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Length Functions for G(r,p,n)

Toshiaki Shoji !

Abstract.

In this paper, we construct a length function n(w) for the com-
plex reflection group W = G(r,p,n) by making use of certain parti-
tions of the root system associated to W= G(r,1,n). We show that
the function n(w) yields the Poincaré polynomial Py (q). We give
some characterization of this function in a way independent of the
choice of the root system.

§1. Introduction

Let W = G(r,1,n) be an imprimitive complex reflection group.
In [BM1], K. Bremke and G. Malle introduced a certain type of root
system (and its partition into positive and negative roots) associated to
W, and defined a length function 73 on w by making use of the root
system. They showed that this function satisfies some good properties
as a generalization of the length function of finite Coxeter groups. In
particular, the polynomial ZweW ¢ coincides with the Poincaré

polynomial Py;(q) of W. In [RS], we studied further properties of ny,
and gave some characterization of it in a way independent of the choice
of the root system, in connection with the usual length function defined
by standard generators of W.

In [BM2], a similar problem was studied for the reflection subgroup
G(r,r,n) of w. They defined a length function 73 on 1% by using a
similar root system as above, but by using completely different partition
into positive and negative roots. They defined a length function ny on
G(r,r,n) as the restriction of 72, and showed that ns yields the Poincaré

polynomial Pg(r,r.n)()-

Received February 23, 1999.

! This paper is a contribution to the Joint Research Project “Representa-
tion Theory of Finite and Algebraic Groups” 1997-99 under the Japanese-
German Cooperative Science Promotion Program supported by JSPS and
DFG.



328 T. Shoji

In this paper, we consider a more general group W = G(r,p,n).
The group W is a reflection subgroup of W containing G(r,r,n). We
construct some partitions of the root system, (in fact, we need two kinds

of such partitions) and define a length function # on W associated to
the root system. We also define a function n on W as the restriction of
71 on W. We then show that our length functions satisfy the property

that 1
=3 ™ =" "™ = Py(g),
pwEW weW

where Py (q) is the Poincaré polynomial associated to W. Our function
n(w) is much more complicated than the previous cases. But in some
sense, it is the mixture of the functions n; and nsy. In fact, if p = 1,
n(w) coincides with nq(w), while if p = r, n(w) coincides with ny(w).
We give a characterization of the function 7 on W in a similar way
as in [RS], in an independent way of the choice of the root system. This

is done by making use of a certain length function on W defined without
using the root data. However, in contrast to the case treated in [RS], it

is not the function defined by generators of W or W.

§2. Length functions associated to a root system

2.1 Let V be the unitary space C™ with the standard basis vec-

tors ey, ...,e,. We denote by W = G(r,1,n) the imprimitive complex
reflection group generated by reflections ¢, so, ..., s,. Here s; is the per-
mutation of e; and e;—; for i = 2,...,n, and t is the complex reflection

of order r defined by te; = (e; and te; = € for 1 # 1, where ( is a fixed
primitive 7-th root of unity. The group W has a Coxeter-like diagram
with respect to the set S = {t, s2,...,s,} of generators as follows;

BY: @=—0—0----0—0
t

82 83 Sn-1 Sn

For each factor p of r, we denote by W = G(r,p,n) the reflection
subgroup of W of index p generated by S = {tP,s1 = t"lsat,s2,...,5,}.
The special case where p = r, the group W’ = G(r,r,n) is generated
by §' = {s1,...,5n}. We have W' C W C W. We put r = pd. The
presentation of the group W in terms of the set S is determined by
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[BMR]. In particular, if p > 3,d # 1, the Coxeter-like diagram of W is

given as follows.
s1

i - O—0

p+1 S3 Sq Sp—1 Sn
82

2.2 Let ® be a root system associated to W defined in [BM1].
Here we follow the description of @ given in [RS]. Hence we consider

aset X = {el(-a) | 1 <1i < n,a€ Z/rZ}, and we express an element
(e, eg-b)) €EXxXase®— e§b) whenever i # j. The root system & is
defined by

o=, [[®. with

& ={e — e |1<4,j < n,i#j,a,be Z/rZ},

b, =X={e?|1<i<n,acZ/rZ}

An element in ®; (resp. in @) is called a long root (resp. a short root),

respectively. The group W acts naturally on the set ® in such a way
that s; permutes e(® and e{*),, and te{® = {*™), teg-a) = eg-a) for j # 1.

