Minor Summation Formulas of Pfaffians,
Survey and A New Identity

Masao Ishikawa¹ and Masato Wakayama²

Abstract.

In this paper we treat the minor summation formulas of pfaffians presented in [IW1] and derive several basic formulas concerning pfaffians from it. We also present a pfaffian version of the Plücker relation and give a new pfaffian identity as its application.

Chapter I. Introduction

In this short note we treat the minor summation formulas of pfaffians presented in [IW1] and derive several basic formulas concerning pfaffians. We also present a pfaffian version of the Plücker relations and give a new pfaffian identity as its application in Chapter III.

The minor summation formula we call here is an identity which involves pfaffians for a weighted sum of minors of a given matrix. The first appearance of this kind of minor sum is when one tries to count the number of the totally symmetric plane partitions (see [O1]). Once we establish the minor summation formula full in general, one gets various applications (see, e.g., [IOW], [KO], [O2]). Indeed, for example, using the minor summation formula we obtained quite a number of generalizations of theLittlewood formulas concerning various generating functions of the Schur polynomials (see [IW2,3,4]).

Though the notion of pfaffians is less familiar than that of determinants it is also known by a square root of the determinant of a skew
symmetric matrix. We recall now a more combinatorial definition of pfaffians. Let \(S_n \) be the symmetric group on the set of the letters \(1, 2, \ldots, n \) and, for each permutation \(\sigma \in S_n \), let \(\text{sgn} \sigma \) stand for \((-1)^{\ell(\sigma)}\), the sign of \(\sigma \), where \(\ell(\sigma) \) is the number of inversions of \(\sigma \).

Let \(n = 2r \) be even. Let \(H \) be the subgroup of \(S_n \) generated by the elements \((2i - 1, 2i) \) for \(1 \leq i \leq r \) and \((2i - 1, 2i + 1)(2i, 2i + 2) \) for \(1 \leq i < r \). We set a subset \(\mathcal{F}_n \) of \(S_n \) to be

\[
\mathcal{F}_n = \left\{ \sigma = (\sigma_1, \ldots, \sigma_n) \in S_n \mid \begin{array}{l}
\sigma_{2i-1} < \sigma_{2i} \quad (1 \leq i \leq r) \\
\sigma_{2i-1} < \sigma_{2i+1} \quad (1 \leq i \leq r - 1)
\end{array} \right\}.
\]

An element of \(\mathcal{F}_n \) is called a perfect matching or a 1-factor. For each \(\pi \in S_n \), \(H \pi \cap \mathcal{F}_n \) has a unique element \(\sigma \). Let \(B = (b_{ij})_{1 \leq i, j \leq n} \) be an \(n \) by \(n \) skew-symmetric matrix with entries \(b_{ij} \) in a commutative ring. The pfaffian of \(B \) is then defined as follows:

\[
\text{pf}(B) = \sum_{\sigma \in \mathcal{F}_n} \text{sgn} \sigma \, b_{\sigma(1)} b_{\sigma(2)} \ldots b_{\sigma(n-1)} b_{\sigma(n)}.
\]

(1.1)

Chapter II. Pfaffian Identities

Let us denote by \(\mathbb{N} \) the set of nonnegative integers, and by \(\mathbb{Z} \) the set of integers. Let \([n]\) denote the subset \(\{1, 2, \ldots, n\} \) of \(\mathbb{N} \) for a positive integer \(n \).

Let \(n, M \) and \(N \) be positive integers such that \(n \leq M, N \) and let \(T \) be any \(M \) by \(N \) matrix. For \(n \)-element subsets \(I = \{i_1 < \cdots < i_n\} \subseteq [M] \) and \(J = \{j_1 < \cdots < j_n\} \subseteq [N] \) of row and column indices, let \(T^I_J = T^i_{j_1 \cdots j_n} \) denote the sub-matrix of \(T \) obtained by picking up the rows and columns indexed by \(I \) and \(J \). In the case that \(n = M \) and \(I \) contains all row indices, we omit \(I = [M] \) from the above expression and simply write \(T^I_J = T^I_J \). Similarly we write \(T^I_J \) for \(T^I_J \) if \(n = N \) and \(J = [N] \).

