact sequence 

(15) 

---+ Ker(Br(F')n ~ Br(F)n) ---+ 1, 

where N stands for NF, /F (see [P-R] , p.332, (6.31)). 
When n is odd (i.e., G0 = 2 A1 (Z even), 2 E6 ), one has 

(15') H 2 (F, Z) ~ Ker(Br(F')n ~ Br(F)n), 

H 2 (F', Z) ~ Br(F')n. 
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Therefore, if v E V(F) dose not decompose in F' / F (i.e., if v has a 
unique extension to F', denoted again by v, F' 0 Fv = F~), one has 
N : Br(F~)n ~ Br(Fv)n and hence 

(15'a) 

If v decomposes in F' / F (i.e., if v has two extensions w, w' in F', 
F' 0 Fv = F{v EB F{v, ), then one has 

(15'b) 

In either case, one has H 2 (Fv, Z) = 1 for v E V00 ,1. 

When n is even (i.e., Go = 2 A1 (l odd), 201 (l odd)), one has an 
exact sequence 

(1511 ) 

----+ Ker(Br(F')n ~ Br(F)n) ----+ 1, 

and 
H 2 (F', Z) ~ Br(F')n-

Therefore, if v does not decompose in F' / F, then one has 

(1511 a) 

If v decomposes in F' / F, then one has 

(15"b) 

Thus in view of Lemma 3, (ii) one has actually (instead of (15")) 

(16) H 2 (Fv,Z) ~ (F*/NF'fF(F'*)) x Ker(Br(F')n ~ Br(F)n)-

For the case n even, the invariant 1'R.(G) for all inner ~-forms of G0 

is given in the list below. 

III) The case where G0 is of type (01) (l even) 
Let F' be the smallest Galois extension of F such that G0 is split 

over F' and let [F': F] = m; we write G0 = moz. Then there are the 
following four case: 

Go= 101, 2 01 (l even~ 4), 304, 6 04. 

When G0 = 101, one has 

(17) 
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(18) H 2 (F, Z) ~ Br(F)2 x Br(Fh, 

(18a) 

When G0 = 2D1, one has 

(20) H 2 (F, Z) ~ Br(F'h, H 2 (F', Z) ~ Br(F')2 x Br(F')2. 

(20a) H 2 (Fv, Z) ~ Br(F~h for v not decomp. in F' / F, 

(20b) H 2 (Fv, Z) ~ Br(Fvh X Br(Fvh for v decomp. in F' / F. 

When Go = 3 D4 , one has 

(21) 

(22) H 2 (F, Z) ~ Ker(Br(F'h ---+ Br(F)2), 

H 2 (F', Z) ~ Br(F'h x Br(F')2. 

(22a) H 2 (Fv, Z) = 1 for v not decomp. in F' / F, 

(22b) H 2 (Fv,Z) ~ Br(Fvh X Br(Fvh for v decomp. in F'/F. 

When Go = 6 D4 , we take an intermediate field F 1 such that F C 
F 1 CF' and [Fi: F] = 3. Then one has 

(23) 

(24) H 2 (F, Z) ~ Ker(Br(Fih---+ Br(F)2), 

H 2 (Fi, Z) ~ Br(F'h, H 2 (F', Z) ~ Br(F'h x Br(F')2. 

If v does not decompose in Fi/ F, then one has 

(24a) 
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If v decomposes in F1 / F but does not decompose completely in F' / F, 
then one has 

(24b) 

If v decomposes completely in F' / F, one has 

(24c) 

In all cases, one has H 2 (Fv, Z) = 1 for v E Vc,o,1 except for the case 
where v decomposes completely in F' / F. Hence for the determination 
of Tu(G) it is enough to consider only inner JR-forms of G0 = 1D1 (l 
even), which is given in the list below. 

In the following list, one has l =rank G, r = JR-rank G (which equals 
the number of white [r]-orbits in I:R.(G)), and the type of Gover JR is 
expressed by Cartan's symbol. An element in Br(JR) is expressed by 
the corresponding Hasse invariant O, 1/2 E (1/2)Z/'ll,. As remarked 
above, for all G0 not included in this list, one has H 2 (JR, Z) = 1. (For a 
complete list of r-diagrams over local fields, see [A], [Sa3], or [T].) 
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Go/JR: G/JR: r-diagram of G /JR: 'YIR( G) 

lA1 AI 0-0-- - - - - -D---0 0 

All 1 
(l odd) 

e----o--*--0-- - - - - ---o----e -
2 

0-0-- - - - --0---e-- - - - - ---- • • 
0 if Z - r = 0, 3 ( 4) · 

B1 BI ~ ! if Z - r = l, 2 ( 4) 
I - r 2 

CI 0-0------ --0 <= 0 0 
C1 

1 e----o--*--0-- - ---o----e-----e - - ---- <=. CII '----------v---
-

1- 2r 2 

DI ~----< 0 if Z - r = 0 ( 4) 
( Zodd ) 

0--0- - 1 . 
l - r even ~ -1fl-r=2(4) 

I - r 2 

DI 0 if Z - r = 0 ( 4) 
101 ( Z even ) same 1 1 . 

l - r even ( 2, 2) 1f Z - r = 2 ( 4) 

OIII 
~ 

1 1 
(Z even) e----o--*--0-- - - - - ---.--0 (2,0)or(0, 2) 

'o 

EV ~ 0 

1 EVI ~ 
-

E7 2 

EVII ~ 0 

1 
compact . . : . . . -

2 
0-0-- - - - rr::_:J> 0 if Z - 2r = 3 (4) 

2 Az 
AIII t t 1 . (l odd) 0-0------

- 1f Z - 2r = 1 ( 4) ~ 
l-2r(~l) orO 2 

DI 0-0-- ---o----e- -/4 0 (l - r odd) ~ 

201 
1-,(~3) orO 

OIII ----o--/4 1 
(l odd) e---o----e---o- -

2 
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