For o = eﬁ“’ - egb) € ®;, we define —a € ®; by —a = eg.b) — ez(.a). We
shall define two types of partitions, ®; = &} U ®; = &}t U ®; ™ such
that & = —®;,®; - = —®}'*. In the following formulae, long roots

a € ®; are always denoted as a = e§”’ - eg.b). Also for each a € Z, let
@ be the integer determined by the condition that @ = a (mod p) and
that —p/2 < @ < p/2. The partition of the first type is given as follows.
(2.2.1) @ ={a|-p/2<a<0,i>j}
U{a|0<a<p/2,p/2<b<r—p/2,i>j}
U{a|-p/2<b<0,0<b<r—p/2,i<j}
U{a|0<b<p/2, -p/2 <a<p/2,i<j},
O ={a|-p/2<b<0,i<j}
U{a|0<b<p/2,p/2<a<r-—p/2,i<]}
U{a| —p/2<a<0,0<a<r-—p/2,i>j}
Uf{a|0<a<p/2, —p/2<b<p/2,i>j}.
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The fact that &, = —®;, and that ®; is a disjoint union of ;" and &,
is verified as follows. Set

A={a|-p/2<a<0,i>j},
B={a|0<a<p/2,p/2<b<r-—p/2,i>j},
C={a|-p/2<a<0,0<a<r-—p/2,i>j},
D={a|0<a<p/2, -p/2<b<p/2,i>j}.

Then, it is easy to see that A, B,C and D are mutually disjoint, and
AU BUCUD coincides with the set {a € ®; | i > j}. Moreover, we
have

®f=AUBU-CU-D, ¢ =—-AU-BUCUD.

This shows the required property.
The partition of the second type is given as follows.

(2.22) oft ={a|-p/2<a<0,i>;}U{a|0<b<p/2,i<j},
& ={a|0<a<p/2,i>j}U{a|-p/2<b<0,i<j}.

We also define a grading of ®; by modifying the grading of &, given
in [RS] as follows. Let &, = ®50U &1 U---U P, 4_1, where

(2.2.3)
D5m :{ef.a) |mp—p/2<a<mp+p/2,1<i<n} (0<m<d).

Next we define a subset Q@ = Q; U Q' U, of ® as follows.
Qsz{e,(-o)|1§i§n},
Q= {ego) - e§b) |b=0 (mod p), i > j},

and

Qf = {e{” — ™" | —p/2<a<0,0<m <d,i>j}
U{e™ P e |0 <b<p/2,0 <m < d, i< j},
where

5 — 1 if p is even,
o if p is odd.
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We define functions 7, 71}, i, : W N by
aw) = lwy N |,  A(w) = [w Ne; 7|,

and by

Aw) = 3 vw(a)),

€N,

where for each o € @, we put v(a) =k if a € &, ;. We define a length
function 74 : W — N by f = 7ij + @] + f1,. We consider the restriction
of these functions to W, and define nj,n; and n, as the restriction of
iy, 7}, and fig, respectively. Then we define a length function n of W
by n = nj +n) + ns.

Remark 2.3. In the case where p = 1, we have Q' = (). Moreover,
@} ={a|a=0}u{a|b+# 0}, and &, = —®}. This partition together
with the set Q) U Q; coincide with the set Q; U Q, of ®; given in [RS],
and the grading of ®; also coincides with that of ®; given there. Hence
the function n coincides with the length function of G(r, 1, n) defined in
[BM1].

While in the case where p = r, we have ®; = &, . Moreover of =
®;*,®; = &, and this partition of ®; together with Q,UQ}’ coincide
essentially with those given in [BM2]. (Also note that ] coincides with
the root system of the symmetric group S,). Hence n agrees with the
length function of G(r,r,n) defined there.

