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to give a tangent direction at q amounts the same data as to give a pro
jective line through q; thus, a foliation on P 2 consists of an assignment 
of a line Lq = Lq(:F) to each q E P 2 \ Sing(:F). 

The rational map <P = <PF : P 2 ----t P2 taking a point q ¢. Sing(:F) to 
the point in P2 corresponding to Lq is called the polarity map (see [8]) of 
:F. The scheme-theoretic fibres cp*f of the lines in P2 are degree-(r + 1) 
curves on P 2 . Since a line on P2 is nothing but a point in P 2 , what one 
has then is an assignment of a degree r + 1 curve Pq = Pq(:F) to each 
point q E P 2 (even for the singular points of :F). The (perhaps non
reduced) curve Pq is called the polar of q relative to :F and one always 
has that q is in the support of Pq (since q E Lq)- The assignment 

is linear in the sense that, since the Pq 's constitute a 2-dimensional 
projective linear system of curves of degree r + 1 (i.e., a net), it is a 
projective isomorphism. The net of the polar curves (Pq)qEP2 relative 
to :F will be called the polar net relative to :F and will be denoted by 
D,. = b.(:F). 

Observe that for each q E P 2 , the support of the polar Pq consists 
of the singular points of :F (since Sing(:F) is exactly the base point set 
of the net), plus the points q' ¢. Sing(:F) such that q E Lq'· This fact 
justifies the use of the terminology polar that we adopted. 

If the foliation :F is radial, that is, if there exists some qo E P 2 such 
that Lq is the line joining q to Qo, for every q =I- qo, then the polar net is 
degenerated in the sense that the image of the polarity map <P consists 
only of a line (the dual of the point qo) and therefore, the polarity map 
is not dominant. The radial foliations are the only ones of degree equal 
to O and also the only ones for which <P is not dominant (see [8], 3.4, 
recalling that the argument therein works in any characteristic as well). 
Assume that the degree r of :Fis 2". 1; then since <P is dominant, the 
field extension K(P2 ) c K(P2) given by <P is finite and, furthermore, 
one has that r = [K(P2) : K(P2 )] (see [8], 3.6). This allows us to give 
the degree r the geometrical interpretation of being the nurriber of points 
in a general fiber of <P, each one counted with multiplicity equal to the 
inseparability degree of the field extension, and hence, that r is nothing 
but the number of points (times the inseparability degree) at which the 
foliation becomes tangent to a general line in P 2. Thus in the separable 
case the r points are different for a general line. 

Now take two points q =/- q' in P 2 and let L be the line joining them. 
Two possibilities may occur: If L is an integral line, then the polars 
of all the points in L contain L itself and <P collapses the line L to a 
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point. If L is not an integral line, then the polars Pq and Pq, meet at r 
points, different from the base points, namely the inverse images under 
q, of the dual point of the line L in P2 • If L is generic, the aforesaid 
points of intersection are different and, counted with multiplicity equal 
to the inseparability degree, equal tor. This means that the remaining 
intersection multiplicity of Pq and Pq, is concentrated at the base point 
set, and is equal to {r + 1)2 - r = r 2 + r + 1. On the other hand, if L 
is not generic, then the intersection outside the base locus is, properly 
counted, smaller than or equal to r, if L n Sing(.F) = 0, and it is strictly 
smaller than r, if LnSing(.F) # 0. In any, case, the intersection Pq nPq, 
consists of points in L. 

Now let us take homogeneous coordinates [X, Y, Z] on P 2 . Up to 
a scalar factor, there are two equivalent ways to define a foliation .F of 
degree r in analytic terms {see [9]): 

{1) By means of a reduced homogeneous vector field, that is, by a 
vector field 

such that U, V and W are homogeneous polynomials of degree r 
without common factors. It is well defined up to a multiple of the 
radial vector field, in the sense that :F is defined by both T and 
T + G · (X £x + Y :Y + Z tz ), for any degree r -1 homogeneous 
polynomial G, or 

(2) By means of a reduced homogeneous 1- form, which means a 1-
form 

{1.1) 

n = AdX +BdY +cdZ 

such that A, B and C are homogeneous polynomials of degree 
r+ 1, without common factors, and satisfying the so-called Euler's 
condition 

XA+YB+ZC=O. 