Let \(B \) be an arbitrary \(N \) by \(N \) skew symmetric matrix; that is, \(B = (b_{ij}) \) satisfies \(b_{ij} = -b_{ji} \). In Theorem 1 of the paper [IW1], we obtained a formula concerning a certain summation of minors which we call the minor summation formula of pfaffians:

Theorem 2.1. Let \(n \leq N \) and assume \(n \) is even. Let \(T = (t_{ij})_{1 \leq i \leq n, 1 \leq j \leq N} \) be any \(n \) by \(N \) matrix, and let \(B = (b_{ij})_{1 \leq i, j \leq N} \) be any \(N \) by \(N \) skew symmetric matrix. Then

\[
\sum_{I \subseteq [N], \#I = n} \text{pf}(B^I_J) \det(T^I_I) = \text{pf}(Q),
\]

(2.1)
where Q is the n by n skew-symmetric matrix defined by $Q = TB^tT$, i.e.

$$Q_{ij} = \sum_{1 \leq k < l \leq N} b_{kl} \det(T_{kl}^{ij}), \quad (1 \leq i, j \leq n). \tag{2.2}$$

We note that another proof of this minor summation formula and some other extensions using the so-called lattice path methods will be given in the forthcoming paper [IW5].

We now add on one useful formula which relates to the skew symmetric part of a general square matrix. Actually the following type of pfaffians may arise naturally when we consider the imaginary part of a Hermitian form.

Corollary 2.1. Fix positive integers m, n such that $m \leq 2n$. Let A and B be arbitrary $n \times m$ matrices, and X be an $n \times n$ symmetric matrix. (i.e. $^tX = X$). Let P be the skew symmetric matrix defined by $P = ^tAXB - ^tBXA$. Then we have

$$\text{pf}(P) = \sum_{K \subseteq [2n]} \text{pf} \left(\begin{pmatrix} O_n & X \\ -X & O_n \end{pmatrix}^K \right) \det \left(\begin{pmatrix} A \\ B \end{pmatrix}^K \right).$$

In particular, when $m = 2n$ we have

$$\text{pf}(P) = \det(X) \det \left(\begin{pmatrix} A \\ B \end{pmatrix} \right).$$

Proof. Apply the above theorem to the $2n \times 2n$ skew symmetric matrix $\begin{pmatrix} O_n & X \\ -X & O_n \end{pmatrix}$ and the $2n \times m$ matrix $\begin{pmatrix} A \\ B \end{pmatrix}$. Then the elementary identity

$$^t \begin{pmatrix} A \\ B \end{pmatrix} \begin{pmatrix} O_n & X \\ -X & O_n \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = ^tAXB - ^tBXA$$

immediately asserts the corollary.

As a corollary of the theorem above we have the following expansion formula (cf. [Ste], [IW1]):

Corollary 2.2. Let A and B be m by m skew symmetric matrices. Put $n = \lfloor \frac{m}{2} \rfloor$, the integer part of $\frac{m}{2}$. Then

$$\text{pf}(A + B) = \sum_{r=0}^{n} \sum_{\frac{m}{2}}^{n} (-1)^{|I|-r} \text{pf}(A_I^T) \text{pf}(B_I^T), \quad (2.3)$$
where we denote by \bar{I} the complement of I in $[m]$ and $|I|$ is the sum of the elements of I (i.e. $|I| = \sum_{i \in I} i$).

In particular, we have the expansion formula of pfaffian with respect to any column (row): For any i, j we have

$$
\delta_{ij} \text{pf}(A) = \sum_{k=1}^{m} a_{ki} \gamma(k, j),
$$

(2.4)

$$
\delta_{ij} \text{pf}(A) = \sum_{k=1}^{m} a_{ik} \gamma(j, k),
$$

(2.5)

where

$$
\gamma(i, j) = \begin{cases}
(-1)^{i+j-1} \text{pf}(A_{ij}) & \text{if } i < j, \\
0 & \text{if } i = j, \\
(-1)^{i+j} \text{pf}(A_{ij}) & \text{if } j < i.
\end{cases}
$$

(2.6)

and A_{ij} stands for the $(m-2)$ by $(m-2)$ skew symmetric matrix which is obtained from A by removing both the i, j-th rows and i, j-th columns for $1 \leq i \neq j \leq m$.

We close this chapter by noting the fact that one may give a proof of the fundamental relation; $\text{pf}(A)^2 = \det(A)$, for a skew symmetric matrix A without any use of a process of the "diagonalization" by employing the expansion formula above and the Lewis-Carroll formula for determinants discussing below.

\section*{Chapter III. The Lewis-Carroll formula, etc.}

In this chapter we provide a Pfaffian version of Lewis-Carroll’s formula and Plücker’s relations. The latter relations are also treated in [DW], and in [Kn] it is called the (generalized) basic identity. First of all we recall the so-called Lewis-Carroll formula, or known as the Jacobi formula among minor determinants.