2.4. Let W; be the reflection subgroup of W generated by I =
{t?, s1,52,...,5m} for some m < n. Then W; is isomorphic to G(r, p, m).
It is clear from the definition that the restriction of n on W coincides
with the function n; defined similarly for G(r,p,m). On the other hand,
let J = {t?,s3,...,5,} be a subset of S, and W the subgroup of W
generated by J. If d > 1, then W is isomorphic to G(d,1,n), and
J coincides with the standard set of generators of G(d,1,n). While if
d =1, Wy is isomorphic to S,,. Let ns be the length function of W as
given in [RS]. In the case where d > 1, we denote by ny; and nj, the
functions associated to long roots and short roots, respectively.

Lemma 2.5. . The restriction of n on Wy coincides with ny.

Proof. The case where d = 1 is easy. So, we assume that d > 1.
Let ®; ; be the subset of ®; consisting of roots of the form ega) - eg.b)
with p | @, p| b. Then @, ; is in a natural correspondence, via the map
el — e§b) — ega,) - eg.b/) with o’ = a/p,b’ = b/p, with the set of long

roots for G(d, 1,n), where ®, ; N ®; (resp. @5 N ®;) corresponds to
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the set of positive (resp. negative) roots, respectively. Similarly, let ®; ;

be the subset of ®; consisting of e,(a) with p | a. Then ®, ; corresponds
naturally to the set of short roots for G(d, 1, n), and the restriction of the
grading of ®; to ®, ; coincides with the grading of the set of short roots.
Note that the above correspondence is compatible with the actions of
W;. Under this correspondence, the sets Q; and €2, are mapped to the
sets ; and Q; in the root system for G(d,1,n). Since w(Q;) C P55
(resp. w(Q)) C ¥y,5) for each w € W, we see that the restriction of ng
(resp. mj) on W coincides with nj, (resp. nj;), respectively. Hence
in order to prove the lemma, it suffices to show that nj'(w) = 0, i.e.,
w(Qf) C &} for w € W;. Take an element o = el — e;b) € w(Y).
Then either —p/2 <@ <0and b= —a,or 0 <b<p/2anda= —b+d.
This implies that a € <I>l++ and the lemma follows. Q.E.D.

2.6. By applying Lemma 2.5, we can determine the values n(s) for
s € S as follows.

1 if s € {s2,...,8n},
1 if s = tP with
(2.6.1) n(s) = if s =17 with d > 1,
d if s=s; withp>3ord=1,

3d—1 if s =s; withp=2,d > 1.

In fact, the first two case follow from the lemma. We consider the
remaining cases. We have s1(Q)) C @ if p > 3 or d = 1. While if
p=2,and d > 1, then sl(ego) - egb)) < 0 for b = 0 (p). On the other
hand, sl(ego)) = egl) and sl(ego)) = eg—l), and s; leaves other short
roots fixed. Hence by (2.2.3), s1(Qs) C @5, if p > 3. While if p = 2,
we have sl(ego)) € ®;,4-1, and s; maps all other elements in Q, to ®, 0.
Moreover we have

QU (153 (@) = (™ _ e 0 <m < d} if p is even,
L {7 — e+ |0 <m < d} if p is odd,
where p = 2f+1. This implies that nj(s1) = 0, nj/(s1) = d and ns(s1) =
0if p>3ord=1, and nj(s1) = d,n}(s1) = d and ns(s;) = d -1
otherwise. So we have n(s1) = d or 3d — 1 and (2.6.1) follows.
Let ®; ; be the subset of ®; defined in the beginning of the proof of

Lemma 2.5. Set @ZJ = ®; ;N ®}. We define a subset WY of W by

(2.6.2) WY = {we W |w@®,) C &, w( ) C s p0}.
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Then the following lemma holds.
Lemma 2.7. Letw e W, w' € W;. Then we have

(2.7.1) Ay (ww’

In particular, n(ww') = 7(w) + A(w’).