The equivalence between (1) and (2) is analytically realized by the fact 
that 

{1.2) (
dX dY dZ) 

0 =det X Y Z . 
U V W 

We shall use the presentation (2) for the rest of the paper. 
From the local data O it is easy to handle the foliation in local 

terms: Take any standard affine chart A 2 , for instance Z # 0. Then, 
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if one writes x = f, y = ~ and a(x, y) = A(x, y, 1), b(x, y) = B(x, y, 1) 
the foliation is defined by the 1- form w (resp. by the vector field 8) 
given by 

a a 
w = a(x, y)dx + b(x, y)dy (resp. 8 = -b(x, y) ax + a(x, y) By). 

The equallity (1.1) allows us to recover f! from the local data w (or 8), 
taking into account that max{deg(a), deg(b)} = ror r + 1, according to 
the case when the line Z = 0 is or it is not invariant by :F. 

Finally, notice that a point q E A 2 is a singularity of :F if and only if 
a(q) = b(q) = 0. To each singularity q, one attaches two invariants: the 
Milnor number µq = µq(:F) and the algebraic multiplicity vq = vq(:F), 
which in local terms are given respectively by 

µq = dimk( (a,~P~;2) 

Vq = min{ordq(a),ordq(b)}, 

where ordq means the mq-adic order, mq being the maximal ideal of the 
local ring Op2,q. 

Note that we can also write µq = Vq = 0, for q (fi Sing(:F). 

Theorem 1.1. Let :F be a foliation on P 2 of degree r. Then, with 
the notations as above, one has 

(i) If q = [a, (3, 'Y] E P 2 , then the polar Pq is the curve given by 

aA + (3B + 'YC = 0 

(ii) The polars of equations A, B, C generate the polar net. 
(iii) For any q E Sing(:F), let 'Iq denote the ideal of Op2,q generated 

by the equations of the germs at q of every polar P in~- Then 

d" (Op2,9 ) µq = lmk Iq 

Vq = ordq('Iq) = min{ordq(J): f E 'Iq}-

(iv) One has I:qESing(.r) µq = r 2 + r + 1. 

Proof. The line Lq' associated to q' = [a',/3','Y'] is given by 

X A( a', (3', 'Y') + Y B(a', /3', 'Y') + ZC(a', (31 , 'Y') = O; 

therefore, if£ is the dual line of q = [a, (3, ")'], the divisor q>* f is given by 
the equation aA + (3B + 'YC = 0, which proves (i). In particular, since 
A, B, C give the polars of the reference points, the fact that q t--+ Pq 
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is a projective isomorphism proves (ii). Using local coordinates, the 
relation (1. 1) shows that Iq is the ideal generated by the germs of a, band 
-xa-yb; thusiq = (a, b)·Op2,q, which shows (iii). Finally, to prove (iv), 
take generic coordinates in such a way that Sing(F) is contained in the 
standard chart A 2 ; then each µq is equal to the intersection multiplicity 
at q of those polars that correspond to the two points at infinity ( that 
is, A and B) and since the intersection divisor on the line at infinity 
has degree exactly equal to r, it follows from Bezout's theorem that 
I::qESing(F) µq = (r + 1)2 - r = r2 + r + l. Q.E.D. 

§2. Polars at non-base points. The jacobian of the polar net 

Consider a point q <f. Sing(F). The polars PE ~ passing through 
q form a pencil r q c ~ which contains Pq as a distinguished member. 
This section is devoted to the study of such pencils. 

First of all, notice that the members of r q are exactly the polars of 
the points lying on Lq. If Lq is an invariant line of F, then r q has Lq 
as a base line. Otherwise, r q has only finitely many base points ( that 
properly counted amount tor, if Lq does not meet the base locus). 