Proposition 3.1. Let A be an n by n matrix and \bar{A} be the matrix of its cofactors. Let $r \leq n$ and $I, J \subseteq [n]$, $\#I = \#J = r$. Then

$$
\det \bar{A}_I^J = (-1)^{r(|I|+|J|)} (\det A)^{r-1} \det A_{\bar{I}}^{\bar{J}},
$$

(3.1)

where $\bar{I}, \bar{J} \subseteq [n]$ stand for the complementary of I, J, respectively.
Example 1. We give here a few examples of Lewis-Carroll’s formula for matrices of small degree.

\[
\begin{vmatrix}
 a_{11} & a_{13} \\
 a_{31} & a_{33}
\end{vmatrix}
\begin{vmatrix}
 a_{11} & a_{12} \\
 a_{31} & a_{32}
\end{vmatrix}
= \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}.
\]

(3.2)

We give one more;

\[
\begin{vmatrix}
 a_{11} & a_{14} \\
 a_{21} & a_{24}
\end{vmatrix}
\begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{31} & a_{32} & a_{33} \\
 a_{41} & a_{42} & a_{43}
\end{vmatrix}
= \begin{vmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{vmatrix}.
\]

(3.3)

Hereafter we write \(A_I \) for \(A^T_I \) for short. We hope that it doesn’t cause the reader any confusion since we only treat square matrices. Let \(m \) be an even integer and \(A \) be an \(m \) by \(m \) skew symmetric matrix. Assume that pf(A) is nonzero, that is, \(A \) is non-singular.

Let \(\Delta(i, j) = (-1)^{i+j} \det A^{ij} \) denote the \((i, j)\)-cofactor of \(A \). If we multiply the both sides of (2.6) by pf(A) and use the fundamental relation between determinants and pfaffians: \(\det A = [\text{pf}(A)]^2 \), we obtain

\[
\sum_{i=1}^{m} a_{ij} \gamma(i, k) \text{pf}(A) = \delta_{jk} [\text{pf}(A)]^2 = \delta_{jk} \det A.
\]

(3.4)

Comparing this with the cofactor expansion of \(\det A \), we obtain the following relation between \(\Delta(i, j) \) and \(\gamma(i, j) \):

\[
\Delta(i, j) = \gamma(i, j) \text{pf}(A).
\]

(3.5)

The following relation is considered as a pfaffian version of the Lewis-Carroll formula.

Theorem 3.1. Let \(m \) be an even integer and \(A \) be an \(m \) by \(m \) skew symmetric matrix. Let \(\hat{A} = (\gamma(j, i)) \). Then, for any \(I \subseteq [m] \) such that \(\# I = 2r \), we have

\[
\text{pf} \left[(\hat{A})_I \right] = (-1)^{|I|} [\text{pf}(A)]^{r-1} \text{pf}(A_I).
\]

(3.6)
Example 2. Taking \(m = 6 \), \(t = 1 \) and \(I = \{1, 2, 3, 4\} \) in the above theorem, we see

\[
\gamma(1, 2)\gamma(3, 4) - \gamma(1, 3)\gamma(2, 4) + \gamma(1, 4)\gamma(2, 3) = \text{pf}(A)\text{pf}(A_{\{5, 6\}}).
\]

Hence by definition, we see that this turns out to be

\[
\text{pf}(A_{\{3,4,5,6\}})\text{pf}(A_{\{1,2,5,6\}}) - \text{pf}(A_{\{2,4,5,6\}})\text{pf}(A_{\{1,3,5,6\}}) + \text{pf}(A_{\{2,3,5,6\}})\text{pf}(A_{\{1,4,5,6\}}) = \text{pf}(A)\text{pf}(A_{\{5,6\}}),
\]