Proof. Since Q) C @, it follows from (2.6.2) that Aj(w) = 0.
(2.6.2) implies also fis(w) = 0. On the other hand, we know that
7y/(w") = nj'(w’) = 0 from the proof of Lemma 2.4. Hence the last
formula follows from (2.7.1). We show (2.7.1). Since w(®; ;) C @,
w'(a) and ww'(a) have the same sign for a € Q. This implies the first
assertion of (2.7.1). Let

O ={e — e | -p/2<a<0,a+b=0,i>j}
U{ega)—eg-b) |0<b<p/2,a+b=34,i<j}

Since w’(9}’) C ®;", we see that w’ stabilizes (/. The second assertion
follows from this if we notice that the definition of the sets ®;* or &~

depends only on @ and b for o = el eg-b), and that (NZ;’ has the same

i
pattern as €} for the action of w’. The last assertion is also immediate
from (2.2.3). This proves the lemma. Q.E.D.

2.8. By modifying the definition in [BM2], we define an element
w(a,m) € W for —p/2 < a < p/2,1 < m < n as follows.

S - -+ 82t if0<a<p/2
Sm - 82t%Sg - S if —p/2<a<0.

(2.8.1) w(a,m) = {

Let us define a subset A of W by
N = {w(a1,1)w(az,2) - w(an,n) | —p/2 < a; < p/2}.
We set N/ = N NW. Then N’ can be written as

(2.8.2)
N' = {w(a1,)w(az,2) - w(an,n) EN| Y a; =0 (mod p)}.

Also we set W7 = W7 N W. We have the following proposition.
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Proposition 2.9. The set N (resp. N’) coincides with the set w7
(resp. WY). Moreover, N' (resp. N') gives rise to a system of complete

representatives of left cosets W/ Wy (resp. W/W;), respectively.

Proof. First we show that AV is contained in W7. Take o = e{™ —

eg-m/p) € &, 5. Then for w € N, w(a) is expressed as w(a) = e,(cmpﬂ") -

el(m’p +2) where aj and a; satisfy the following condition;

—p/2 <ar < p/2, 0<a; <p/2 ifi>j k<l
—p/2 <ar <0, —p/2<a; <p/2 ifi>jk>]I,
—p/2 <ar, <p/2, —p/2<a; <0 ifi<j k<l

0<ar <p/2, —-p/2<a<p/2 ifi<jk>l

Then it is easy to see that w(a) € @] exactly when m = 0 if i > j, and
when m' # 0 if i < j. But this condition is equivalent to the condition

that a € <I>f:J. It follows that w(<I>lTJ) C ®;f. Next take ego) € Q. Then
we have w(ego)) = eg-a" ) for some Jj with —p/2 < a; < p/2. This implies
that w(Qs) C ®50. Hence we have N' C W7.

Next we note that W+ is a subset of the set of left coset represen-
tatives of W by W. In fact assume that there exist wy,ws € W such
that w; = wez with £ € W;. Then by (2.7.1) in the proof of Lemma
2.7, we have nj(waz) = nj(z) and nj(w;) = 0. Hence nj(z) = 0. Since
the restriction of nj on W; is the length function on W; = G(d,1,n),
we have £ = 1. So w1 = ws. s .

It follows from the above remark that |W7| < |W/W;| = p™. On the
other hand, we have || = p™. (In fact, if w = w(a1,1) - - -w(an,n) € N,
then there exists e§°) such that w(ego)) = e{*). Hence the elements in A/
are parametrized by n-tuples (a1, ...,a,) with —p/2 < a; < p/2). This
shows that A = W7 gives a complete set of representatives for W/ W;.

The statement for W follows from this by noticing that |N’| =
|W/W;| =p~ L. Q.E.D.

Remark 2.10. The above proposition shows that any element w € W
(resp. w € W) can be expressed in a unique way as

(2.10.1) w = w(a, )w(ag,?2) - wy(an,n)w’,

where w' € W (resp. and ), a; =0 (mod p)). The numbers ay,...,an
occuring in the decomposition (2.10.1) can be interpreted directly as
follows; since W ~ S, x (Z/rZ)™, an element w in W can be written
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in a form w = oz, with ¢ € S, and z € (Z/rZ)". Note that z can

be written uniquely as z = (21,...,2,) with z; € Z such that —r/2 <
z; <r/2fori=1,...,n. Each z; determines an integer z; such that
-p/2 < Z; < p/2, and that Z; = z; (mod p) as in 2.2. Under these
notations, we have a; = Z; for i = 1,...,n. See also 3.2 for more details.