Consider the integer 1,,q defined in (0.1). If Lq is invariant by F, 
one has that 1,,q = oo, otherwise, 1,,q is finite. 

Proposition 2.1. Let q <f. Sing(F). Then, with the notations as 
above, one has 

(i) The polar Pq is non-singular at q and its tangent there is given 
by the line Lq. In particular 1,,q ::=: 2. 

(ii) If Lq is not invariant by F, then for every Qq E rq \ {Pq}, 
one has that Iq(Qq, Lq) = 1,,q - l. If 1,,q = 2, then every Qq is 
also smooth at q. If 1,,q ::=: 3, then there exists a unique polar 
Qq Er q \ { Pq} which is singular at q. 

Proof By taking coordinates, we can assume that q = [1, 0, O] and 
therefore, that Pq is given by A = 0. Since q <f. Sing(F), one of the 
three values A(q),B(q),C(q) is non-zero and Lq is given by XA(q) + 
YB(q) + ZC(q) = 0. Taking derivatives in the Euler condition (1.1), 
one gets Ax(q) = -A(q), Ay(q) = -B(q), Az(q) = -C(q). It follows 
that Pq is smooth at q with tangent line equal to Lq , which proves 
(i). To prove (ii), we will also use (1.1). Taking coordinates as before, 
we may assume furthermore that Lq is given by the line Z = O, and 
that Qq = Pq,, with q' = [0, 1, 0]. Thus Qq is given by the equation B. 
From (1.1) it follows that Iq(Pq, Lq) = 1 + Iq(Qp, Lq), which proves the 
first part of (ii). For the second part, notice that those germs at q of 
elements in r q also constitute a pencil ( of germs). If 1,,q = 2, every Q q is 
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smooth and transversal to Lq • If K.q ? 3, since the pencil of germs has 
one smooth member, all members except at most one must be smooth 
also (the fact that they are also tangent to Lq -being K.q -1 ? 2- implies 
that there is exactly one singular member). Q.E.D. 

According to classical geometry (see for instance [12], p.115), one can 
associate to a net of projective curves a new curve, called its jacobian. 
It is a possibly non-reduced curve J whose equation is given by the 
following determinant: 

Ax 
D= Bx 

Cx 

Ay Az 
By Bz, 
Cy Cz 

where A, B, C are any vector basis of the 3-dimensional vector space 
of the equations of the members of the net. It is clear that J does 
not depend on the choice of the vector basis nor on the choice of the 
coordinates [X, Y, Z]. 

For the case of the polar net, we can take for A, B, C the forms that 
appear in Euler's condition (1.1). Hence, we can write the equation of 
J in the following way: 

Lemma 2.2. For the polar net of a foliation, the equation of its 
jacobian is given by 

Ax 
D = (r+ l) Bx 

z2 A 

Ay A 
By B 
B 0 

In particular, if the characteristic of the ground field k is both positive 
and divides r + 1, then D = 0. 

Proof. It is enough to use the Euler equality for the homogeneous 
polynomials A, B, C, to change the last column in the determinant defin
ing J. Then one uses the equalities obtained by taking partial derivatives 
in (1.1) to change the last row. Up to a sign, one obtains the expression 
for the equation D of J appearing in the Lemma. Q.E.D. 

Next, we will study the geometry of J. In order to do so, assume that 
D =I= 0 (in particular r + 1 =/= 0 in k). First, there are some special 
components in J. In fact, notice that, although t::i.. has no base com
ponents, it may well happen that some concrete polar P E t::i.. has a 
multiple component. On the other hand, a pencil r C t::i.. could also have 
base components. However, observe that if this is the case, then such a 
component should be an invariant line of :F. 
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Proposition 2.3. Assume D =f 0, then one has 

(i) If F is a component of multiplicity l :::: 2 of some polar P E A, 
then F is. also a component of J, of multiplicity l - l. 

(ii) If L is an invariant line of :F, then L is a component of J. 