that is, in more familiar form we see

\[
\begin{align*}
\text{pf} \begin{pmatrix} 0 & a_{34} & a_{35} & a_{36} \\ -a_{34} & 0 & a_{45} & a_{46} \\ -a_{35} & -a_{45} & 0 & a_{56} \\ -a_{36} & -a_{46} & -a_{56} & 0 \\ \end{pmatrix} & \text{pf} \begin{pmatrix} 0 & a_{12} & a_{15} & a_{16} \\ -a_{12} & 0 & a_{25} & a_{26} \\ -a_{15} & -a_{25} & 0 & a_{56} \\ -a_{16} & -a_{26} & -a_{56} & 0 \\ \end{pmatrix} \\
-\text{pf} \begin{pmatrix} 0 & a_{24} & a_{25} & a_{26} \\ -a_{24} & 0 & a_{45} & a_{46} \\ -a_{25} & -a_{45} & 0 & a_{56} \\ -a_{26} & -a_{46} & -a_{56} & 0 \\ \end{pmatrix} & \text{pf} \begin{pmatrix} 0 & a_{13} & a_{15} & a_{16} \\ -a_{13} & 0 & a_{35} & a_{36} \\ -a_{15} & -a_{35} & 0 & a_{56} \\ -a_{16} & -a_{36} & -a_{56} & 0 \\ \end{pmatrix} \\
+\text{pf} \begin{pmatrix} 0 & a_{23} & a_{25} & a_{26} \\ -a_{23} & 0 & a_{35} & a_{36} \\ -a_{25} & -a_{35} & 0 & a_{56} \\ -a_{26} & -a_{36} & -a_{56} & 0 \\ \end{pmatrix} & \text{pf} \begin{pmatrix} 0 & a_{14} & a_{15} & a_{16} \\ -a_{14} & 0 & a_{45} & a_{46} \\ -a_{15} & -a_{45} & 0 & a_{56} \\ -a_{16} & -a_{46} & -a_{56} & 0 \\ \end{pmatrix} \\
= \text{pf} \begin{pmatrix} 0 & a_{56} \\ -a_{56} & 0 \\ \end{pmatrix} & \text{pf} \begin{pmatrix} 0 & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ -a_{12} & 0 & a_{23} & a_{24} & a_{25} & a_{26} \\ -a_{13} & -a_{23} & 0 & a_{34} & a_{35} & a_{36} \\ -a_{14} & -a_{24} & -a_{34} & 0 & a_{45} & a_{46} \\ -a_{15} & -a_{25} & -a_{35} & -a_{45} & 0 & a_{56} \\ -a_{16} & -a_{26} & -a_{36} & -a_{46} & -a_{56} & 0 \\ \end{pmatrix}.
\end{align*}
\]

We next state a pfaffian version of the Plücker relations (or known as the Grassmann-Plücker relations) for determinants which is a quadratic relations among several subpfaffians. This identity is also proved in the book [Hi] and a recent paper [DW] in the framework of an exterior algebra.

Theorem 3.2. Suppose \(m, n \) are odd integers. Let \(A \) be an \((m + n) \times (m + n)\) skew symmetric matrices of odd degrees. Fix a sequence of integers \(I = \{i_1 < i_2 < \cdots < i_m\} \subseteq [m + n] \) such that \(\#I = m \). Denote the complement of \(I \) by \(\bar{I} = \{k_1, k_2, \ldots, k_n\} \subseteq [m + n] \) which has the
Minor Summation Formulas of Pfaffians, Survey and a New Identity 139

cardinality \(n \). Then the following relation holds.

\[
\sum_{j=1}^{m} (-1)^{j-1} \text{pf}(A_{I \setminus \{i_j\}}) \text{pf}(A_{(i_j) \cup \{j\}}) = \sum_{j=1}^{n} (-1)^{j-1} \text{pf}(A_{I \cup \{k_j\}}) \text{pf}(A_{I \setminus k_j}).
\]

(3.8)

The following assertion, which is called by the basic identity in \([Kn]\) is a special consequence of the formula above.

Corollary 3.1. Let \(A \) be a skew symmetric matrix of degree \(N \). Fix a subset \(I = \{i_1, i_2, \ldots, i_{2k}\} \subseteq [N] \) such that \(|I| = 2k \). Take an integer \(l \) which satisfies \(2k + 2l \leq N \). Then

\[
\text{pf}(A_{1,2,\ldots,2l}) \text{pf}(A_{i_1, i_2, \ldots, i_{2k}, 1, \ldots, 2l}) = \sum_{j=1}^{2k-1} (-1)^{j-1} \text{pf}(A_{i_1,1,2,\ldots,2l,i_{j+1}}) \text{pf}(A_{i_2, \ldots, i_{j+1}, \ldots, i_{2k}, 1, \ldots, 2l}).
\]

(3.9)

The theorem stated below is proved by induction using this basic identity. Its proof will be given in the forthcoming paper \([IW5]\).

Theorem 3.3.

\[
\text{pf} \left\{ \frac{y_i - y_j}{a + b(x_i + x_j) + cx_i x_j} \right\} \prod_{1 \leq i < j \leq 2n} \{a + b(x_i + x_j) + cx_i x_j\}
\]

\[
= (ac - b^2)^{\frac{n(n-1)}{2}} \sum_{I \subseteq [2n], \#I = n} (-1)^{n-\frac{n(n+1)}{2}} y_I \Delta_I(x) \Delta_{\bar{I}}(x) J_I(x) J_{\bar{I}}(x),
\]

where the sum runs over all \(n \)-element subset \(I = \{i_1 < \cdots < i_n\} \) of \([2n]\) and \(\bar{I} = \{j_1 < \cdots < j_n\} \) is the complementary subset of \(I \) in \([2n]\).