We shall compute th values 71} (w) for w € N, and n}(w) for w € .

Lemma 2.11. The following formulae hold.

. i d(m —1)(2a — 1) if0<a<p/2,
0 A (wla,m) = {d(m —1)(~2a) if —p/2<a<o.

(i) For w = w(a1,1)w(az,2) - w(an,n) € N we have,

n

(2.11.1) Ay (w) =Y i} (w(ai, 1))

i=1

Moreover, the function 7] coincides with i on N. In particular, if
w € N, the value n(w) is given by the right hand side of (2.11.1).

Proof. First we show (i). Let w = w(a,m). Assume that 0 <
a < p/2. Then w = spSm—1---52t%. Take a = e(b) gkp_b) e Qf,
where i > j and —p/2 < b < 0. Then w(a) becomes positive unless
j = 1,i < m. In that case we have w(a) = egi)l — ethp=t+9) " and
w(a) < 0 if and only if —p/2 < —b+ a < 0. This condition is equivalent
to p/2 < a — b < p, and we have

ﬁ{a=ez(.b)——e§.kp_b)GQ;'|w(a)<0}
=#{a|p/2<a-b<p,0<k<d, 2<i<m}
_Jdim—1)(a—-1) if p is even,
" ld(m - 1)a if p is odd.

Next take o = [P0+ _ g-b) €, wherei < jand 0 <b<p/2. A
similar consideration as above shows that w(a) < 0 if and only if i = 1
and 0 < a—b+ 9 < p/2. Then we have

#{a = e{mPT00) _ (-b) € | w(e) <0}
=ﬁ{a|0<a—b+5§p/2,0§k<d,2§j§m},

_Jd(m—1)a if p is even,
" ldm—-1)(a—1) if p is odd.
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It follows that 7} (w) = d(m — 1)(2a — 1).

Next assume that —p/2 < a < 0. Then w = sp, -+ - 52t%S2 - -+ S
First take o = e(b) (k”_b), where ¢ > j and —p/2 < b < 0. Then
w(a) is positive unless i = m. In that case, w(a) = elett eg.kp =) and
w(a) < 0 if and only if 0 < a + b < p/2. This implies that —p < a+b <
—p/2, and we have

H{a = egb)—eg-kp—a) € Q) | w(a) < 0}
=#H{a| -p<a+b<-p/2,0<k<d, 1<j<m}
=d(m — 1)(—a).
Next take a = egkp —b+0) _ e§b) , where i < j and 0 < b < p/2. Then
w(a) is positive unless j = m. In that case w(a) = egkp b0 _ glath)
and w(a) < 0 if and only if —p/2 < a + b < 0. Hence we have

Ho=e"7" — e € O | w(a) <0}
—{a[—p/2<a+b§0,0§k<d,1§i<m}
=d(m —1)(—a)
It follows that 7} (w) = (m — 1)d(—2a), and we get (i).
Next we show (ii). Take a = ei(-b) - egmp ¢ Q, with ¢ > 7, and
assume that w(a) < 0. Now w(a) can be written as w(a) = eg’“") -
l(mp ~b+a1) for some k,I. First consider the case where k > l. Let
w' = w(ags1,k+1)-- (an, n). Then w'(a) can be written as w'(a) =
,(cb) gtnp Y for some J <k It follows that 8 = w'(a) € Q) and
w(ak, k)B < 0. If k < I, we consider w" = w(aj4+1,l +1)-- (an,n)
instead of w’. Then w”(a) can be written as w”(a) = ez(-, Y"” ® for
some i’ > 1. Hence 8 = w"(a) € @} and w(a;,1)8 < 0. Conversely, we
take 8 = eg’) - eg-fnp_b) € Q' with ¢’ > j', and assume that w(ak, k)8 <
0. Then ¢/ = kor 3 = 1. If weset o = w’_l(ﬁ), then we see that
a=e?— (-mp—b) € Qf with i > j, and that w(a) < 0.

A 51mlla.r fact as above also holds for a = e(mp b+9) _ 0 ¢ Q.