Proof. Using the determinant D that defines J, it is clear that the 
(l -1)-th power of an equation of F divides D. This proves (i). To see 
(ii), take coordinates such that Lis the line Z = 0. Then A= zA, B = 
ZB, since every polar of a point lying on L contains L. Using Lemma 
2.2 one gets 

(2.1) 
Ax Ay A 

D = (r + l)Z Bx By B 
A B o 

which shows that Lis a component of J, as required in (ii). Q.E.D. 

Corollary 2.4. Assume D =f 0. Then the total degree of the mul
tiple components of the polars of A counted with multiplicity one less, 
plus the total degree of the invariant lines is less than or equal to 3r. 

Proof. This follows from Proposition 2.1 and Proposition 2.3, (i). 
In fact, a common component of a pair of different polars must be an 
integral line of :F, and, in view of (i) from Proposition 2.1, no invariant 
line is a multiple component. Q.E.D. 

Proposition 2.5. Assume D =f 0 and let q ¢. Sing(:F), not lying 
on an invariant line. One has then that: 

(i) The relation Iq(J, Lq) :::: K-q - 2 holds, and the equality is valid if 
and only if K-q - 1 =/. 0 in the field k. 

(ii) The relation Iq(J, Pq) :::: K-q - 2 holds, and the equality is valid if 
and only if K-q - 1 =/. 0 in the field k. 

Proof. Take coordinates such that q = (1, 0, OJ and Lq is the line 
Z = 0. Thus A is an equation for Pq and B is such for Qq, as in 
Proposition 2.1. Computing the expression (2;1) of D, and expressing 
it in affine coordinates (y, z), one obtains, taking into account part (i) 
of Proposition 2.1, that 

D(l, y, 0) = .X(r + l)(K-q - l)y"'q-2 + higher order terms, 0 =f .XE k. 

On the other hand, since Pq has a local parametrization around q of 
the form y = t, z = t"'q + higher order terms, one also gets 

D(l,t,t"'q+ .. . )=µ(r+l)(K.q-l)t"'q- 2 +higher order terms, 0 =f µEk, 

which proves (i) and (ii). Notice that r + 1 =f Oink, as D =f 0. Q.E.D. 
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Theorem 2.6. Let J be the jacobian of the polar net relative to a 
foliation :F of degree r, then 

(1) If r + 1 =/ 0 ink, then the support of Jis the set 

Sing(:F) U {q ¢:. Sing(:F) : Kq ~ 3} 

(2) One has that D =/ 0 if and only if r + 1 =/ 0 ink and the polarity 
map <I> is separable. 

Proof. From (i) in Proposition 2.5, if r + 1 =/ 0 in k one has that 
Iq(Jq,Lq) ~ 1 if and only if Kq ~ 3, for q (/:. Sing(:F). Now, from the 
determinant expression (2.1) in Lemma 2.2 it is clear that the base points 
are also in the support of J, which shows part (1). 

Now, if r + 1 =/ 0 in k and <I> is separable, take a generic line L 
in P 2 and consider the r points of L at which L is tangent to :F. We 
claim that at each one of these points q, one has that Kq = 2: For, 
in general, by part (ii) in Proposition 2.1, the number Kq - 1 is, for a 
non-singular point q (/:. Sing(:F), the counting index of q as an inverse 
image of <I>(q). By part (1) above, the existence of points q with Kq = 2 
shows that D =/ 0. On the other hand, if <I> is inseparable and ri > 1 is 
the inseparability degree, then for a generic line L in P 2 as above, the 
-f; points of tangency with :F have ri + 1 as value of Kq- Thus Kq ~ 3 
holds for an open and dense set of points q. Again by part (1) above, 
one concludes that D = 0. Q.E.D. 

Example 2. 7. Consider the foliations in characteristic 2 given re
spectively by 

01 = aYZdX + {3XZdY + 'YXYdZ, a+ {3 + 'Y = 0, af3'Y =/ 0. 
02 = Z 3dX + ZX2dY - (Z2X + YX 2 )dZ. 