Further we write

\[
\Delta_I(x) = \prod_{i,j \in I, i < j} (x_i - x_j),
\]

\[
J_I(x) = \prod_{i,j \in I, i < j} \{a + b(x_i + x_j) + cx_i x_j\},
\]

\[
y_I = \prod_{i \in I} y_i.
\]
As a corollary of this theorem we obtain the following identity in [Su2]. Indeed, if we put $a = c = 1, b = 0$ in the theorem, then we have the

Corollary 3.2.

$$
\text{pf} \left(\frac{y_i - y_j}{1 + x_i x_j} \right)_{1\leq i, j \leq 2n} \times \prod_{1 \leq i < j \leq 2n} (1 + x_i x_j) = \sum_{\lambda, \mu} a_{\lambda + \delta_n, \mu + \delta_n} (x, y),
$$

where the sums runs over pairs of partitions

$$
\lambda = (\alpha_1 - 1, \ldots, \alpha_p - 1 | \alpha_1, \ldots, \alpha_p), \mu = (\beta_1 - 1, \ldots, \beta_p - 1 | \beta_1, \ldots, \beta_p)
$$

in Frobenius notation with $\alpha_1, \beta_1 < n - 1$. Also, for α and β partitions (compositions, in general) of length n, we put

$$
a_{\alpha, \beta}(x, y) = \sum_{\sigma \in S_{2n}} \epsilon(\sigma) \sigma(x_1^{\alpha_1} y_1 \cdots x_n^{\alpha_n} y_n \cdots x_{2n}^{\beta_n}),
$$

where $\sigma \in S_{2n}$ acts on each of two sets of variables $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ by permuting indices, and $\delta_n = (n-1, n-2, \ldots, 0)$.

Proof. Recall that

$$
\sum_{\lambda=(\alpha_1-1,\ldots,\alpha_p-1 | \alpha_1,\ldots,\alpha_p)} s_\lambda(x_1, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (1 + x_i x_j), \quad (3.10)
$$

where $s_\lambda = s_\lambda(x_1, \ldots, x_n) = a_{\lambda + \delta_n}/a_{\delta_n}$ and $a_\alpha = \det(x_i^{\alpha_j})_{1 \leq i, j \leq n}$ for a composition α. We write $a_\alpha(I) = a_\alpha(x_{i_1}, \ldots, x_{i_n})$ for $I = \{i_1 < \cdots < i_n\} \subseteq [2n]$. By the theorem and (3.10) we see

$$
\text{pf} \left(\frac{y_i - y_j}{1 + x_i x_j} \right)_{1 \leq i, j \leq 2n} \times \prod_{1 \leq i < j \leq 2n} (1 + x_i x_j)
$$

$$
= \sum_{I \subseteq [2n]} \sum_{\lambda, \mu} (-1)^{|I| - \frac{n(n+1)}{2}} y_I \prod a_{\lambda + \delta_n}(I) a_{\mu + \delta_n}(\bar{I})
$$

$$
= \sum_{\lambda, \mu} \sum_{i_1 < \cdots < i_n} \sum_{\sigma, \tau \in S_n} (-1)^{|I| - \frac{n(n+1)}{2}} \epsilon(\sigma) \epsilon(\tau)
$$

$$
\times \sigma(x_1^{\lambda_1+n-1} y_{i_1} \cdots x_n^{\lambda_n} y_{i_n}) \tau(x_1^{\mu_1+n-1} \cdots x_n^{\mu_n}),
$$
where $\bar{I} = \{j_1, \ldots, j_n\}$. Thus, the last sum is turned to be
\[
\sum_{\lambda, \mu} \sum_{\sigma, \tau \in S_n} \epsilon(\sigma) \sigma(x_1^{\lambda_1+n-1} y_1 \ldots x_n^{\lambda_n} y_n x_{n+1}^{\mu_1+n-1} \ldots x_{2mn})
\]
\[
= \sum_{\lambda, \mu} a_{\lambda+\delta_n, \mu+\delta_n}(x, y).
\]
This completes the proof of the corollary.

References

Masao Ishikawa, Department of Mathematics,
Faculty of Education, Tottori University, Tottori 680-8551, Japan
ishikawa@fed.tottori-u.ac.jp

Masato Wakayama, Graduate School of Mathematics,
Kyushu University, Hakozaki Higashi-ku, Fukuoka 812-8581, Japan
wakayama@math.kyushu-u.ac.jp