(Here, 8 = eﬁ,mp*Hﬁ - fcb) with i/ < k, or 8 = e(lmp_b+5) — eg’) with
1 <3, and so B € Q). This proves (2.10.1).

Finally, assume that w € A”. Then n(w) = f}'(w) by (2.7.1). Hence
(2.10.1) gives the value n(w). Q.ED.

Remark 2.12. Ifp>3ord=1, thensl—w( 1,w(1,2) € M.
While if p = 2,d # 1, we have s; = ww’ with w = w(1,1)w(1,2) € N’
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and w' = sgt~2sy € W;. Here n(w) = d and n(w’) = ny(w') = 2d — 1.
So, in this case we have n(s;) = 3d — 1 by Lemma 2.7. This justifies
(2.6.1).

2.13. For a complex reflection group G, we denote by Pg(q) the
Poincaré polynomial associated to the coinvariant algebra of G. The
Poincaré polynomial Py (q) for W = G(r,p,n) is given as

qdn_l

n—1 ri

q jo—

2.13.1 P = I I . .
( ) w () ! g—1 -1

Then the following proposition holds.
Proposition 2.14. We have
= Z "™ =" "™ = Py (g).

weW weW

Proof. We show the second equality. By Lemma 2.7 and Proposi-
tion 2.9, we have

(2.14.1) St = 3T @) S gn),
weW wGN’ wEWJ

Now W; is isomorphic to G(d,1,n) and the restriction of n on W;,
coincides with ns; by Lemma 2.5. Hence by [BMl, Prop. 2.12] we have

"
(2.14.2) Y "™ = Poaim(g) = H

weW,

On the other hand, in the expression w = ), w(a;,i) € N’, we can
choose as,...,a, freely, and a; is determined uniquely by as,...,a,.
Moreover, we have 7j'(w(a,1)) = 0 by Lemma 2.11. Hence again by
using Lemma 2.10, we have

(2.14.3) 2 n(w) _ ﬁpiqdk(z 1 _ H qd; -1
wEN? i=2 k=0 i 4~

Substituting (2.14.2) and (2.14.3) into (2.14.1), we get the second equal-
ity. The formula % D weW g™ = Py (q) can be proved in a similar way
if one notices that

n p—1
qﬁ(w) — qdk(i- 1) .
L=l

weEN
Q.E.D.
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§3. A characterization of the function 7

3.1. In this section we shall characterize the length function 7 in
terms of a certain length function on W, which is defined independent
of the root system. We use the same notation as in Remark 2.10.

Let Wo = G(2,1,n) be the Weyl group of type B,. We define a
map ¢ : W — Wp by o(w) = o(e1,--.,€n), where w = o(z1,...,2,) is
as above, and ¢; is determined by

1 if z; > 0,
& = .
0 1f2i§0.

(Here we use the same notation for W as the special case r = 2 for
G(r,1,n)). Let us define a length function ¢; : W — N as follows.
For w = oz, we put £;(w) = £o(p(w)), where £y is the length function
on Wo with respect to the long roots. (More precisely, using the basis
e1,...,en of V, the set of long roots ®; C V associated to Wo is given
as & = {xe; te; | 1 < 4,5 < m,i # j}, on which W, acts naturally.
Now the set ®; of positive roots is given as ®;" = {e; £ e; | i > j}. For
w' € Wo, we put fo(w') = |®;F N —w!(®;)|). Next we define a function
£ : W — N by l(w) = 37, 2, where

s -t if z; >0,
YT ) =2z if z; <0.

Then we define a length function £ by £ = ¢; + £5. It is clear from the
definition that if r = 2, £5 coincides with the length function of Wy with
respect to short roots, and so the function £ coincides with the usual
length function of the Weyl group of type B,.