In both cases one has that D = 0. In the first case, r = 1, so r + 1 = 0 
in k. In the second case, r = 2 and <I> is inseparable. 

§3. The base points of the polar net 

The base points of a linear system include the infinitely near ones. 
Let us take a moment to explain briefly this statement. 

An infinitely near point q is a point obtained by a sequence of point 
blow ups, starting from P 2 . For a configuration on P 2 is meant a set 
C of infinitely near points, such that if q E C, then every point needed 
to produce q also belongs to C. Notice that the points of C belong 
to different surfaces and that they are related by two different kind of 
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relations. First, one can write q > q', if q' is necessary to create q, and 
q -+ q', if both q > q' and q belongs to the strict transform ( at the 
surface containing q) of the exceptional divisor Bq' of the blow up of 
q'. The relation -+ is called proximity and if q -+ q', we say that q is 
proximate to q'. 

By blowing up successively the points of C ( compatible with the 
relation >), one gets a surface S = Sc and a morphism 1r : S --+ P 2 , 

which is the composition of all the blow ups. The exceptional set has 
as components the curves Eq which are the strict transforms of the 
exceptional divisors Bq. If E; denotes the total transform of Bq at S, 
one has 

Eq = E; - L E;,, 
q'-+q 

for every q E C. This means that every divisor E with exceptional 
support (i.e., a relative to 1r divisor) can be written in the form E = 
EqEC lqE;, with lq E Z. A (not necessarily reduced) curve H in P 2 is 
said to pass through C with assigned (or virtual) multiplicities {lq}, if 
the relation 1r* H ~ E := EqEC lqEq holds (see [3]). This means that for 
q in CnP2 , the multiplicity of Hat q is greater than or equal to lq; that 
by blowing up at such points q and by taking the virtual transform of 
H (that is, taking off lq copies of Bq), the new divisor has multiplicity 
at least equal to lq at the new points q, and so on. 

Configurations appear in connection with several phenomena. For 
instance, for a reduced curve Q in P 2 , one has its resolution configuration 
CQ, that is, the configuration consisting of the points that are necessary 
to produce the minimal embedded resolution of Q. If {eq = eq(Q)} is 
the set of multiplicities of the strict transforms of Q at the points q E C, 
one also has an associated relative divisor EQ := EqEC eqE;. 

For a polar net one also has an associated configuration Ca and a 
relative divisor Ea, which are nothing but the resolution configuration 
and half the relative divisor, respectively, of the union of two generic po
lars of the net. To wit, if 1r: Sa --+ P 2 is the corresponding morphism, 
then ~ can be extended to a morphism i : Sa --+ P2 , and one has 
that 1r* P ~ Ea, for every polar P (and so, all of them pass virtually 
through Ca), and for a general enough polar P , one has that 1r* P- Ea 
has no exceptional components. Note that if Ea = EqEC mqE;, then 
mq = Vq for all points q E C n P 2 , and for q ¢ P 2 , the integer mq has 
a similar meaning with respect to the transformed net. The points q of 
Ca are also said to be base points of the polar net and are said to have 
multiplicity equal to mq. 
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We shall now study the way in which the jacobian J passes through 
the configuration CA· 

Theorem 3.1. Assume that the jacobian J is a curve (i.e., D =/-
0). Then, for the polar configuration one has that 

1r* J 2: L(3mq - l)E; = 3EA - Ksl!.;p2, 
qEC 

where Ksl!.;p2 denotes the relative canonical divisor. In particular, the 
jacobian J passes through the points q E Sing(.r) with multiplicities 
greater than or equal to 3mg - 1 = 3vq - 1. 

Proof. Let q E Sing(.r) and take coordinates such that q = [1, 0, 0]. 
Then by (2.1), one has that the germ of D at q is, up to a unit, the same 
as that of AB(Ay + Bx) -A2By -B2Ax. Now, the curves given by A 
and B pass through CA with virtual multiplicities {mg}, and those given 
by Ax, Ay, Bx, By, with virtual multiplicities { mq - 1 }, since they are 
different polar curves (see [5]), and thus, D passes with multiplicities 
{3mg - 1} as required. On the other hand, it is easy to see that the 
relative canonical divisor is given by EqEC E;. This completes the proof 
of the theorem. Q.E.D. 

Remark 3.2. (a) Let q E Sing(.r). Choose coordinates such 
that q = [0, 0, 1] and let LA and LB be the leading terms in the 
power series A(X, Y, 1) and B(X, Y, 1), respectively. Then it is 
not difficult to see that the multiplicity of J at q is exactly equal 
to 3vq - 1 if and only if LA and LB are linearly independent, 
and one has that XLA + YLB =/- 0. To see this, write down the 
determinant (2.1), look for the leading terms and its derivatives, 
and impose the condition that the resulting determinant is non
zero. Geometrically speaking, the condition that LA and LB are 
linearly independent means that the exceptional divisor Bq is 
dicritical for the net I::,. (i.e., that it is not contracted by i, see 
[8] and [7]). On the other hand, the condition XLA + YLB =/- 0 
means that Bq is non-dicritical for .r, i.e., that Bq is invariant by 
.r. 

(b) The determinant (2.1), when viewed as a germ at q = [0, 0, 1], 
behaves well under blowing ups. This means that the Remark 
(a) above can be extended to a similar one, at every point q EC, 
by taking the transforms of the net and the values 3mg - 1. 

(c) In characteristic zero, one also has a resolution configuration C:F 
for the foliation .r. This configuration is different to CA since, for 
instance, it follows from Remark (a) above that being dicritical 
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for :Fis not the same as being it for ~- However, CF contains 
the configurations CQ for every reduced curve Q invariant by :F. 

§4. Applications to the Poincare problem 

Consider a reduced curve Q C P 2 , invariant by a foliation :F. Let 
C = CQ be the resolution configuration for Q. We shall consider several 
values associated to each q EC. Namely, let eq = eq(Q) be the multiplic
ity of the strict transform of Q at q; let liq = llq(:F) be the multiplicity 
of the strict transform of the foliation :Fat q, and let Sq = sq(:F) be the 
number of components of the exceptional divisor passing through q (in 
the surface containing q), that are invariant by :F. 

Now, for each q EC, consider an integer lq, such that 

(4.1) eq + Sq ~ liq + 1 + lq. 

The main result in [1] provides a method to bound the degree of Q, 
which consists in solving a problem on assigned conditions. It is the 
following: 

Proposition 4.1 ([1]). With the notations as above, if H is a 
( non necessarily reduced) plane curve passing through the points of C 
with multiplicities { lq}, then one has that 

d ~ r + 2 +a, 

where d and a are the degrees of Q and H, respectively, and r is the 
degree of :F. 

Although the proof in (1] is carried over the field C of complex 
numbers, the result is also true in any characteristic, as is shown in [2]. 

In order to apply the Proposition above, assume that { lq} is given. 
For each q E Sing(:F) and every maximal chain b, relative to the relation 
>, starting at q, consider the value nq,b = Lq'Eb lq' · Now let nq be the 
maximum of the values nq,b, for all such maximal chains b. One has then 
the following result: 

Lemma 4.2. With the notations as above, if H is a curve in P 2 

passing through the points q E Sing(:F) with multiplicities at least equal 
to nq, then H passes through C with assigned multiplicities {lq}-

Proof. One can check that the conditions on virtual passage are 
satisfied for each maximal chain by using recurrence on its lenght. The 
inductive step is based on the fact that, if a germ has multiplicity n > l, 
then the virtual transform with respect to l has multiplicity greater than 
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or equal to n-l, at every point q' in the exceptional divisor of the blow up 
of the origin q of the germ. In fact, if f(x, y) = fn(x, y) + fn+i(x, y) + 
. . . is the Taylor expansion of the germ equation with respect to local 
coordinates x, y at q, such that x = 0 is transversal to the direction 
corresponding to q, then the virtual transform germ at q' is given by the 
equation xn-l • f'(x,y'), where x,y' are local coordinates at q', and f' 
is an equation for the strict transform germ at q'. Q.E.D. 