3.2. Let w = w(a1,1) - -w(an,n) be an element in N. The
expression w = oz of w as in 3.1 can be described as follows. Let
I={1<i<n]|a; >0}, and J the complement of I in {1,2,...,n}. We
write I = {i; > 42 > --- > i} withk = |I|,and J = {j1 < jo < --- < ji}
with | = |J|. Set

(3.2.1) Uz(l 2 -~ k k+1 ... n
e il i2 ik jl jl *

and

(322) z= (ail,...,a,-k,ajl,...,ajl) S ZI;O X ZlSO
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Then we have w = oz. Conversely, any element w = oz with o, z defined
as above in terms of I, J, together with the condition that —p/2 < a; <
p/2, gives an element of . These facts can be checked by using the
induction on n.
Now ¢(w) € Wy can be expressed as a signed permutation,
1 2 - k k+1 ... n
323)  elw)= (—il T jz) '

From this we see that the set {p(w) |w € W} coincides with the set of

distinguished representatives for the set Wy/S,,.
We have the following lemma.

Lemma 3.3. Let N and W be as before. Then for each w € N, w is
the unique minimal length element in the coset wWjy with respect to £.
In other words,

N ={we W | (w) < £(ww') for any w' € W}.

Proof. Let w = oz € N. To prove the lemma, it is enough to show
(w) < f(ww') for any w’ € Wy — {1}. Since w’' € Wy, one can write
w' =o'z with ¢’ € S, and 2’ = (21,..., 2},) such that 2 = 0 (mod p).
Here o’ # 1 or 2’ # 0. Then ww' = 65’0’ '(2)2/, and o' (2); = 250 (i) -
Since z; = 0 (mod p), we have z,/(;y + 2; = Z,(;). Hence p(ww') =
e(w)e’. But since p(w) is a distinguished representative for the cosets
Wo/Sn, we see that £;(w) < £y(ww') if o' # 1.

Next we show that £3(w) < fa(ww') if 2’ # 0. We may assume that
r # p. By our assumption, we have —p/2 < 2z,/(;y < p/2, and z{ = 0
(mod p). If z,/(;) and z] have the same sign, clearly |2,/ (s) +2;| > |25+ @3)-
(In this case, if |2,y + 2j| > r/2, one has to replace z,/(; + z; by
Zgr(s) + 2; = 7. But since r # p, still the inequality holds). Now assume
that z,/(;y and z] have the distinct sign. Then we have |p — z/(3] >
|zo7(5y], and the equality holds only when z,/(;; = p/2. So the only
case we have to care about is the case that z,/(;y = p/2 and z; = —p.
But in this case, (24/(;) + 2;)" = p > 2515y = p — 1. This shows that
Lo(w) < Lo(ww'’) if 2/ # 0. Hence we have {(w) < L(ww') if w’ # 1 as
asserted. Q.E.D.

3.4. Let I = {t?,s1,52,...,8n-1} be asubset of S, and we consider

the subgroup Wi of W generated by I. Hence W; is isomorphic to
G(r,p,n —1). We set D = {w(a,n) | —p/2 < a < p/2}. Then we have
the following lemma.
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Lemma 3.5. (i) The set D is a set of complete representatives of
the double cosets WI\W/WJ
(ii) Forw = w(a1,1)---w(an,n) € N, we have {(w) = E (w(a;, 1)
(iii) The set D is characterized as the set of elements w € W such that
w 1s the unique minimal length element in WI’LUWJ with respect
to L.

Proof. We know already by Remark 2.10 that W = WIDEJ. On
the other hand, let z = w(a,n) € D. Then any element y € WizW,
has the property that y maps some e( ) to e(“) with &’ = a (mod p).
This implies that the double cosets are disjoint for distinct elements in
D, and we get (i).

We show (ii). Let w € V. Then by using (3.2.3), one can check that
p(w) = @(w(ay,1))---p(w(an,n)), and that p(w(as,n)) is a distin-
guished representatives for the cosets (WI) \Wo _(Here (WI) denotes
the subgroup of WO of type B,,_1 obtained from WI) Hence the func-
tion £, is additive with respect to the decomposition of ¢(w), and so we
have £;(w) = Y, #(w(ai,4)). On the other hand, if we write w = 02 as
in 3.2, z is given as in (3.2.2). This implies that £2(w) = Y, £2(w(as, 1)),
and the assertion follows.

Finally we show (iii). Take £ = w(a,n) € D. Then by Remark
2.10, any element y € WIxWJ can be written uniquely as y = wizws
with wy € Nj and we € W;. (Here Ny = N N W). Then by Lemma
3.3, l(wz) < f(wizwsy), where the equality holds only when we = 1.
On the other hand, by (ii), we have £(wiz) = £(w1) + £(z). Hence (iii)
holds. Q.E.D.