Now we will restrict our attention to the case where the curve Q 
has only simple singularities. Such simple curve singularities correspond 
to the Dynkin diagrams Ak, k ~ 1; Dk, k ~ 4; E6, E1 and Es (see [11], 
[10]). The resolution configurations will be shown below. In the fol
lowing Theorem we will consider the case of characteristic zero, but the 
positive characteristic case may be treated with few changes. However, 
the main remark in positive characteristic is the fact that there exist 
regular foliations having singular invariant germs. 

Theorem 4.3. Let :F be a foliation of degree r on the projective 
plane P 2, over a field of characteristic zero. Let Q be a reduced curve of 
degree d, invariant by :F, and having only simple singularities in a set 
S c Sing(:F). Assume that for each q E S, the Dynkin diagram of the 
singularity has Vq vertices. Let H be a curve of degree a passing through 
each point q ES, with multiplicity greater than or equal to [vq/2]. Then 
one has 

d $ r+2+a. 

Proof. We begin by recalling the list of simple singularities (in char
acteristic zero): 

Dynkin diagram Same resolution as the curve singularity 
Ak X~ + y"-rl, k~l 
Dk x~y + y"'-1, k~4 
E6 x::i +y4 

E1 x::i +xy::i 

Es X3 +yb 

For the singularities A2h the resolution configuration consists of a 
chain qo < Q1 < ... < Qh+i, with Qh+i --+ Qh-1 as nontrivial proximity 
relation. One has so= 0, Si$ 1, for 1 $ i $ h, Sh+i $ 2; ei = 2, for0 $ 
i $ h - 1, eh = eh+l = 1. If si = 1 then vi ~ 1 and if sh+l = 2 then 
vh+l ~ 1. This means that we can take lo = lh = 0, li = 1, 1 $ i $ h-1, 
lh+l = 1. 
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For the singularities A2h+l the resolution configuration consists of 
a chain q0 < q1 < ... < Qh, without nontrivial proximities. One has 
s0 = 0, and 'si S 1, for 1 S i S h, ei = 2, for 1 S i S h. If Si = 1 then 
vi 2". 1. Thus we can take lo= 0, li = 1, 1 Si Sh. 

For the singularities D2h the resolution graph is also a chain Qo < 
q1 < ... < Qh- 2 , without nontrivial proximities. One has so = 0, Si S 
1, for 1 s i s h - 2, eo = 3, ei = 2, for 1 s i s h - 2. One has 110 2". 1 
and Iii 2". 1 if Si = 1. Thus we can take li = 1 for O S i S h - 2. 

For the singularities D 2h+l the resolution configuration consists of 
a chain q0 < q1 < ... < Qh, with Qh ---, Qh-2 as nontrivial proximity 
relation. One has so = 0, Si S 1, for 1 S i S h - l, sh S 2; eo = 3, ei = 
2, for 1 S i S h - l, eh-1 = eh = l. Again, 110 2". 1 and Iii 2". 1, if Si = 1 
or llh 2". 1, if sh = 2. We can take lo = ... = lh-2 = lh = l, lh-1 = 0. 

For the singularity E6 the resolution configuration consists of a chain 
qo < q1 < q2 < q3, with q2 ---, qo and q3 ___, Qo as nontrivial proximity 
relations. One has so = 1, s1 S 1, s2 S 2, s3 S 2, eo = 3, ei = 1, for 1 S 
i S 3. One has 111 2". 1 if Si = 1; 112 2". 1 if s2 = 2; 113 2". 1 if S3 = 2. Thus 
one can take lo = h = h = 1, li = 0. 

For the singularity E7 the resolution configuration consists of a chain 
qo < q1 < q2, with q2 ---, qo as nontrivial proximity relation. One has 
so = 0, s1 s 1, s2 s 2, eo = 3, e1 = 2, e2 = 1. One has 110 2". 1, 111 2". 1 if 
s1 = 1; 112 2". 1 if s2 = 2. One can take lo = li = l2 = 1. 

For the singularity E 8 the resolution configuration consists of a chain 
Qo < Q1 < Q2 < q3, with Q2 ---, qo and q3 ___, Q1 as nontrivial proximity 
relations. One has so = 0, s1 S 1, s2 S 2, s3 S 2, eo = 3, e1 = 2, e2 = 
e3 = 1. One has 110 2". 1, 111 2". 1, and 112 2". 1, 113 2". 1 if, respectively, 
s2 = 2 or s3 = 2. Thus one can take lo = li = h = h = 1. 

Thus, according to the choice of { li}, it follows that for this choice 
one has that nq S [vq/2] and the Theorem follows from Lemma 4.2. 

Q.E.D. 

Remark 4.4. (a) In the Theorem above, in fact one has that 
nq S [vq/2], except for the singularity D2h, for which nq = (vq -
1)/2. Also notice from the proof that, for simple singularities, 
one can take values O and 1 for the integers lq, for q E C. 

(b) Nodes are A1 singularities. Since [vq/2] = 0 for them, the The
orem (and Remark (a) above) can be seen to be an extension of 
the result in {6). If one allows further simple singularities one 
can get concrete bounds for d. Thus, for instance A1, A2 and 
A3 singularities, if one chooses as H to be any polar, one obtains 
d s 2r + 3. 

A precise extension of the result in [6) is the following: 
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Corollary 4.5. Let Q be a reduced curve of degree d, which is 
invariant by a foliation :F of degree r, and let c ~ 1 be an integer. 
Assume that Q has also simple singularities { q}, whose Dynkin diagrams 
have Vq vertices, with [vq/2] ::; c - 1. Then one has 

d::;cr+c+l 

Proof. Take as H any union of c - 1 polars. Q.E.D. 

Now, suppose that the foliation :F is fixed. For each q E Sing(:F), let 
tq be the largest length of a maximal chain of infinitely near points 
q = q1 < q2 < ... < qt, without non-trivial proximity relations existing 
in the resolution configuration of :F. Set 

uq = max(tq, 4), , [ Uq l 
cq = - - eq(J) ' 

where eq(J) denotes the multiplicity at q of the jacobian. Now define 
the polar and jacobian complexity of :F respectively by 

c = max (cq) and c' = max (c' ). 
qESing(F) qESing(F) q 

Theorem 4.6. With the notations as above, let :F be a foliation 
of degree r, with polar and jacobian complexities given respectively by 
c and c'. Let Q be a reduced curve of degree d, with at most simple 
singularities, which is invariant by :F. Then 

d::; er+ (c + 1) and d::; (3c' + l)r + 2. 

Proof. It is enough to take for the curve H in Theorem 4.3 a union 
of c - 1 polars, for the first inequality above, and c' times the jacobian 
for the second. Q.E.D. 

Remark 4.7. Since eq(J) ~ 3vq - 1 (by Theorem 3.1), one of the 
bounds above can be better than the other, depending on the values of 
the invariants. The first one is usually better and the second improves 
the first one in some cases. Such improvements appear sometimes in 
the case when the algebraic multiplicities of :F at its singularities are at 
least 2. 

Example 4.8. The foliations in A 2 given respectively by 

2xdy - 5ydx, xdy- 2ydx, 2xdy - 3ydx 
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have for invariants r = 1, c = 3 and c' = 2, so the bounds that Theorem 
4.6 brings for these cases are d ~ 1 and d ~ 9. The curve Y 2 Z 3 -

X 5 = 0 has A4 and E 8 singularities and is integral for the first example. 
Similarily, the second example has X(Y2 Z 2 - X 4) = 0, with two D6 
singularities; the third example has X Z(Y2 Z -X3) = 0, with D5 and Ds 
singularities, and YZ(Y2Z-X3 ) = 0, with A1 , A5 and E7 singularities. 
All these integral curves have degree 5 < 7. 
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