Remark 3.6. The set N (resp. D) is also characterized as the set of
minimal length elements in each coset in W /W (resp. W \W /W) by
Proposition 2.9 and Lemma 2.11.

3.7. We now give a characterization of the function 7 in terms of
the function £. In some sense this gives a characterization of the function
n on W since fili = n. Note that by Lemma 3.3 and Lemma 3.5, the
sets A and D are determined by the function ¢ independently of the
choice of the root system.

Theorem 3.8. Assume that d # 1. Then the function i : W — N s
the unique function satisfying the following properties.
(i) The restriction of i on Wy (resp. on W ) coincides with ny
(resp. fir), where fiy denotes the function on Wi = G(r,1,n-1)
defined in a similar way as 7 on w.
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(ii) Forw € N, w' € Wy, we have A(ww') = A(w) + A(w'). For
w e N, w' € D, we have fifww') = fi(w) + A(w').

(iii) Let g be an element in W which is conjugate to t, with g #t. Set
o =p/2 if p is even, and a = ~(p —1)/2 if p is odd. Then we
have

0 <i(g) <Ay~ ") <n(g®) <ffg™?) < --- < #i(g®),

1 A(w
() = 3 ¢ = Pw(a).
wGW

Proof. We have already seen in section 2 that 7i satisfies the con-
dition (i), (ii) and (iv). We show that 7 satisfies (iii). Take g € W as
in (iii). Then g can be written as g = s;8;_1 -+ - s3t82 - - - 8;_15; for some
1 > 2. Hence we have

a_{w(a,i)si---32 if0<a<p/2,

3.8.1
( ) w(a, 1) if —p/2<a<0.

Since s; - - - s2 € W, the length 7i(g*) can be computed by Lemma 2.7
and Lemma 2.11, as follows.

v JGE=1){d(2a~1)+1} if 0 <a<p/2,
Alg") = {(i— 1)(~2ad) if —p/2<a<0.

Since d # 1, the condition (iii) is verified by using the above formula.

Next we show the uniqueness of 7. If n=1, W is the cyclic group
generated by ¢ and W is the subgroup of W generated by tP. Hence it
is determined by the conditions (i) and (ii). So we assume that n > 1.
By (i) and (ii), it is enough to see that 7i(w) is determined uniquely for
w € D. Let w = w(a,n) € D and set c(a) = #A(w)/(n — 1). Then by
(iv), we have

(3.8.2) {c(a) | —p/2 <a < p/2} ={0,d,2d,...,(p — 1)d}.

Since |D| = p, c(a) are all distinct. On the other hand, let g =
Sp - - SgtSy - - Sp. Then by (3.8.1) and (ii), we have

oy J(n=1)(c(a) + 1) if 0 <a<p/2,
Ag") = {(n—l)c(a) if —p/2<a<0.

Hence by using (iii), we have

e(i) +1 < c(—i) <cli+1)+1
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for i = 1,2,.... Since ¢(a) = 0 (mod d), and d # 1, we have c(i) <
e(—1) < e(i+1). It follows, by (3.8.2), that we have

f@a-1d  ifa>o0,
e(a) = (—2a)d ifa<o0.

The function 7 is now determined on D, and so the theorem follows.
Q.E.D.

Remark 3.9. In the case where d = 1, the property (iii) in the theorem
does not hold. Instead, we have the following relation.

(iii’) 0 < i(g) = (g™t < A(g?) = (g2 < --- < A(g%).

Then the function 7 is characterized by the properties (i) ~ (iv), but
replacing (iii) by (iii’). In fact, by a similar argument as above, we have

c(i)+1=c(~3) <c(i+1)+1

fori=1,2,.... Thus ¢(7) is the smallest integer among all the ¢(a) such
that |a| > i. Slnce the set {c(a) | —=p/2 < a < p/2} coincides with the

set {0,1,...,p — 1}, this determines ¢(i) and so ¢(—¢) successively for
i =1,2,.... Hence the function 7 is determined uniquely.
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